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Abstract

During the past two decades, significant advances have been made in the discovery and
development of targeted inhibitors aimed at improving the survival rates of cancer patients.
Among the multitude of potential therapeutic targets identified thus far, Receptor Tyrosine Kinases
(RTKs) are of particular importance. Dysregulation of RTKs has been implicated in numerous
human diseases, particularly cancer, where aberrant signaling pathways contribute to disease
progression. RTKs have a profound impact on intra and intercellular communication, and they also
facilitate post-translational modifications, notably phosphorylation, which intricately regulates a
multitude of cellular processes. Prolonged phosphorylation or the disruption of kinase regulation
may lead to significant alterations in cell signaling. The emergence of small molecule kinase
inhibitors has revolutionized cancer therapy by offering a targeted and strategic approach that
surpasses the efficacy of traditional chemotherapeutic drugs. Over the last two decades, a plethora
of targeted inhibitors have been identified or engineered and have undergone clinical evaluation

to enhance the survival rates of cancer patients. In this review, we have compared the expression
of different RTKSs, including Met, KDR/VEGFR2, EGFR, BRAF, BCR, and ALK across different
cancer types in TCGA samples. Additionally, we have summarized the recent development of
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small molecule inhibitors and their potential in treating various malignancies. Lastly, we have
discussed the mechanisms of acquired therapeutic resistance with a focus on kinase inhibitors in
EGFR mutant and ALK-rearranged non-small cell lung cancer and BCR-ABL positive chronic
myeloid leukemia.
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1. Introduction

Malignant tumors pose a significant health threat, ranking among the leading causes of death
worldwide. According to a report released by the International Agency for Research on
Cancer (IARC), more than 10 million cancer-related deaths occurred worldwide in 2020,
with predictions of further increases in the coming years [1]. In the United States alone, the
American Cancer Society projected an annual death toll of over 608,570 [2]. The escalating
cancer statistics highlight the urgency for the scientific community to focus on improved
anti-cancer therapy and disease management. The emergence of kinase inhibitors, which
surpass traditional drugs in treatment, offers a strategic approach to combat cancer.

The kinase family, comprising homologous proteins encoded in almost 2 % of the human
genome, plays a crucial role in cellular regulation [3]. Normally tightly regulated in cells,
kinases are key players in post-translational modifications, particularly phosphorylation,
which governs various cellular processes [4]. Prolonged phosphorylation or kinase
dysfunction can significantly alter cell signaling, potentially promoting tumorigenesis [5].
Recent advancements underscore the pivotal role of kinases in cancer progression, from
initiation to metastasis. Over the past few years, numerous kinase inhibitors have been
discovered, developed, and clinically tested. Gleevec (imatinib mesylate), introduced in
2001, marked the first successful therapeutic Abl tyrosine kinase inhibitor for treating
chronic myeloid leukemia (CML) [6]. With over 90 kinase inhibitors approved worldwide
in the last two decades, their efficacy in cancer treatment is evident [7]. However, certain
limitations associated with these inhibitors may confer a selective advantage to transformed
cells, affecting prognosis. Exploring potential inhibitors and inhibition mechanisms not
only mitigates adverse effects but also steers toward precision medicine, reshaping cancer
management strategies.

This review delves into the kinase superfamily, focusing on receptor tyrosine kinases (RTKs)
and their roles under normal and diseased conditions. Additionally, we examine available
inhibitory mechanisms targeting RTKs with minimal side effects. We also present a concise
compilation of approved drugs targeting receptor tyrosine kinases (RTKSs), along with a
detailed examination of the various types of RTK inhibitors and their mechanisms of action.
This comprehensive approach distinguishes our work from existing reviews by offering a
thorough compilation and analysis of the latest RTK-targeted therapies and their clinical
applications. Lastly, we complement prior revisions with current insights into managing
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chemotherapy-induced resistance in CML and non-small cell lung carcinoma (NSCLC)
including future insight.

2. Kinase family and receptor tyrosine kinases

The human genome encodes the kinase superfamily, comprising approximately 555
members. These protein kinases are categorized into two primary classes based on sequence
similarity: eukaryotic protein kinase (ePK), encompassing 497 kinases, and atypical protein
kinases (aPKs), comprising 58 kinases [8]. Within the ePKs, sequence similarity within

the kinase domain further divides them into nine broad groups: TK (tyrosine kinase), TKL
(tyrosine kinase-like), STE (serine/threonine kinases), CK1 (casein kinase 1), AGC (protein
kinase A/G/C related), CAMK (Ca2+/calmodulin-dependent kinases), CMGC (Cdk, MAPK,
GSK, Cdk-like related), RGC (receptor guanylyl cyclase) and others (include CK2 & 1xB
kinases.) [9,10]. TK, one of the major groups in the ePKs family, comprises 95 kinase
members [11], playing a crucial role in cellular communication and interaction with the
surroundings.

TKSs are further subdivided based on their location into RTKs and non-receptor TKs
(nRTKSs). RTKSs, located in the cell membrane, transmit signals from the extracellular to
the intracellular region, while nRTKSs, cytosolic proteins, relay intracellular signals within
the cell [12,13].

RTK predominantly resides in the cell membrane, catalyzing the transfer of -y phosphate
from phosphate-donating molecules such as ATP to specific substrates’ hydroxyl (OH)
group [14]. Concurrently, they activate downstream signal transduction pathways and
regulate various cellular processes, including cell differentiation, proliferation, survival,
apoptosis, and angiogenesis [15]. Over 90 distinct RTK-related genes have been identified,
encoding 58 different types of RTK proteins, further grouped into 20 subfamilies based

on the sequence of the kinase domain [10,16]. Despite variations, RTK proteins share a
conserved architecture throughout evolution, featuring a glycosylated extracellular domain
(ECD) facilitating ligand binding, followed by a transmembrane domain, an intracellular
tyrosine kinase domain, and an intracellular region containing a juxta membrane regulatory
region, a tyrosine kinase domain (TKD), and a carboxyl (C-) terminal tail.

Phosphorylation of RTKs can occur via three different processes: cis-auto phosphorylation
(e.g., Glycogen synthase kinase-3 beta, (GSK-3 beta)), frans-auto phosphorylation (e.g.,
Insulin-like growth factorl receptor (IGF1R)), and another kinase-mediated process (e.g.,
MAPK) [17-19]. Following phosphorylation, RTKs serve as docking sites for additional
substrates, relaying information to the nucleus and modulating transcription and translation
patterns. Using the UALCAN database, we compared the expression levels of several key
RTKSs frequently overexpressed in various cancers (Fig. 1) [20,21].
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3. Activation of receptor tyrosine kinases under normal physiological

state

Phosphorylation of RTK is essential for both intra and intercellular communication, tightly
regulated under normal physiological conditions. Typically, RTKs exhibit ligand specificity
becoming activated upon binding with their specific ligands to the ECD, leading to
receptor dimerization (Fig. 2). RTK dimerization occurs through various mechanisms a)
ligand-mediated dimerization: In this scenario, the ECD of the receptors does not directly
participate in dimerization (e.g. Tropomyosin receptor kinase A (TrkA)) [22] b) Receptor-
mediated dimerization: occurs in the absence of interaction between activating ligands
(e.g. Epidermal growth factor receptor (EGFR)) [23] ¢) Ligand homodimerization: Where
two receptors bind simultaneously to a ligand and interact through their dimer interface
(e.g. Stem cell factor receptor (SCFR)) [24,25] d) Interaction through accessary molecules:
In some cases, molecules such as heparin (e.g., FGFR) also participate in the receptor
dimerization process [26,27].

Before ligand-induced dimerization, the kinase domain of RTKs undergoes cis-auto
inhibition through intramolecular interaction, a mechanism that varies across different types
of RTKs. Ligand binding disrupts this inhibitory interaction, inducing a conformational
change in the cytoplasmic C-terminal [28]. Consequently, the intracellular kinase domain
becomes activated, initiating the cis or frans-auto-phosphorylation of tyrosine residues.
Phosphotyrosines then serve as binding sites, recruiting a diverse array of downstream
signaling molecules, and acting as an assembly platform for other signaling proteins. These
molecules transmit information to the nucleus, regulating a wide range of transcriptional
activities primarily involved in cell growth, proliferation, migration, and angiogenesis [29—
31].

4. Role of receptor tyrosine kinases in cancer

Under normal circumstances, the function of kinases is tightly regulated to maintain

a balance between their active and inactive states. However, when RTKs undergo
oncogenic activation or transforming abilities, they become constitutively active. This
aberrant signaling disrupts the equilibrium between cell proliferation and death [32,33].
Dysregulated RTKs alter the normal cellular biology and confer oncogenic properties,
leading to RTK-mediated tumorigenesis (Fig. 3). Dysregulation of RTKs can occur through
various mechanisms (a) Gain of driver mutation: Examples include the L858R point
mutation in EGFR [34] (b) Overexpression or genomic amplification: For instance, human
epidermal growth factor receptor 2 (HER2) in lung or breast cancer [35] (c) Chromosomal
rearrangement or translocation: Such as the BCR-ABL genes in leukemia cases [36] (d)
Duplication of kinase domain: Observed in the ErbB family and other kinase families

in various cancers [37] (e) Autocrine activation: Illustrated by the synergistic binding of
transforming growth factor alpha (TGFa) ligand with the EGFR in lung cancer [38].
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5. Receptor tyrosine kinase inhibitors: types and mechanisms of action

Recent advances in understanding the molecular mechanisms underlying cancer cell
signaling have highlighted the significant association of kinases with tumorigenesis. Small
molecule kinase inhibitors have emerged as highly effective therapeutic agents, classified
into five major types (I-V) based on their mode of action (Fig. 4). (1) Type | inhibitors:
These inhibitors compete with ATP, mimicking the heterocyclic purine ring and binding
reversibly to the ATP binding pocket of kinases. By preventing the transfer of phosphate
groups, they impede kinase activity [39-41]. However, type | inhibitors often exhibit limited
selectivity against targeted kinases, potentially inhibiting off-target kinases associated with
cardiac function [42,43]. (2) Type Il inhibitors: Intrinsically selective, type Il inhibitors
bind to their target kinase, which possesses gatekeeper residues in their inactive form, [44].
They disrupt the overall orientation of the kinase by binding reversibly to the hydrophobic
region of DFG-Asp out kinase confirmation, sterically hindering ATP binding. [45]. (3)
Type Il inhibitors: These inhibitors bind allosterically at sites other than ATP binding

cleft, negatively modulating kinase activity. They exhibit the highest degree of selectivity
due to variations in the allosteric binding site, rendering them exclusive against particular
kinases [46]. (4) Type IV inhibitors: Also known as substrate-directed kinase inhibitors,
these molecules interact reversibly at the substrate binding domain. They are uncompetitive
with ATP but competitive with specific substrates, providing specificity towards the kinase
[47]. (5) Type V kinase inhibitors: Reversible inhibitors that bind two different regions of the
protein kinase domain and are therefore bivalent [48,49].

In addition to these conventional kinase inhibitors, there are alternative inhibitors targeting
different regions of RTKSs to inhibit the signaling cascade. For example, in the case of FGFR,
SSR128129E (SSR) allosterically binds to the extracellular region of the target FGFR,
inhibiting its kinase activity [50].

6. Clinical use of approved small molecule inhibitors: focus on receptor
tyrosine kinases and other key targets

Given the frequent dysregulation of RTKSs in cancer and their association with disease
progression and poor prognosis, targeting these receptors has emerged as a promising
therapeutic strategy. Recent advancements in the development of inhibitors specifically
targeting RTKs have revolutionized cancer treatment (Fig. 5). By November 2023, over
100 small molecules or antibodies against specific RTKs had been approved for clinical
use by regulatory bodies such as the FDA and the European Medicines Agency (EMA)
(Table 1). Notable examples include Imatinib, Gefitinib, and Cetuximab, which have been
approved for the treatment of various cancers. Moreover, numerous other RTK inhibitors
are anticipated to receive approval in the coming years, further expanding the therapeutic
options against cancer.
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7. Acquired resistance mechanisms to receptor tyrosine kinase inhibitors
and alternative approaches

Patients often initially respond favorably to RTK inhibitors; however, prolonged treatment
may induce resistance, ultimately resulting in treatment failure disease progression. Tumor
cells can employ various survival strategies, such as acquiring mutations or activating
alternate pathways, to resist the inhibitory signals from RTK inhibitors [51].

Imatinib was the first RTK inhibitor approved by the FDA in 2001 for the treatment of CML
[52]. However, over time, point mutations, particularly at T3151 in Abl, cause patients to
become nonresponsive and resistant to Imatinib therapy [53-55]. T315 acts as a gatekeeper
residue and serves as a point of contact between the Abl and target inhibitors. Substitution
of Thr at 315 with the bulkier side chain of lle creates steric hindrance and blocks the
hydrophobic pocket to form additional H-bonds, providing stability to the enzyme-inhibitor
complex [40]. Apart from the T3151 mutation, there are some other non-synonymous
substitutions (M244V, G250E, Y253F/H, E255K/V, M351T, and F359V) that together
account for around 85 % of all mutations related to the development of resistance [56].
Additionally, circular RNAs (such as circ_0009910, and circ_0080145) are also reported to
enhance Imatinib resistance in CML and could be a potential target against resistant cells
[57,58].

Patients who are unable to achieve complete cytogenetic responses (CCR) to imatinib
treatment at regular doses, dose escalation, or early consideration of different generations

of inhibitors should be considered for favorable long-term prognosis or CCR, [56]. Dose
escalation of imatinib is one common approach to overcoming suboptimal or relapsed
conditions, especially in patients showing low-level resistance [59]. Moreover, second-
generation inhibitors (such as nilotinib, dasatinib, and bosutinib) are recommended for
effective therapeutic strategies. These inhibitor acts with higher potency against a broad
spectrum of mutations, except for T3151 [60]. A phase 2 DASCERN randomized study
(NCT01593254) supports the early switching to dasatinib, which could be beneficial for
CML patients in the chronic phase [61]. To overcome the resistance due to T315l, combined
therapy of imatinib or dasatinib along with interferon-alfa is recommended [62,63]. The
limitation associated with second-generation inhibitors led to the development of third-
generation inhibitors such as omacetaxine or & ponatinib. They were clinically approved for
the effective treatment of CML cases having positive Ph or T3151 mutant kinases [64]. A
phase 2 interventional clinical trial (NCT00375219) concludes omacetaxine has the potential
to be a safe and efficient therapy option for CML patients who have the T315l mutation
with manageable hematologic and non-hematologic toxicities. Due to substantial safety
concerns and the likelihood of arterial occlusive events (AOE), ponatinib is only prescribed
to individuals having T3151 mutation or who have failed the first two lines of therapy [65].
In 2021, another third-line option became available with the approval of asciminib to address
the life-threatening adverse outcome of ponatinib. asciminib demonstrated its effectiveness
in managing chronic cases in which other Abl kinase inhibitors failed or were ineffective
against the T315I mutation (NCT02081378) [66]. It is an allosteric inhibitor with high
specificity and potency against the myristoyl pocket of the fusion (BCR-ABL1) protein
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and immobilizes it into an inactive conformation [67]. After assessing the wide range of
mutations and their associated risk on prognosis, clinicians chose between the expanded
available inhibitors to increase the progression-free survival of the patients.

Similar to what was seen with Abl kinase, EGFR also acquired resistance to specific
chemotherapeutic agents during therapy. Detailed analysis of EGFR and its mutation
provides insight into the drug-resistant mechanisms and the development of next-generation
kinase inhibitors. In 2003, gefitinib was the first approved EGFR inhibitor followed by
erlotinib for the treatment of NSCLC. These are used as first-generation inhibitors against
activating mutations (R858L or exon 19 del) [68]. Despite showing an initial favorable
response with the current regime of primary therapy, most patients eventually become less
sensitive to these drugs and develop resistance, possibly by acquiring additional mutations as
seen in CML treatment with imatinib [69].

A strikingly similar mechanism was observed in NSCLC, in which a substitution occurred at
position 790, involving gatekeeper residues, replacing threonine with a bulkier hydrophobic
side chain of methionine. This point mutation at the ATP binding site creates steric
hindrance and loss of the binding cleft for the inhibitor, enhancing the binding affinity

for ATP [70]. To overcome the limitations associated with gefitinib and erlotinib, second-
generation inhibitors (afatinib and dacomitinib) were designed with enhanced potency
against EGFRT790M [71].

In 2016, a multicentre, randomized phase 111 clinical trial (NCT02824458) was initiated
in China to evaluate the effectiveness of gefitinib with or without apatinib as a first-line
therapy in EGFR mutant NSCLC [72]. This study showed that patients had a superior
progression-free survival (PFS) of 13.7 months when they received apatinib along with
gefitinib compared to gefitinib alone (PFS-10.2 months) [73].

Despite being approved to overcome the drawbacks of first-generation inhibitors, a major
downside was observed with afatinib and dacomitinib. They exhibit significant activity
against the kinase domain of the EGFR family, but the therapeutic threshold required for
clinical efficacy is unattainable due to dose-limiting associated toxicity [74]. There exists a
challenge in terms of selectivity against the effective use of these drugs in a clinical setting,
prompting the development of third-generation inhibitors (osimertinib) [75].

Currently, osimertinib is used as a first-line therapy among individuals with advanced
NSCLC and works efficiently against activating mutations of EGFR, including EGFR
T790M mutation [76-78]. A randomized AURAS3 Clinical trial (NCT02151981) conducted
with 419 patients having T790M-positive advanced NSCLC showed that osimertinib
treatment resulted in a median PFS of 10.1 months for a total of 279 patients, as opposed

to 4.4 months for the 140 patients who received platinum therapy plus pemetrexed. [79].
Another ADAURA clinical trial (NCT02511106) assessed the efficacy of osimertinib in

an adjuvant setting. The result found a significant 5-year overall survival (OS) (85 %)

in EGFR-mutated, stage 1B to I1IA NSCLC individuals with completely resected tumors
[80]. Thus, osimertinib showed greater efficacy in managing patients with advanced T790M
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NSCLC. In contrast, osimertinib administered to NSCLC patients acquired EGFR L858R/
L718V mutation confers resistance, but it retains the sensitivity to afatinib [81].

Considering its efficacy, the progression-free survival (PFS) or disease-free survival (DFS)
of the NSCLC patients is worse. Due to its molecular heterogeneity, NSCLC cells can
find alternate routes to escape the inhibitory action of osimertinib. Apart from acquiring
additional mutations, this leads to the generation of new mechanisms of resistance that

are independent or off-target of EGFR. These include MET or HER2 gene amplification,
phenotypic transformation, activation of MAPK-PI3K pathway, cell cycle alteration, and
oncogene fusion (such as FGFR3, NTRK, RET, ALK, BRAF) [78,82,83]. As a result, the
compound’s ability to provide long-term clinical benefit is limited.

Furthermore, ALK rearrangement is found in 5-17 % of NSCLC patients, making ALK
another target after EGFR [84,85]. Many different versions of ALK fusion protein have been
discovered so far, but EML4-ALK is one of the most prevalent types within a subset of
NSCLC identified in 2007 [86]. Crizotinib is a first-generation ALK/MET/ROS1 tyrosine
kinase inhibitor (TKI) approved in 2011 by the US FDA for the treatment of advanced ALK-
rearranged NSCLC [87]. Although most patients with ALK-rearranged NSCLC respond

to crizotinib, they develop resistance within 1 to 2 years of treatment due to mutations
within the ALK tyrosine kinase domain, ALK fusion gene amplification, and alternative
pathway-mediated survival signal activation (bypass pathway) activation via amplification or
mutation of other receptor tyrosine kinases [88].

The presence of Leucine at the 1196 position regulates the accessibility of crizotinib to
the hydrophobic pocket and inhibits the binding of the substrate within the catalytic site.
Substitution of leucine with methionine sterically hinders the ability of inhibitors to bind
and develop resistance toward a particular drug. Various other variants (G1269A, S1206Y,
V1180L, G1202R, and C1156Y) discovered so far confer resistance through various on or
off-target mechanisms [89].

Ceritinib and alectinib are two second-generation potent ALK inhibitors that have
demonstrated robust clinical activity in patients who developed resistance against crizotinib-
resistant ALK-positive NSCLC [90]. In phase I and 1 clinical studies, ceritinib elicited
responses in both crizotinib-naive and crizotinib-refractory patients who harbored an ALK
resistance mutation [91]. Based on this impressive clinical activity, ceritinib received US
FDA approval in April 2014 for the treatment of crizotinib-refractory, ALK-rearranged
NSCLC [92,93]. Ceritinib-resistant was detected in the tumor sample due to Src activation,
and MAP2K1 K57N activating mutations [94].

The brain is a common site of relapse in patients treated with crizotinib. Crizotinib targets p-
glycoprotein (P-gp), whereas alectinib crosses the blood—brain barrier and is highly effective
for CNS lesions with ALK-positive NSCLC patients [93]. Based on these outcomes,
alectinib received approval in December 2015 for the treatment of metastatic ALK-positive
NSCLC patients who were intolerant to crizotinib [94-96].

Patients treated with alectinib also confer resistance, as they do for crizotinib and ceritinib,
due to MET gene amplification and upregulation of neuregulin-1 (NRG1) in ALK-positive
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patients [90]. Several new ALK inhibitors are currently under development. Among them,
brigatinib is another second-generation ALK inhibitor reported to overcome resistance to
other first and second-generation ALK inhibitors in preclinical models and randomized
clinical trials [97]. Brigatinib was approved in April 2017 by the FDA with orphan drug
designation for the treatment of crizotinib-resistant, ALK-positive NSCLC [98].

In March 2021, based on the study B7461006 (NCT03052608), lorlatinib was approved as
a third-generation inhibitor by the US FDA for the management of patients who developed
ALK G1202R mutation. It can cross the blood-brain barrier more effectively than previous
ALK-directed TKI and has shown promising results in overcoming the resistance that
inhibits ALK [99]. Together, the above findings indicate the potential for an effective,
personalized regimen involving rotation between first, second, and third-generation ALK
inhibitors to maximize the response of ALK-positive NSCLCs.

8. Future directions

Individual drugs are typically employed to treat cancer, and they have had some degree of
success; however, cancer cells acquire resistance to the treatments, rendering the treatment
ineffective. To address these limitations, a sequential, combined, or mixed therapy approach
can be employed. It always remains elusive to choose between these therapies and difficult
to assess the cost-benefit ratio of a particular drug. Sequential therapy is based on the
mutation profile and existing information about the off-target resistance mechanism of
targeted RTK. Whereas combined therapy refers to the concurrent administration of a drug
regimen. The efficacy of single agents like monoclonal antibodies (mAbs) is limited. To
enhance their efficacy, a combination with other chemotherapeutic agents may be employed
to increase the efficacy of the drugs.

The discovery of small molecule kinase inhibitors has revolutionized targeted therapy and
will continue to dominate the field of precision oncology. Cancer patients who undergo
targeted therapy typically live longer and with a better quality of life. Although only 8-10 %
of protein kinases have been studied and targeted for cancer treatment so far. The emergence
of acquired resistance remains a significant challenge and compromises their effectiveness
after investing millions of dollars and years of trial. Thus, the development of resistance and
disease progression is a major clinical problem, and more studies are needed to understand
the underlying molecular mechanisms leading to therapeutic resistance.

Interestingly, immunotherapy-based approaches are emerging as an alternative to
conventional therapies. The early success of ipilimumab (used to treat certain types

of melanomas) as a checkpoint inhibitor that targets CTLA-4, a protein receptor that
downregulates the immune system, has sparked future interest in exploring immunotherapy
strategies across different cancers. These classes of drugs are used to boost the patient’s
immune system (T cells) to kill malignant cells. Another immunotherapy-based approach
includes cell-based therapy in which T cells are isolated from the patients followed

by genetic engineering, enabling them to recognize cancer cells and infuse them back
intravenously. This type of live cell therapy showed encouraging results in blood cancer
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treatments; however, for solid tumors, it has not yet achieved the same milestone and is
currently under investigation.

Furthermore, the growth of Al (artificial intelligence) with its advancements in tools
provides cutting-edge algorithms and accelerates therapeutic opportunities. It may help to
reduce the obstacles faced during the discovery, optimization, and development phases along
with the associated costs. Additionally, Al profoundly may transform towards precision
medicine which involves a deep understanding of the pathogenicity behind the disease to
tailor therapy to individual patients.

9. Conclusions

RTKSs are transmembrane receptors of great clinical interest due to their role in various
diseases including cancer. Small molecule kinase inhibitors have been utilized to inhibit
defective signaling through RTKs. However, the development of therapeutic resistance is a
major clinical limitation that mainly occurs due to genetic alteration and may be present
initially at the time of diagnosis or acquired as a result of therapy. Clinicians must be aware
of the mutational status of the targeted receptor and the available treatment algorithms.

As previously mentioned, resistance mechanisms exhibit heterogeneity, which accelerates
the development of next-generation as well as multi-kinase inhibitors. Over the last two
decades, more than a hundred small-molecule kinase inhibitors or monoclonal antibodies
(mAbs) have received approvals from various drug regulatory authorities. Despite all this
development, it remains a challenge for clinicians to meet patients’ needs in the present
clinical setting and embark on various other trials. Currently, a greater number of drugs are
in the trial phase, aiming to improve therapeutic effectiveness by optimizing personalized
therapy and developing strategies to overcome resistance and cytotoxicity.
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BTK

CAMK

CCR

CLL

CK1

CMGC

CSF-1 receptor

CML
DFS
ECD
EGFR
EMA
ERBB2
ePK
FDA
FGFRs
FAK

FL
FLT3
GISTs
GSK-3beta
HER2
IARC
IGFIR
JAK?2
KFDA
LGG
LGSOC

MCL

Bruton tyrosine kinase
Ca2+/calmodulin-dependent kinases
complete cytogenetic responses
Chronic lymphocytic leukemia
casein kinase 1

Cdk, MAPK, GSK, Cdk-like related
Colony stimulating factor 1 receptor
Chronic myelogenous leukaemia
Disease free survival

Extracellular domain

Epidermal growth factor receptor
European medicines agency

Erb-b2 receptor tyrosine kinase 2
eukaryotic protein kinase

Food and Drug Administration
Fibroblast growth factor receptors
Focal adhesion kinase

Follicular lymphoma

Fms-like tyrosine kinase 3
Gastrointestinal stromal tumors

Glycogen synthase kinase-3 beta

Human epidermal growth factor receptor 2

International Agency for Research on Cancer

Insulin like growth factorl receptor
Janus Kinase 2

Korea food & drug administration
Low-grade gliomas

Low-grade serous ovarian carcinoma

Mantle cell lymphoma
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MZL
MAPKs
mTOR
MTC
MEK
mADbs
NCI
NTRK
NMPA
nRTKs
NRG1
NSCLC
PTCL
Ph

PIK3CA/D/G

PDGFR
PFS
RGC
RET
RCC
SCFR
SEER
STE
SCLC
SLL
TGFa
TRK

TK
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Marginal zone lymphoma
Mitogen-activated protein kinases
Mechanistic Target of Rapamycin kinase
Medullary thyroid carcinoma
Mitogen-activated protein kinase kinase
monoclonal antibodies

National Cancer Institute

Neurotrophic tyrosine receptor kinase
National Medical Products Administration
non-receptor TKs

Neuregulin-1

non-small cell lung carcinoma
Peripheral T-Cell lymphoma
Philadelphia chromosome

Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic
Subunit alpha/delta/gamma

Platelet-derived growth factor receptor
progression-free survival

Receptor guanylyl cyclase

Rearranged during transfection

Renal cell carcinoma

Stem cell factor receptor

Surveillance Epidemiology and End Results
Serine/threonine kinases

Small cell lung cancer

Small lymphocytic lymphoma
Transforming growth factor alpha
Tropomyaosin receptor kinase

Tyrosine kinase
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TKD tyrosine kinase domain
TKL tyrosine kinase-like
VEGFR2 Vascular endothelial growth factor receptor 2
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Fig. 1. Differential Expression of Receptor Tyrosine Kinasesin Various Cancer Types.
Expression of Met, KDR (VEGFR2), EGFR, BRAF, BCR and ALK across different cancer

types in TCGA samples tumor vs normal samples were analysed using UALCAN database.
BLCA- Bladder Urothelial Carcinoma, BRCA- Breast invasive carcinoma, CESC- Cervical
squamous cell carcinoma and endocervical adenocarcinoma, CHOL- Cholangiocarcinoma,
COAD- Colon adenocarcinoma, ESCA- Esophageal carcinoma, GBM- Glioblastoma
multiforme, HNSC- Head and Neck squamous cell carcinoma, KICH- Kidney
Chromophobe, KIRC- Kidney renal clear cell carcinoma, KIRP- Kidney renal papillary
cell carcinoma, LIHC- Liver hepatocellular carcinoma, LUAD- Lung adenocarcinoma,
LUSC- Lung squamous cell carcinoma, PAAD- Pancreatic adenocarcinoma, PRAD-
Prostate adenocarcinoma, PCPG- Pheochromocytoma and Paraganglioma, READ- Rectum
adenocarcinoma, SARC- Sarcoma, SKCM- Skin Cutaneous Melanoma, THCA- Thyroid
carcinoma, THYM- Thymoma, STAD- Stomach adenocarcinoma, UCEC- Uterine Corpus
Endometrial Carcinoma.
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Fig. 2.
Mechanisms of Receptor Tyrosine Kinase Activation. (a) Inactive RTK: In its inactive

state, the RTK remains unstimulated, with its kinase activity dormant (b) Kinase activity
stimulated through dimerized RTK: Upon ligand binding, RTKs often undergo dimerization,
where two RTK molecules come together. This dimerization stimulates the kinase activity
of the RTKs, initiating the signaling cascade. (c) RTK is activated via autophosphorylation:
Once dimerized, the activated RTKs undergo autophosphorylation. This process involves
the transfer of phosphate groups from ATP molecules to specific tyrosine residues within
the RTK itself, leading to further activation. (d) Signal relayed by activated signaling
proteins into the interior of the cell: The activated RTKs serve as docking sites for various
signaling proteins. These proteins, upon binding to the phosphorylated tyrosine residues

on the RTK, become activated themselves. They then relay the signal initiated by the

RTKSs to the interior of the cell, triggering downstream cellular responses. Adapted and
reproduced with permission [100]. Springer Nature https://link.springer.com/article/10.1007/
s00018-023-04729-4.
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Fig. 3. Schematic Representation of Receptor Tyrosine Kinase Activation and its Impact on

Downstream Pathways I nvolved in Pro-tumorigenic Signaling.

(a) In the absence of stimuli or ligand RTK remains in OFF or inactivated state, (b) RTK
activation-Ligand binding induces dimerization of RTKs, this dimerization activates the
intracellular kinase domain of the receptors leading to autophosphorylation of tyrosine
residues within the cytoplasmic tails of RTKS. Phosphorylated RTKSs activate downstream
signaling pathways leading to increased transcription of genes involved in cell proliferation,
suppression of apoptosis, angiogenesis and migration and invasion.
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Fig. 4. Different Types of Kinase Inhibitorsand Their M echanisms of Action.
Type | inhibitors engage with the active conformation of the kinase, wherein the aspartate

residue within the DFG (Asp-Phe-Gly) motif is oriented towards the ATP binding pocket.
Conversely, type Il inhibitors stabilize the inactive state of the enzyme, causing the aspartate
residue to protrude outward from the binding site. Type Il inhibitors act through the
allosteric site located within the ATP binding pocket. Type IV inhibitors also target an
allosteric site; however, its position may vary outside the ATP binding pocket. Type V
inhibitors interact with both the allosteric site and the ATP binding pocket simultaneously.
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Fig. 5. General Mechanisms of Action of Tyrosine Kinase Inhibitors.
Small molecule inhibitors inhibit the ligand-mediated phosphorylation of RTKSs, thereby

preventing the activation of downstream protumorigenic signaling pathways. This inhibition
leads to downregulation of transcription of genes that are involved in cell proliferation,
survival, angiogenesis and migration and invasion.
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