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Abstract: Traumatic injury of the spinal cord (SCI) is a devastating neurological condition often
leading to severe dysfunctions, therefore an improvement in clinical treatment for SCI patients is
urgently needed. The potential benefits of transplantation of various cell types into the injured spinal
cord have been intensively investigated in preclinical SCI models and clinical trials. Despite the many
challenges that are still ahead, cell transplantation alone or in combination with other factors, such as
artificial matrices, seems to be the most promising perspective. Here, we reviewed recent advances
in cell-based experimental strategies supporting or restoring the function of the injured spinal cord
with a particular focus on the regenerative mechanisms that could define their clinical translation.
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1. Introduction

Spinal cord injury is a devastating neurological condition, leading to many severe
deficits such as paralysis, sensory abolition, and respiratory, circulatory, and digestive
system dysfunctions that usually result in permanent disability. The estimated global
SCI incidence reaches 40 to 80 cases per million people and gradually increases with the
rate of car or extreme sports accidents and in total. Costs of spinal cord injury are higher
than those of comparable conditions such as dementia, multiple sclerosis, and cerebral
palsy (WHO, https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury,
accessed on 1 September 2021). Only in the United States, the annual incidence of SCI is
estimated at approximately 54 cases per million people (17,730 new SCI cases each year)
with an average annual cost of healthcare for SCI patients of 76,327 USD per year (National
Spinal Cord Injury Statistical Center, Facts and Figures at a Glance. Birmingham, AL:
University of Alabama at Birmingham, 2019, https://www.nscisc.uab.edu/, accessed on 1
September 2021). These data clearly indicate that SCI is not only a serious health condition
that significantly reduces the quality of life, for both patients and their families, but also an
important socio-economic problem, therefore an improvement in clinical treatment for SCI
patients is urgently needed.

The cascade of pathological events within the injured spinal cord starts with tissue
crushing or tearing caused by mechanical damage that leads to the disruption of the nerve
fibers and blood vessels that run along the spinal cord, and damage of nerve and glial cells,
tissue edema, and ischemia [1,2]. Such degradation of the neural tissue provokes an uncon-
trolled release of glutamate into the extracellular space, overactivation of NMDA receptors,
and prolonged depolarization of neurons, resulting in their death [3,4]. Glutamate, acting
via AMPA receptors, kills oligodendrocytes as well, which results in the demyelination
of axons and, as a consequence, the death of unprotected neurons [5]. Primary injuries to
the cord tissue lead to secondary damage, associated with tissue ischemia, hypoxia, and
massively developing inflammatory reaction [6]. These further contribute to neural cell
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death via either necrosis or apoptosis, which increases the damage caused by primary
insult. Soon after the spinal cord injury, a scar is formed around the trauma site. At the
cellular level, the scar is very heterogenic and consists of many cell types: microglia- and
monocyte-derived macrophages, reactive astrocytes, ependymal and endothelial cells,
fibroblasts, connective tissue as well as a plethora of molecules produced by these cells
such as collagens, laminins, fibronectin, tenascin-C, and periostin [7]. The scar that forms at
the spinal cord injury site generally has “glial” and “fibrotic” components. The glial compo-
nent of the scar refers to the reactive astrocytes that surround the central core and prevent
peripheral immune cells from invading the CNS parenchyma. Fibrotic scars, on the other
hand, are formed by fibroblasts, mostly of the perivascular origin, robustly distributed in
the injury site, and an excess deposition of extracellular matrix molecules [8].

The scar rebuilds the blood–spinal cord barrier, protects healthy intact tissue, and
limits further secondary tissue damage [9]. On the other hand, it creates a barrier for
regenerating and sprouting axons [10]. In addition to the mechanical obstacle created by
proliferating fibroblasts and astrocytes, the scar also builds a molecular barrier [11,12].
Many factors abundantly secreted by scar cells, such as chondroitin sulfate proteoglycans,
the Nogo-A protein, or the myelin-associated glycoprotein (MAG), can bind to numerous
receptors on the nerve cells to activate the RhoA/ROCK signaling cascade pathway that
leads to a breakdown of the axon growth cone cytoskeleton [13].

The prevention and, if possible, reversal of these unfavorable secondary reactions is
the ultimate goal of clinical strategies being developed for SCI treatment. Although many
of the mechanisms responsible for the secondary injury cascade are already known and
therefore could theoretically be targeted by pharmacologic treatment, these have not been
clinically successful to date. Pharmacological approaches that have already been exten-
sively tested in animal models have focused on the inhibition of neuronal death induced by
glutamate excitotoxicity. This might be achieved by preventing the overactivation of gluta-
mate receptors with their selective antagonist i.e., NBQX (a highly selective competitive
antagonist of AMPA and KA ionotropic receptors) [14,15] or by preventing presynaptic
glutamate release and blocking postsynaptic NMDA glutamate receptors with riluzole (an
inhibitor for the kainite and NMDA receptors) [16]. Moreover, the reduction of glial scar
formation via the administration of the iron chelator 2,2′-bipyridine, an inhibitor of prolyl
4-hydroxylase and a key enzyme of collagen biosynthesis [17], activation of the spinal
cord neuronal networks that survived below the injury [18–20], and an increase in axon
regeneration via inhibition of the RhoA/ROCK pathway [21] have been also postulated.
On the other hand, modulation of the inflammatory response via a tetracycline antibiotic
minocycline has been also proposed as a promising pharmacological approach. It has been
shown that precise control of inflammation may protect neurons in the injured CNS [22].

However, the complexity and irreversible nature of the mechanisms involved in nerve
tissue damage make it difficult to design an effective SCI pharmacotherapy. Therefore,
exercise-based movement training coupled, or not, with spinal cord epidural electros-
timulation remains the most efficient therapeutic procedure routinely used in SCI clinics.
Experimental data from animal models show that its beneficial effect is mainly mediated
by increasing the production of neurotrophins BDNF [23] and BDNF/NT-4 [24] within the
spinal cord that, in turn, support neuronal survival [25] and plasticity [26,27]. On the other
hand, locomotor training also exerts a positive effect on the growth of muscle mass and
the overall condition of the body [28]. The beneficial effect of training, particularly in com-
bination with electrostimulation, has been extensively experimentally tested and proven
to enhance motor abilities, mainly by increasing activity and facilitating the plasticity of
spinal cord networks. Spinal cord epidural electrostimulation was also proposed to cure
the pain symptoms associated with SCI [29,30].

Recently, the development of cell-based regenerative approaches in medicine has
revived the debate within the field and opened novel perspectives in SCI treatment. A wide
range of cell types has been examined in animal models of SCI, including fully differentiated
cells such as Schwann cells (SCs) [31], olfactory ensheathing cells (OECs) [32–34] as well
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as different types of stem cells, such as neural stem cells (NSCs) [35,36] and mesenchymal
stem cells (MSCs) [37]. Cells can be grafted directly onto the injured spinal cord, often in
scaffolds facilitating their survival [38], or applied intravenously [39]. The latter, however,
could lead to cerebral embolism [40]. Therefore, more precise methods of cell delivery are
currently being tested. The most sophisticated is, to date, an application of biocompatible
and magnetically activable nanobots that have been designed to deliver cells precisely to
the injury site [41].

Since whole-cell administration may likely be associated with certain clinical risks
such as low cell survival rate, graft rejection, limited or improper differentiation, or tumor
formation, novel approaches employing cell-derived structures or substances have recently
been proposed. Among them, a very promising strategy employs small extracellular
vesicles (sEVs), naturally released by cells to communicate with each other. sEVs can
deliver many potentially neuroprotective molecules (such as miRNAs and proteins) directly
to host cells of the injured spinal cord, affecting their activity and fate [42].

In this review, we discuss the recent achievements in exogenous cell-based restorative
approaches that have been experimentally proven to be beneficial in rodent models of
SCI with a special focus on their mechanisms of action in preventing diverse unfavorable
changes caused by spinal cord trauma. The mechanism of action of exogenous cells in
SCI treatment is mainly based on the modulation of the injured tissue microenvironment
and/or replacing lost cells. Therefore, the greatest experimental efforts are mainly directed
towards the inhibition of the inflammatory reaction that occurs after SCI, inhibition of
neuron death, supporting axonal regeneration as well as rebuilding and/or activating
surviving spinal cord neuronal networks.

2. Inhibition of Inflammatory Reaction

Inflammation is a natural immune response to tissue injury leading to control, clear-
ance, repair, and eventually restoration of homeostasis. Upon spinal cord injury, neurons
and other damaged cells release a plethora of inflammatory mediators activating various
cell types including microglia, astrocytes, and endothelial cells. This further contributes to
neuronal damage by initiating an inflammatory cascade in both the spinal cord and the
immune system (for review: [43,44]). The earliest immune reaction to SCI is predominantly
pro-inflammatory cytokine production by the recruited and proliferating microglia. Mi-
croglia are the innate immune cells of the CNS and, as such, they are sensitive sensors of
any changes in homeostasis [45]. Once activated, they upregulate major histocompatibility
complex class molecules and produce pro-inflammatory and cytotoxic cytokines, including
tumor necrosis factor-α (TNF-α), the ligand for Fas receptor (FasL), and interleukin 1β
(IL-1β) [46,47]. This leads to further immune system cell activation and a systemic defense
reaction [48–50]. Cytokines produced by microglia also activate astrocytes, which in turn
become important contributors to further inflammatory and immune responses. Reactive
astrocytes proliferate, undergo hypertrophy, and produce neurotrophic factors, but also
pro-inflammatory (IL-1, IL-6) and cytotoxic cytokines or reactive oxygen species and nitric
oxide. Extensive astrocyte proliferation and hypertrophy lead to scar formation that may
delay or inhibit regenerative responses [51]. However, genetic ablation of scar-forming
astrocytes in adult transgenic mice results in neuronal degeneration [52] suggesting a
beneficial role of reactive astrocytes in the injured nervous system. Inflammation often
contributes to secondary damages after SCI. Excessive and prolonged production of pro-
inflammatory cytokines leads to both neuronal and glial toxicity. Moreover, activated glial
cells release lysosomal enzymes such as proteases as well as reactive oxygen species, which
further impairs the injured tissue [49,50]. This harmful inflammatory response results in
diminished axon regeneration, demyelination, cell death, and eventually a decrease in
functional recovery.

Although inflammation and gliosis are hallmarks of the CNS pathology and targets
of certain well-known anti-inflammatory drugs that could be potentially used in clinical
SCI treatment, the appreciation of the beneficial side of neuroinflammation has initiated an
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extensive debate on the actual role of these processes in neurological disorders. Evidence
that comes from the genetic or pharmacological inactivation of microglia/macrophages
sheds light on the critical role of the timing and extent of microglial activation, distinct roles
of different populations, and the beneficial role of inflammation in the regenerative phase of
the post-injury response. Recent reports indicate that the response of microglial cells to the
changes in CNS homeostasis is not uniform, and rather microglia and macrophages adopt
a spectrum of phenotypes and functions, from pro-inflammatory to anti-inflammatory
(for review: [53,54]). Soon after the injury, cells of myeloid origin, namely resident im-
mune cells—microglia and blood-borne monocytes, recruited to the wound area—are
converted into macrophages. Early-stage macrophages are usually primed to produce
pro-inflammatory factors (classified as classical M1 type, for simplification) and during
the resolution of inflammation, they are gradually replaced by cells polarized into the
anti-inflammatory M2 type. The main role of M1 macrophages is removing tissue debris
and microbes from the injury site, while M2 cells aim to heal the wound and remodel
the surviving tissue. This process is critically disturbed during SCI, which is reflected,
among others, by an elevated number and prolonged activity of pro-inflammatory cells [6].
Therefore, the concept of controlling microglia/macrophage activation and fine-tuning
the microglial function in order to modulate them into the desired phenotype is currently
considered a promising strategy for enhancing recovery in SCI treatment [55]. Specific
attenuation of the detrimental effects of the prolonged inflammation and modulation of
macrophage activation into a pro-regenerative state is a common mechanism of action of
many types of stem cells transplanted into the spinal cord after injury. In the rat model of
spinal cord compression, grafting mesenchymal stem cells into the area of injury caused
an increase in the number of M2 macrophages and a reduction of M1 cells, leading to
functional recovery of grafted animals manifested by higher Basso–Beattie–Bresnahan
(BBB) hindlimb locomotor rating scores [56]. The enhanced polarization of macrophages
into the M2 phenotype and the eventual reduction of inflammation in spinal mice can also
be achieved by applying small extracellular vesicles (sEV) derived from MSCs [57]. On the
other hand, intraspinal grafting of neural precursor cells in mice after a contusion spinal
cord injury performed at the thoracic level [58], or in rats after a compression injury at the
cervical level [59], caused downregulation of M1 macrophages with no significant impact
on M2 macrophage activity. In grafted mice, functional recovery manifested by higher
Basso Mouse Scale (BMS) scores were observed in subacute transplantation (7 days after
injury) [58] but not in the case of transplantation at 21 days after contusion [60]. In rats,
only minimal functional recovery manifested by a significantly larger footprint area in
CatWalk XT analysis was observed, while BBB scores and the number of step errors in the
grid walk test did not change significantly after cell transplantation [59].

It has been reported that the modulation of macrophage polarization could be achieved
not only by grafting whole cells but also by the administration of a cell-conditioned medium.
Both endothelial progenitor- and neural stem cell-conditioned media successfully mediated
an anti-inflammatory effect and reduced the number of inflammatory macrophages in
rodents with injured spinal cords [61,62]. NSC-derived anti-inflammatory factors positively
regulating microglia activation and neuroinflammation may also be delivered to the injury
site via isolated cell-derived small vesicles [42]. The transplantation of different types of
exogenous cells into the injured spinal cord not only alters the inflammatory profile of
macrophages but also regulates the response of other types of immune system cells. Neural
precursor/stem cells grafting has been shown to increase T-lymphocytes production, with
a reduced amount of B-lymphocytes and neutrophils in a mouse model of SCI [58,60].

At the molecular level, the immune reaction after SCI is a cascade of events driven
by changes in the spinal cord environment, dependent on diverse groups of molecules,
mainly chemokines and cytokines. They are involved in complex signaling pathways
either activating or disabling immune cell function. Cytokine concentration can also
be modified indirectly by regulating signaling pathways effectors, for example, nuclear
factors. Transplantation of the human spinal cord immortalized neural stem cells into
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rats subjected to SCI resulted in the inhibition of NF-κB production and, as a result,
modulation of the pro-inflammatory response [63]. In the murine SCI model, grafting of
neural stem cells (NSCs) reduced levels of several cytokines produced within the injured
areas: TNF-α, IL-1β, IL-6, and IL-12 [58]. In the same model, the NSC-medium reduced
the expression of pro-inflammatory cytokines as well as inducible nitric oxide synthase
(iNOS) [62]. Mesenchymal stem cells are also well-known regulators of the inflammatory
reaction when grafted in various injured tissues as they can release a wide range of
bioactive factors (VEGF, BDNF, GDNF, neurotrophin-3/4) or cytokines (GMCSF, MCP1)
resulting in the protection/regeneration of injured host tissue or the modulation of immune
reactions [64]. Interestingly, the grafted cells are able to adapt their fate and functions to
the specific lesion microenvironment, which leads to the secretion of the lesion-induced
secretome via transplanted and host cells [65]. MSCs transplanted into SCI downregulated
genes are related to cell-cycle regulation/progression, the DNA metabolic/biosynthetic
process, and DNA repair, but the upregulated expression of genes is related to cytokine
production, phagocytosis/endocytosis, and immune cells/response and thereby adopt
immune cell-like characteristics within the injured host tissue [66]. Similarly, grafted
undifferentiated mouse iPSCs produced MIP-1α, IL-10, GDNF, and NT-4, resulting in
decreased microglial and astrocytic reactions accompanied by significant neuroprotection
and functional recovery [67]. The critical role of grafted cells’ secretome has been proven
in functional blocking experiments with neutralizing antibodies [68,69]. However, the
injury-induced secretome was produced within a relatively narrow time window, namely,
as long as the cells remained undifferentiated [67,68]. The understanding of stem cell-
induced neuroprotective mechanisms may provide perspectives of new approaches based
on cell-free but stem cell-derived products. For example, experiments that employed the
delivery of small extracellular vesicles derived from NSCs revealed lowered production of
pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 within the host spinal cord tissue [42].
Moreover, the systemic application of exosomes derived from hucMSCs in mice after
contusion spinal cord injury upregulated anti-inflammatory cytokines IL-6 and IL-10,
while downregulating pro-inflammatory TNF-α, IL-6, IFN-γ, and MIP-1α [57]. Significant
improvement of locomotor functions of treated animals was assessed in behavioral or
electrophysiological tests [42,57,65,69].

3. Keeping a Balance between Neuronal Apoptosis and Autophagy

Apoptosis, as a result of spinal cord injury, affects several groups of cells, including
neurons, oligodendrocytes, microglia, and astrocytes [70]. Preventing neuronal apoptosis
is one of the expected outcomes of cell transplantation after SCI. Apoptotic cell death
is triggered by environmental clues such as oxidative stress and specific molecules se-
creted post-injury [71] and regulated by the cascade of caspases [72,73]. A mechanism
of action based on downregulating the activity of caspase-3 has been reported for neural
precursor cells [59], human amniotic mesenchymal stem cells [74], and rat bone-marrow-
mesenchymal cells [75] transplanted in rodent SCI models. MSCs have been shown to
downregulate caspase-12 [76] and caspase-9 expression, and the largest effect was obtained
when co-transplanted with olfactory ensheathing cells [77]. Apoptosis could be inhibited
by MSCs directly [75,78], by administration together with selected pharmaceuticals [79],
co-transplantation with olfactory ensheathing cells [77], or by their secretome, which was
evidenced by the administration of MSC-derived extracellular vesicles into the injured
spinal cord [80]. The administration of MSC-derived exosomes reduced the expression of
pro-apoptotic factor Bax while elevating the expression of the anti-apoptotic protein Bcl-2,
thus promoting recovery in the rat SCI model [81]. Neuronal homeostasis is controlled
by numerous tightly regulated mechanisms, and autophagy seems to be one of the most
important. Autophagy is a complex process that involves lysosome-dependent removal
or recycling of damaged or unnecessary intracellular components, usually leading to the
death of dysfunctional cells. On the other hand, under favorable conditions, such intra-
cellular rearrangements may allow cells to adapt to metabolic stress, produce energy, and
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survive. Autophagy remains in a close relationship with apoptosis. Both mechanisms may
be triggered by similar stress factors and they can display a mutual inhibition–activation
balance: an induction of autophagy inhibits apoptosis [82] and, in turn, the inhibition
of autophagy leads to apoptosis, both in vitro and in vivo [83]. Following spinal cord
injury, autophagy is usually disrupted, which results in increased neural apoptosis [84,85].
Therefore, inducing autophagy in affected cells becomes one of the proposed approaches
for rescuing neurons and enhancing recovery in murine SCI [86] and traumatic brain
injury in rats [87]. It has been shown that the administration of NSC-sEV increased the
expression of autophagy factors LC3 and beclin-1, the proteins that promote the formation
of autophagosomes and double-membrane vesicles, carrying unwanted cell components to
the lysosomes with which they then fuse, releasing their contents for degradation. These
direct effects on autophagy were associated with anti-apoptotic action, namely the reduced
expression of pro-apoptotic factor Bax, while upregulating anti-apoptotic factor Bcl-2 in
host neurons [42].

Another proposed mechanism of the anti-apoptotic action of transplanted cells may
be related to mitochondrial transfer from MSCs to the affected motor neurons in the injured
spinal cord. Such organelle internalization, shown in vitro and in vivo, improved the
bioenergetics of neurons, which could lead to the blockage of apoptotic pathways followed
by the facilitation of locomotor recovery [88].

Novel approaches in SCI treatment that are currently being tested in animal models
employ the application of non-coding, single-stranded short fragments of RNA (microR-
NAs) that regulate the expression of many important genes involved in apoptosis. The
global miRNA expression profile changes after SCI, showing a downregulation of miR-124,
-138, -235-3p, -137, and -30b-3p and an upregulation of miR-1, -15b, -34, and -145. Potential
targets of those mRNAs are genes related to apoptosis [89,90]. Engrafting MSC-EVs in a
rat SCI model resulted in fewer cell deaths, which is likely a consequence of the miR-21-5p
presence in EVs. miR-21-5p was shown to modulate the expression of ligands for the
dead receptor Fas, thus downregulating the process of neural apoptosis [91]. On the other
hand, overexpression of miRNA-124 in MSCs was shown to drive their differentiation
into neurons and promote functional recovery of spinal rats [92]. However, another pos-
sible mechanism for this recovery could be the decrease in the number of apoptotic cells;
miRNA-124 blocks the mitochondrial pathway of apoptosis in vivo [93] and LPS-induced
apoptosis in vitro [94].

4. Enhancing Angiogenesis

Vascular disruption is one of the traumatic consequences of spinal cord injury. Due
to the alterations of microvessel structures, the blood flow changes and the blood–spinal
cord barrier breaks down, which enables enhanced infiltration of inflammatory cells and
intraparenchymal hemorrhages. Ultimately, both endothelial and neurons die due to
ischemia [95,96] and vascular networks are damaged. Efforts have been made for endoge-
nous revascularization in specific time windows post SCI, but the structure of the vessel
network became altered, and the process was not efficient [95,97,98].

Angiogenesis, measured by the increasing density of blood vessels, is stimulated via
the bioavailability of angiogenic factors such as vascular endothelial growth factor (VEGF).
Therapeutic approaches for SCI therefore mainly focus on enhancing the VEGF local con-
centration to support angiogenesis and restore vascular perfusion [96]. However, during
post-SCI wound healing, blood vessels display altered barrier properties, such as different
vessel permeability and altered distribution of glucose transporters. The newly formed
vessels with higher permeability can be leaky for inflammatory cells and thus increase
neuroinflammation. The direct injection of exogenous VEGF in the rat SCI model has been
reported to produce significant microvascular permeability, higher infiltration of leuko-
cytes into the spinal cord parenchyma as well as exacerbation of secondary damage [99].
Moreover, when administered alone, the angiogenic factors might initiate angiogenesis
but are not able to support blood vessel maturation. Thus, promoting stabilization of the
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angiogenic response and blood vessel maturation seems to be a better approach to improve
recovery. A combined administration of VEGF with the platelet-derived growth factor
(PDGF), known for promoting blood vessel maturation and stability, significantly reduced
lesion size and gliosis after hemisection of the spinal cords in rats [100].

Such beneficial effects can be reached by other strategies, among which there is
the transplantation of angiogenic growth factor-producing cells. Promising results were
obtained when engrafting olfactory ensheathing cells alone or in co-transplantation with
adipose-derived stromal cells, which secrete proteins involved in VEGF pathways [101].
However, due to the relatively low survival and integration rate, the satisfactory functional
outcome of OECs transplantation has not been reported to date [102]. The generation
of new vessels in the injury site can be also reached by transplantation of NSCs, either
naïve or genetically manipulated to overexpress VEGF, eventually leading to improvement
in locomotor functions in the rat model of SCI [103,104]. Furthermore, iPSCs-derived
neurospheres [105], MSCs-derived exosomes, or an MSC-conditioned medium were shown
to secrete proangiogenic factors such as VEGF, FGF2, and angiogenin. This effect was
observed both in vitro and in vivo, where the newly formed vessels were found in rat
injured spinal cords after treatment with MSC exosomes [106,107].

Angiogenesis can be modulated with the aid of synthetic and biomaterials, which are
applied in the injury site [108]. There are many materials and strategies developed, among
which there are procedures that directly deliver angiogenic factors to the lesion site. Proan-
giogenic VEGF, angiopoietin-1, and bFGF encapsulated in biocompatible microspheres
enhanced vascularization and motor functions after SCI in rats [109]. Similar results were
obtained with collagen scaffolds delivering VEGF directly into the lesion site [110]. Fur-
thermore, intraspinally applied scaffolds can also mimic the extracellular matrix, and when
grafted together with specific cell types, promote their adhesion, survival, and prolifer-
ation. Experimentally, transplantation of human MSCs incorporated either in synthetic
or bio-scaffolds into rat injured spinal cord resulted in enhanced neovascularization via
VEGF and HIF-1α expression [111]. Another growth factor that contributes to angiogenesis
is the hepatocyte growth factor (HGF). HGF has been shown to improve microcirculation
and angiogenesis when introduced into injured spinal cord tissue by viral infection [112]
or intrathecal injection alone or together with a modified gelatin scaffold [113,114]. Func-
tional recovery through HGF induction was also observed in aged mice after neural stem
cell transplantation [115]. Nevertheless, there is still not much research focusing on cell
therapies and their impact on the HGF pathway, therefore their effectiveness needs to
be assessed.

5. Increasing Axonal Sprouting and Regeneration

During spinal cord injury, high-power mechanical forces often cause nerve tissue
damage via crushing or tearing. It usually results in the disruption of axons running
along the spinal cord. Mechanical damage often leads to secondary injuries via so-called
Wallerian degeneration, which is defined as a progressive anterograde disintegration
of axons and accompanying demyelination after an injury to the proximal axon or cell
body [62]. On the other hand, inflammatory reaction resolution and the scar formation
produce an unfavorable environment for the growth and regeneration of axons. Therefore,
it is likely that corticospinal axon sprouting and regeneration after SCI might be enhanced
by either providing a permissive environment for their growth or, on the other hand,
neutralizing growth inhibitory molecules or preventing axons from recognizing them,
which would allow axons to elongate into otherwise hostile surroundings. The ability of
neural progenitor cells to secrete a variety of neurotrophic factors indicates that they could
promote axonal growth either by providing a guiding substrate for axon regeneration or
preventing/removing the existing scar.

To remove the already formed scar, chondroitinase ABC, the enzyme digesting chon-
droitin sulfate and the main component of the glial scar, may be employed [116]. Degrada-
tion of the inhibitory extracellular matrix molecules promotes robust sprouting of spinal
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projections in injured areas of the spinal cord, which results in structural plasticity and func-
tional recovery [117]. Moreover, chondroitinase treatment has been shown to significantly
increase corticospinal axon growth and the number of synapses formed by corticospinal
terminals in grey matter caudal to the lesion in rhesus monkeys. Hand function was
improved significantly in treated animals compared to vehicle-injected controls, with no
detrimental effects detected. This approach appears to merit clinical translation in spinal
cord injury [118].

The enzymatic approach produces particularly good results in combination with other
procedures, such as simultaneous peripheral nerve transplantation [119], hyperbaric oxy-
gen therapy [107], laser irradiation [120], or transplantation of different type of exogenous
cells [121,122] or treadmill training [123]. An approach of intrathecal pretreatment with
chondroitinase ABC before the transplantation of induced pluripotent stem cell-derived
neural stem cells (iPS-NSCs) in mice subjected to spinal cord injury contributed to glial
scar reduction [122]. What is more, this strategy significantly increased the survival of
transplanted cells and their differentiation into three neuroglial lineages. The patch-clamp
analysis showed that neurons differentiated from transplanted iPS-NSCs integrated with
spinal cord circuits by forming functional synapses with host neurons. Consequently,
animals showed functional recovery manifested by higher forelimb grip strength and better
locomotion ability measured by automated Catwalk gait analysis [122].

However, it was shown that chondroitinase ABC loses its enzymatic activity very
quickly at body temperature, which significantly limits its application in human SCI ther-
apy [124]. Therefore, genetically modified cells have been developed to constantly release
this enzyme when transplanted intraspinally. For example, canine olfactory ensheath-
ing cells continuously producing chondroitinase ABC transplanted in rat crushed dorsal
columns allowed an increase in axonal sprouting within the corticospinal tract rostral to
the lesion and the number of corticospinal axons caudal to the lesion site [125]. Similar
effects were also obtained in other studies showing that the transplantation of genetically
modified Schwann cells, simultaneously producing chondroitinase ABC and neurotrophin
D15A, led to axon regeneration and improvement of movement ability (higher BBB score)
of rats after thoracic contusion injury [126].

The presence of astrocytes within the affected tissue might also be, however, beneficial
to the regenerating axons. Regeneration of the injured axons is very often observed along
“bridges” created by endogenous astrocytes [127], thus glial progenitor transplantation is
expected to be an effective strategy for SCI treatment by creating the permissive environ-
ment. Indeed, it has been reported that intraspinal transplantation of glial progenitor cells
in rats after SCI resulted in improved sensory and motor (reticulospinal and raphespinal)
tract regeneration that was manifested by enhanced axonal growth [128]. Another study
showed that astroglial progenitors, transplanted after cord hemisection, survived for 5
weeks in the host spinal cord and differentiated into astrocytes, leading to better regen-
eration of the descending rostral–ventral respiratory group of axons. The improvement
of the respiratory functions with a higher amplitude of diaphragm electromyographic
activity was also observed [129]. One of the mechanisms responsible for such beneficial
effects could come from the delivery of certain specific, astrocyte-derived proteins. For
example, it has been shown that periostin is highly expressed by bone morphogenetic
protein-induced astrocytes derived from embryonic glial-restricted precursors (GDAsBMP),
and the decrease in its expression by shRNA abolished GDAsBMP-induced axon outgrowth
in vitro. Furthermore, transplantation of POSTN-deficient GDAsBMP into the injured rat
spinal cord resulted in lower axonal regeneration. On the other hand, the addition of re-
combinant periostin to neurons in vitro abolished the adverse effects of glial scar molecules
and increased neurite extension via the influence on FAK and Akt pathways [130].

Axonal regeneration could be also promoted indirectly. It has been shown that in-
traspinal transplantation of oligodendrogenic neural progenitor cells in nude rats after
spinal cord injury led to the functional recovery of injured animals measured by BBB scores
and Catwalk analysis of locomotor functions. In this case, transplanted cells mainly differ-
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entiated into oligodendrocytes, which promote tissue sparing and axon remyelination [131].
NPC can be genetically modified to secrete factors that contribute to lesion healing. One
of them is erythropoietin (EPO), which has well-documented neurotrophic and neuro-
protective properties [132,133] and has been extensively examined for perspective SCI
treatment [134,135]. Experiments in mice subjected to SCI revealed that EPO-releasing
NPCs (Er-NPCs) accumulated, survived, and differentiated within the lesion area, which
led to enhanced axon regeneration and 5-HT innervation, resulting in the improvement
of locomotion abilities of tested animals [136]. Another protein with a reported beneficial
effect in SCI is fibroblast growth factor 2 (FGF2). Intraspinal transplantation of dental pulp
stem cells primed with FGF2 in rats immediately after thoracic total spinal cord transaction
led to significant improvement of the locomotor ability of tested animals (measured by the
increase in BBB score) in comparison to not-grafted or only DPSC-grafted animals. Of note,
DPSCs appear to be particularly useful for transplantation since they can be very easily
derived from various dental tissues during routine dental procedures and can differentiate
into many cells such as liver cells and β cells of islet of the pancreas, cardiomyocytes,
chondrocytes, osteoblasts, and neurons, which provides great potential to use them in re-
generative medicine [137], including SCI treatment [138]. Additional analysis showed that
FGF2 release protected transplanted cells from death induced by reactive oxygen species in
the injured tissue. Surviving DPSCs promoted axonal regeneration and locomotor function
recovery [139].

Molecules instructive for signaling pathways involved in axon growth, such as mi-
croRNAs, could also be employed to modulate axon survival after injury. Intravenous
application of exosomes delivered from stem cells expressing miR-133b in rats after com-
pression spinal cord injury led to an increase in axon regeneration and improvement
of their locomotor ability [140]. The observed beneficial effect was mainly associated
with decreased expression of the Rho A protein, which participates in axon growth cone
degradation and influences CREB and STAT3 pathways [140].

6. Supporting Remyelination

Myelin is a lipid-rich structure produced and wrapped around axons to protect them
and enable fast impulse propagation [141]. SCI affects myelin integrity via the necrosis
and apoptosis of oligodendrocytes, the myelin-producing cells of the CNS. Oligodendro-
cyte death is caused by several factors such as cytotoxic cytokines or reactive forms of
oxygen/nitrogen formed after injury. Demyelination contributes to further damage, in-
terfering with the transduction of impulses by denuded axons, which become ultimately
necrotic [142,143]. However, myelin sheaths may be restored spontaneously to demyeli-
nated axons. Following an injury to the white matter, oligodendrocyte precursor cells
(OPCs) are activated and recruited to the lesion, change the morphology, and upregulate
the expression of many genes, which are further essential to their successful differentiation
into oligodendrocytes, forming new myelin [144,145].

Spontaneous myelin regenerative events often occur after SCI, indicating that the
spinal cord attempts to repair itself. In rodent models of experimental SCI, oligodendrocyte
progenitors repopulate the affected area and remyelinate intact demyelinated axons [146].
After spinal cord injury, when glia limitans are destroyed, Schwann cells of the PNS-
origin also easily migrate from spinal roots to the lesion, interact with demyelinated
CNS axons, and myelinate them. What is more, OPCs are also able to differentiate into
Schwann cell-like cells producing myelin of the PNS type, myelinating and regeneration-
promoting within the CNS [145,147,148]. Remyelination, regardless of whether it is driven
by oligodendrocytes or Schwann cells, results in increased expression of regeneration-
associated genes in injured neurons and ultimately saves them from death. Our recent
findings suggest that experimentally induced white matter remyelination creates a unique
environment within the transected spinal cord that is permissive for spontaneous axon
growth and could be promising in achieving substantial functional improvement (Figure 1).
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Figure 1. Experimentally induced white matter remyelination supports spontaneous axon growth in the transected spinal
cord. (A). Schematic description of experimental design. Focal demyelination was induced by stereotaxic injection of
glial toxin bilaterally into the dorsal and ventral funiculi as well as both rostrally and caudally to the transection site
using the method described by Woodruff and Franklin [149]. Note the defined phases of experiments: Double focal
demyelination (first at the day of total transection TT and then 5 dpl), histological examination at the early (14 dpl) and
complete remyelination (60–90 dpl) and functional examination (150 dpl). Five adult female WAG rats were used in
experimental (transection combined with demyelination) and control (only transection) groups. (B). In the rat spinal cords
after total transection combined with demyelination we found a significantly larger number of more longitudinally oriented
axons distributed at the adjacent area of the lesion large amount as well as axons crossing the spared tissue at the epicenter
of the lesion, compared to control animals without demyelination induced (neurofilament-immunopositive fibers in red,
cell nuclei in blue). Scale bars 500 µm. (C). Representative images showing Schwann cell-derived remyelination of axons
growing within the injured area in close proximity to the transection site (marked with arrows in B), Schwann cell-specific
myelin protein, Periaxin, in green, axons neurofilaments in red, cell nuclei in blue. Scale bars 25 µm. The animal procedures
were performed according to the guidelines from Directive 2010/63/EU of the European Parliament on the protection of
animals used for scientific purposes.

Unfortunately, spontaneous remyelination in the CNS often fails or is incomplete,
and non-myelinated axons can be observed months after SCI in rat models [131,150,151].
Whether endogenous remyelination is efficient enough for axon regeneration and whether
enhancing myelination from exogenous sources would be a good strategy for SCI has become a
major topic in the ongoing debate [143,150,152]. Nevertheless, it appears necessary to under-
stand the mechanisms of this unique regeneration process and the significance of its contribution
to SCI repair in order to develop novel therapeutic approaches targeting remyelination.
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Several potentially therapeutic strategies for enhancing remyelination in SCI treatment
have been already experimentally examined. One of the promising approaches is a direct
method of replacing oligodendrocytes lost during injury by grafting OPCs of different
origins. OPCs derived from human embryonic stem cells intraspinally grafted in rats 7 days
after spinal cord contusion survived in the spinal cord tissue, redistributed over short
distances, and differentiated into oligodendrocytes, successfully enhancing remyelination.
Functional improvement manifested as longer forelimb stride length, increased forelimb
step range, and a higher number of passed-perpendicular steps as measured by kinematic
analysis. What is more, rats exhibited motor behavioral recovery up to 4 months after
transplantation with no significant toxicities observed [153,154]. It has been shown that
iPSC-derived OPCs engrafted into the injured spinal cord were also able to differentiate
into mature oligodendrocytes in a rather promising quantity of more than 70% of engrafted
cells. They myelinated axons and promoted recovery [155]. An alternative way to elevate
the number of oligodendrocytes after injury might be engrafting neural progenitor/stem
cells that can be derived from either iPSC or other adult tissue sources [156–158]. Since only
about half of NPCs differentiate into oligodendrocytes in the injury site [159], cells can be
reprogrammed in vitro for a more a oligodendrogenic fate prior to transplantation [131,160]
to generate more oligodendrocytes, which increases myelination. One of such approaches
is creating NSCs lines with the overexpression of transcription factor Olig2, a determinant
for OPC formation from NSCs [161].

Positive effects were observed after the experimental grafting of SCs into the injured
spinal cord as well. Given the fact that autologous cells are difficult to obtain, SCs can be de-
rived from other sources, including bone marrow and skin-precursor cells [162,163]. Better
outcomes and functional recovery can be obtained when engrafting genetically modified
Schwann cells, often in cooperation with other cell types. Schwann cells, modified to over-
express either GDNF or neurotrophin together with chondroitinase, which degrades glial
scar, enhanced myelination and axonal survival [126,164]. Promising results were achieved
when SCs, overexpressing NGF and/or BDNF, were co-transplanted with fetal spinal cord
cells or NSCs [165,166]: SC-derived factors enhanced oligodendrocyte maturation and
myelination. Recently, skin-derived precursors differentiated into Schwann cells (SKP-SCs)
were transplanted directly into the contused rat spinal cord acutely [167] or several weeks
post-injury [162]. SKP-SCs survived transplantation well, integrated with host tissue filling
much of the lesion sites, and greatly enhanced the presence of endogenous SCs, which
myelinated thousands of host axons in the area of injury. This approach is perhaps the
most clinically relevant one to date and is promising for the treatment of chronic SCI since
it resulted in an improved locomotor outcome that was very rarely observed with cell
transplantation beyond the sub-acute stage of injury.

7. Rebuilding and/or Activation of Spinal Cord Network

Neural necrosis and apoptosis destroy the innervation derived from the higher
supraspinal structures that activate and modulate the activity of spinal cord networks
located below the injury site. Thus, the reorganization of local neuronal circuits through
the repopulation of damaged tissue with the newly generated neurons is essential for the
restoration of lost function.

A range of cell types has been experimentally examined as a potential source of
neurons to replace the lost populations. Intraspinal transplantation of motoneuron-like
cells, pre-differentiated from human adipose-derived stem cells in vitro, has been reported
to significantly improve locomotor abilities in mice after crushing SCI [168]. Transplanted
cells survived in the host spinal cord and functionally integrated with the network, which
was confirmed by electrophysiological experiments; the whole-cell patch-clamp in vitro
analysis has proved the proper motoneuron characteristics of differentiated motoneuron-
like cells. The motor-evoked potentials were elicited in the frontal cerebral cortex and
recorded in the skeletal muscle of the hindlimb. It has been also shown that iNSCs produced
in vitro from embryonic murine fibroblasts transplanted into the injury site of SCI rats
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resulted in functional recovery. The effect was manifested by better locomotor ability (a
higher BBB rate and lower horizontal ladder test score rate) and bladder function (return
of normal bladder volume level and normal voiding pattern). Immunohistochemical
analysis showed that transplanted iNSCs survived in the host spinal cord and differentiated
into neurons, astrocytes, and oligodendrocytes. Most iNSCs-delivered neurons were
either GABAergic, glutamatergic, or cholinergic. Neurons differentiated from transplanted
cells created functional synapses with spinal cord neurons and were integrated with the
host spinal cord network, leading to supraspinal connection regeneration. Moreover,
transplantation of iNSCs may be even more beneficial since the cells were reported to be
involved in increased angiogenesis and inhibition of the inflammatory response [169].

An optimistic notion that certain lost spinal cord connections could be successfully
replaced has been recently strongly supported by results of pre-clinical primate experi-
ments showing that human spinal cord-derived multipotent NPCs transplanted at 4 weeks
after cervical hemisection in rhesus monkeys gradually maturated and improved forelimb
function [170]. Human cells survived in the host spinal cords and extended large numbers
of axons over long distances, finally forming reciprocal synaptic connections with host cir-
cuits caudally to the lesion. Kumamaru et al. [171] demonstrated that spinal NPCs grafted
to injured spinal cord give rise to a variety of neuronal progeny representing most neu-
ronal subtypes of the intact spinal cord in both rat and nonhuman primates. Importantly,
successful engraftment resulted in increased corticospinal tract axon growth across human
cell grafts, indicating the ability of host axons, also essential for voluntary movement, to
be regenerated. Moreover, improved forelimb function, as well as long-lasting neuroplas-
ticity effects, were observed. These findings indicate that homologous neural stem cells
might enable regeneration of the corticospinal projection within and beyond spinal cord
lesions [172]. Remarkably, regenerating host corticospinal motor axons were shown to
specifically innervate appropriate pre-motor interneurons and avoid inappropriate sensory
targets within the grafted area, without a need for additional exogenous guidance. These
findings provide strong evidence that injured adult axons retain the ability to recognize
appropriate targets and avoid inappropriate ones within “replaced” areas, suggesting that
the restoration of complex circuitry after SCI may be achievable. The latter is particularly
important for the restoration of the voluntary motor-control system in humans and might
be potentially beneficial in clinical translation. These reports also highlight the importance
of utilizing nonhuman primate models in order to reduce the risk of clinical trial failure
due to graft loss [171].

SCI very often leads to the disruption of supraspinal GABAergic inhibitory projections,
which innervate interneurons in I-III lamina of the spinal cord dorsal horn [173], leading to
increasing neuronal excitability and the development of neuropathic pain [174]. Therefore,
transplantation of GABAergic neurons to restore the inhibitory input to the dorsal horn
disrupted after SCI is one of the postulated methods for the treatment of neuropathic pain.
Intraspinal transplantation of GABAergic neurons differentiated from murine ESCs in a
rat SCI pain model led to a reduction of neuropathic pain observed in injured animals,
which was manifested by the abolition of hemisection-induced tactile hypersensitivity
and neuronal hyperexcitability [175]. Histological analysis showed that transplanted cells
survived in the host spinal cord and localized mainly in the lower-medial part of the
dorsal funiculi, in the spinal white matter. Application of GABA A and GABA B receptor
antagonists, in contrast to the serotonergic receptor antagonist, abolished the beneficial
effect of cell transplantation in injured animals, showing a specific restoration of spinal
GABAergic innervation by transplanted cells. Similar results were also obtained in an
experiment in which embryonic stem cell-derived GABAergic neural precursor cells were
transplanted into rats two weeks after contusive SCI [176].

Many reports contribute to building the growing body of evidence that both noradren-
ergic [19,177,178] and serotonergic [18,20,179–187] innervation play an important role in
the control of locomotion. Noradrenergic and serotonergic neurons that send projections
to the spinal cord are located in locus coeruleus and locus subcoeruleus (noradrenergic neu-
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rons) [188,189] and three nuclei of the brain stem: n. raphe pallidus, n. raphe obscurus, n. raphe
magnus [190], and the parapyramidal region (serotonergic neurons). These innervations are
often disrupted after SCI, so one of the postulated methods for SCI treatment is restoring
monoaminergic innervation of networks responsible for locomotor pattern generation that
survive below the injury site. Historically, it has been shown that embryonic brain tissue
transplants containing noradrenergic neurons from Locus ceruleus [191] or serotonergic cells
from the brain stem [191,192] transplanted to the spinal cord survived in the host tissue
and innervated the proper areas of the host spinal cord. Intraspinal transplantation of
14-day-old rat embryo brain stem tissue containing serotonergic areas into adult rats after
thoracic spinal cord total transaction resulted in improved treadmill locomotor ability of in-
jured animals, which is shown by kinematic and electromyographic analysis [187,193,194].
The beneficial effects were abolished by application of antagonists for both 5-HT2 [186,195]
and 5-HT7 [186] serotonin receptors, suggesting that those receptors play a pivotal role in
the modulation of spinal cord networks and restoration of the locomotor ability after SCI.
We also demonstrated the role of noradrenergic neurons present in the intraspinally grafted
embryonic brainstem tissue for the recovery of locomotor hindlimb function of paraplegic
rats [181]. Recently, we expanded serotonergic precursors derived from embryonic brain
stem in a neurosphere assay in vitro and transplanted them into the rat spinal cord one
segment below total transection. The results of our current studies provide further evi-
dence that serotonergic precursors survive the transplantation and terminally differentiate
within the host environment (Figure 2). However, it remains to be examined whether the
transplantation of pure serotonergic neurons would be just as, or more, effective as the
embryonic brain stem tissue transplantation.
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Figure 2. Schematic presentation of the results of preliminary experiments showing serotonergic precursors surviving and
terminally differentiating after transplantation into the spinal cord injury-mediated environment. The left panel shows
precursor morphology in different cell culture conditions: Neurosphere medium supports cell proliferation and neurosphere
formation, neuronal medium induces their neuronal differentiation. Scale bars 100 µm. The middle panel describes the
experimental design: Expanded serotonergic precursors derived from rat embryonic brain stem (on embryonic day 11) were
transplanted into the rat injured spinal cord 7 days post-injury and their morphology was examined after the next 30 days.
The protocol for cell expansion was adopted from [196]. The right panel shows representative images of differentiated cells
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within host spinal cords. Transplant-derived serotonergic neurons were found in each examined injured spinal cord (three
rats). Note the presence of serotonin (5-HT)-positive neurons (upper images) and thyrosine kinase (TH)-positive neurons
(lower images). Control animals were injected with cell culture medium, no stained cells were detected (data not shown).
Scale bars are 500 µm. Functional experiments that examined the recovery of locomotor functions via restored innervation
of the spinal cord are in progress.

8. Concluding Remarks

In recent years, extensive experimental work has been devoted to understanding the
mechanisms underlying neuroprotective or regenerative outcomes of cell transplantation
in neurological conditions such as spinal cord injury. Despite the advances in uncovering
the regenerative mechanisms triggered by exogenous cells, certain long-lasting issues
still need to be resolved. Reviewing the papers listed here, we focused our attention on
the cell-based approaches that ensure significant functional regeneration of the injured
spinal cord and provide some facilitation in motor function recovery. Although several
methods (like BBB or BMS) were created to achieve a level of standardization of locomotor
performance evaluation, they might be not sufficient to assess certain important changes
in the locomotor pattern, such as intra- and interlimb coordination and their relation to
locomotor speed, particularly in the chronic stage of injury in long-lasting experiments.
The majority of attempts reported to date show very slight improvement of locomotor
function, particularly after total spinal cord transection/complete injury or severe spinal
cord contusion. In many cases, the locomotor improvement is limited to better movement in
individual joints without any better limb coordination or plantar stepping and body weight
support. Since the majority of SCI patients suffer from severe complete or incomplete loss
of function as a consequence of cervical spinal segments injury, it seems that more efforts
are still required to adapt the experimental situation to clinical needs.

As shown above, an increasing number of data from experimental and pre-clinical
studies has been generated to support the notion that exogenous cell transplantation
promotes repair in the SCI and could be the most promising translational pathway. Never-
theless, the majority of pre-clinical cell-based studies were performed with rodent models
and some of them have already reached early-phase human clinical trials. However, the
current revision of the registered trials revealed that the overwhelming majority of them
remain at an early stage [197]. Ninety-six percent of them are either phase I, phase II,
or nested phase I/II designs, with the significant majority being single-site studies. Of
forty-nine registered trials, the majority used autologous cells, primarily using stem cells,
mostly MSCs, although a smaller number used Schwann cells or olfactory ensheathing
cells, with mixed results. No NSC trials have yet shown sufficient efficacy, but four out of
the five published examples have reported some functional improvement [197].

Although different aspects of SCI pathology and many of their overcoming mech-
anisms via cell-based treatment have been experimentally examined and successfully
assessed in animal models, despite the initial enthusiasm it sparked, their implementa-
tion to routine clinical practice is notably limited to date. Since the chronic treatment
of spinal cord injury is particularly challenging, it became evident that the capacity of
these approaches to facilitate regeneration and achieve meaningful functional recovery is
rather modest when considered individually. Therefore, it is now widely postulated that
combined therapeutic strategies targeting different aspects of SCI pathology and acting
complementary could likely offer more satisfactory functional outcomes and should be
clinically tested.
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Abbreviations

5-HT 5-hydroxytryptamine, serotonin
5-HT2 5-HT2 receptors for serotonin
5-HT7 5-HT7 receptors for serotonin
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
Bax pro-apoptotic Bcl-2 protein factor
BBB Basso-Beattie-Bresnahan locomotor rating score
Bcl-2 anti-apoptotic protein inhibiting Beclin 1-dependent autophagy
BDNF brain-derived neurotrophic factor
BM-MSCs bone marrow mesenchymal stem cells
BMS Basso Mouse Scale for locomotor rating
CNS central nervous system
CREB cAMP response element-binding proteindiv days in vitro
dpl days post lesion
DPSCs dental pulp stem cells
EPO erythropoietin ESC embryonic stem
FAK focal adhesion kinase
FasL ligand for Fas receptor
FGF2 fibroblast growth factor 2
GABA gamma-aminobutyric acid
GDAsBMP bone morphogenetic protein-induced astrocytes derived from embryonic

glial-restricted precursors
GDNF glial cell-derived neurotrophic factor
GMCSF granulocyte-macrophage colony-stimulating factor
HGF hepatocyte growth factor
HIF-1α hypoxia-inducible factor 1-alpha
IFN-γ interferon γ

IL-10 interleukin 10
IL-12 interleukin 12
IL-1β interleukin 1β
IL-6 interleukin 6
iNOS inducible nitric oxide synthase
iNSCs inducible neural stem cells
iPSCs inducible pluripotenet stem cells
iPS-NSCs induced pluripotent stem cell-derived neural stem cells
iPSs induced pluripotent stem cells
KA kainic acid
LC3 autophagy factor
M1 pro-inflammatory type of macrophages
M2 anti-inflammatory type of macrophages
MAG myelin-associated glycoprotein
MCP1 monocyte chemoattractant protein 1
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MIP-1α macrophage inflammatory protein 1-alpha
MSCs mesenchymal stem cells
NF-κB nuclear factor kappa B
NGF nerve growth factor
NMDA N-methyl-D-aspartate glutamate
Nogo-A neurite outgrowth inhibitor A
NSCs neural stem cells
NPCs neural progenitor cells
NT-4 neurotrophin-4
Olig2 oligodendrocyte transcription factor
OECs olfactory ensheathing cells
OPCs oligodendrocyte precursor cells
PNS peripheral nervous system
RhoA ras homolog family member A
ROCK Rho-associated protein kinase
SCI spinal cord injury
SCs Schwann cells
sEV small extracellular vesicles
SKP-SCs skin-derived precursors differentiated into Schwann cells
STAT3 signal transducer and activator of transcription 3
TH tyrosine hydroxylase
TNF-α tumor necrosis factor-α
TT total spinal cord transection
VEGF vascular endothelial growth factor
Wnt/β catenin
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