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Abstract: The use of glass fibre reinforced polymer (GFRP) composites in civil engineering structures
has seen considerable growth in recent years due to their high strength, low self-weight, and corrosion
resistance, namely when compared to traditional materials, such as steel and reinforced concrete.
To enable the structural use of GFRP composite materials in civil engineering applications, especially
in footbridges, it is necessary to gather knowledge on their structural behaviour, particularly under
dynamic loads, and to evaluate the ability of current design tools to predict their response. In fact,
excessive vibration has a major influence on the in-service performance (comfort) of slender structures
as well on their service life. The use of composite materials that combine high damping capacity
with relatively high stiffness and low mass can provide functional and economic benefits, especially
for footbridges. This paper aims to investigate the dynamic behaviour of GFRP free-supported
beams to evaluate their modal characteristics (frequency, damping, and modal shape). To assess the
benefits of using a structure made of pultruded GFRP rather than a conventional material—steel,
a comparative analysis between the dynamic characteristics of GFRP and steel beams is performed.
To specifically address material damping and to minimize the interference of the boundary conditions,
the beams are tested in a free condition, resting on a low-density foam base. The results show that
the damping capacity of GFRP is much higher than that of steel, as the measured damping factor of
GFRP is five times higher than that of steel for the same boundary conditions and similar geometry.
Furthermore, the fact that the frequencies of the tested specimens resemble for the two different
materials highlights the perceived damping qualities of the polymer-based composite material.
Finally, an energy method for evaluating the influence of the scale factor on material damping is
applied, which made it possible to infer that the damping varies as a function of frequency but is not
explicitly affected by the length of the specimens.

Keywords: composites; GFRP; steel; viscoelasticity; natural frequency; damping; dynamic behaviour;
footbridge vibrations

1. Introduction

Pultruded glass fibre reinforced polymer (GFRP) profiles are being increasingly con-
sidered for civil engineering structural applications, as a replacement of conventional
materials, such as reinforced concrete and especially steel. This is mostly due to their
lightweight, high strength, and non-corrodibility. Among the various applications of GFRP
profiles are building structures and bridges, both vehicular and especially pedestrian. In all
these applications, one of the main design requirements is the comfort of users and, for that
purpose, the dynamic properties of fibre-polymer composite materials are of paramount
importance. In the specific case of pedestrian bridges, design is very often governed by
vibration criteria.

To allow for a comprehensive design of pedestrian bridges made of pultruded GFRP
profiles, it is necessary to obtain an in-depth understanding of their dynamic properties,
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namely compared to steel, which is the main alternative material it aims at replacing.
The high damping capacity of polymer-based materials is widely known and used in the
mechanical, automotive, and aerospace industries. In fact, the vibrations produced in
structures and mechanical components are the main sources of problems in high preci-
sion instruments, machines, automobiles or aircrafts, and the use of polymeric compos-
ites as passive damping elements allows mitigating vibrations in such structures [1,2].
The frequency-dependent stiffness behaviour of a viscoelastic material directly affects the
modal characteristics of the structural system, resulting in complex vibration modes and
differences in the relative phase of vibration [3].

In what concerns the use of material damping as the sole damping source of a struc-
tural system, Vasques et al. [4] pointed out that the viscoelastic damping has been used
mainly as distributed surface mounted or embedded damping treatments, utilizing passive
viscoelastic materials alone. In the same manner, Nashif et al. [5] introduced fundamentals
of both vibrations and shock damping, focusing only on passive treatments for vibration
attenuation without the effective use of the structure itself as a damping agent. Finegan and
Gibson [6] summarised the research done on the damping of polymer-based composites
in two levels: (a) At the macromechanical level, the research efforts aimed to study the
properties of the laminate layers, the inertial effects and the contact surfaces; (b) at the
micromechanical level, the focus has been on the effects of the orientation and ratio of
the reinforcing fibres, the fibre/matrix interface and the properties of the fibres and the
matrix. In the same study, the authors state that material damping can contribute to passive
vibration control using the inherent ability of polymeric materials to dissipate energy.
This ability was explored by Adams and Bacon [7] who examined the effect of fibre orienta-
tion and lamination geometry on the flexural and torsional damping and dynamic moduli
of fibre reinforced polymer (FRP) composites.

As mentioned above, polymer-based composites are now finding increasing interest
in civil engineering to be used as structural members (pultruded profiles, laminated shells
and plates, and sandwich panels). Nevertheless, most of the research carried out in this
area has focused on the evaluation of the static behaviour of composite structures, and less
often on the dynamic behaviour of specific structures [8,9]; comprehensive information
about the dynamic characteristics of polymer-based composites is not yet available, namely
with respect to the material damping that is necessary to conduct dynamic analysis (in the
time domain) under pedestrian loads, which are sometimes necessary to assess/design
in a comprehensive way the comfort of users. This lack of information is well reflected in
available design standards for composite structures, which provide very limited guidance
in this respect (ASCE LFRD Standard [10]; Prospect for New Guidance of FRP Struc-
tures [11]; Italian Code [12]). In fact, none of the above-mentioned design guidelines give
detailed information on material damping to be used in the dynamic analysis and design
of fibre-polymer composite structures.

In this respect, Boscato et al. [13] stated that structures composed of pultruded FRP
profiles have been extensively addressed in their static aspects, but the same attention
has not yet been given to their dynamic behaviour. Regarding the dynamic behaviour of
FRP materials, some studies have been conducted in the last two decades, such as that of
Boscato et al. [14], who presented a modal identification of an all-FRP two dimensional
frame in free vibration. The results show that the GFRP structural system presents a better
dynamic performance compared to systems comprising steel and aluminium members.
Stankiewicz et al. [15] presented dynamic in situ tests of a cable-stayed all-GFRP footbridge
under human excitation. They found out that the analysed footbridge fulfilled the vibration
comfort criteria elaborated by the technical guide Sétra [16].

In this paper, the identification of modal characteristics of free-supported beams is
carried out to determine the internal damping of two types of materials: (i) Steel and
(ii) a polymer-based composite. With this purpose, forced vibration tests using hammer
excitation are conducted on two sets of similar free-supported beams, considering the
lengths of 250, 500, and 1000 mm. A free-supported beam scenario, in which the beams
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are placed on a low-density polyurethane foam, is considered to avoid damping added
by external sources and to minimise the interference from boundary conditions. In this
way, it is possible to extract only the material damping ratio. These types of support
conditions are common (and well-established) in biomechanical (body in free fall), naval
(submarines), and aerospace (aircraft in flight) engineering. The different lengths aimed at
verifying the relevance of the structure scale. The application of identification algorithms
to the collected data enables the identification of modal properties, namely damping ratios,
which are further correlated with damping factors extracted using an energy-based method
analytically deduced in this research.

The remainder of this paper is organized as follows: In Section 2, a brief review of
the free-supported beam theory is presented first, and the technique employed to identify
modal properties is discussed next. The experimental programme is described in Section 3
and the results obtained are presented in Section 4. In Section 5, a comparison is made
between modal parameters identified in the tests and the ones analytically calculated.
In Section 6, damping estimates obtained for the two materials, GFRP and steel,
are compared. Section 7 summarises the main findings of this study.

2. Theoretical Background
2.1. Identification of Modal Properties

The identification of modal properties from an existing structure is a so-called inverse
problem, which is formulated from the non-homogenous dynamic equilibrium equation,
by the relation between a response and an excitation, expressed either in the time or
the frequency domain [17]. In the present case, a frequency-based approach is used and
frequency response functions (FRF), H(iω), are constructed from the ratio between spectral
density functions of the applied modal force and the resulting modal response. From the
FRF, the modal parameters are extracted, namely the natural frequencies, damping ratios,
and mode shape components.

Figure 1 shows a typical input-output graphic of an experiment using an impact ham-
mer excitation, depicting the typical response of a structural system to an imposed force.

Figure 1. Input-output graphic from an impact experiment.
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In a system with separated natural frequencies, modal decoupling enables the transfor-
mation of the N-coupled dynamic equilibrium equations into N-decoupled
single-degree-of-freedom (SDOF) equations, N being the number of vibration modes
to identify. In the frequency domain, the general SDOF dynamic equilibrium equation is
given by [18]

X(ω)
(
−ω2 + 2iξnωωn + ωn

2
)
=

Y(ω)

mn
(1)

where mn, ωn, and ξn are the modal mass, the circular frequency, and the damping ratio,
respectively, i is the complex number

(
i2 = −1

)
, and X(ω) and Y(ω) are the Fourier

transforms of the response and excitation, respectively. The FRF is defined as

H(ω) =
X(ω)

Y(ω)
(2)

Equation (1) can then be expressed as

H(ω) =
1/mn

ωn2 −ω2 + i2ωωnξn
(3)

Since the FRF is a complex function of frequency, the corresponding real and imaginary
parts can be plotted, as shown in Figure 2. Accordingly, it can be observed that the
imaginary part of the FRF presents peaks close to the resonance frequencies, while the real
part inverts its signal in the vicinity of those frequencies.

Figure 2. FRF in terms of real and imaginary parts.

These properties can be used to extract the relevant modal parameters. According to
Rao [19], when using a single-degree-of-freedom approach, the graph of H(iω) is divided
into several frequency ranges, each one centred at one peak, whose abscissa approximately
coincides with a resonance frequency for a lowly damped system.

To calculate the damping ratio ξn, the well-known half-power bandwidth method
is commonly used [18]. This method consists of estimating ω1,n and ω2,n frequencies,
around ωn, for which the respective FRF amplitude is equal to the peak divided by

√
2.

Thereby, the modal damping ratio can be found by

ξn =
ω2,n −ω1,n

2ωn
(4)

Figure 3 shows the amplitude of the FRF in terms of logarithmic coordinates and
exemplifies the application of the half-power bandwidth method.
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Figure 3. The logarithmic spectra of Fourier in amplitude.

The magnitude of the FRF is given by

Hij(ωn) =
√
[Hr,n(ωn)]

2 + [Hi,n(ωn)]
2 (5)

where Hr,n and Hi,n are the corresponding real and imaginary part, respectively.
Based on the ωn and ξn values, it is possible to estimate the amplitudes values, φi,n

and φj,n, at two measurement points, i and j, of the configuration relative to the mode n.
As described by Caetano [18], for a given FRF, the values of φi,n and φj,n, associated with a
particular mode n, can be determined at the resonance for each mode. If ω ∼= ωn, then the
amplitude of the FRF relating the response measured at point i with the force applied at
point j is given by

Hij(ωn) =
φi,n·φj,n

2ξnωn2 (6)

The amplitudes of the modal components are then given by

φi,n·φj,n = Hij(ωn)·2ξnωn
2 (7)

The determination of the quantities φi,n and φj,n can follow a sequence. For example,
if i = j, it follows that

φi,n =
√

Hij(ωn)·2ξnωn2 (8)

Then, at another point j

φj,n =
Hij(ωn)·2ξnωn

2

φi,n
(9)

In summary, the FRF can be used to characterize the dynamic behaviour of a structure
and contains information on the modal components of the system, namely the resonance
frequencies, the damping ratios, and the mode shapes.

2.2. Energy-Based Evaluation of Equivalent Material Damping Ratio

As earlier related, the knowledge of the damping properties of a structure is necessary
to effectively characterise its resonant response. In a structural system as a single-length
beam, the energy dissipated per cycle of vibration can be attributed both to material
damping and to damping in the supports [20].

Focusing specifically on material damping, the application of the energy method
constitutes an alternative for determination of an equivalent damping ratio corresponding
to each vibration mode n of the structure. This is achieved considering that the damping
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factor is given from the ratio between the dissipated energy, Wdiss,n, and the total energy at
resonance, Wtotal,n, over a vibration cycle [21]

ξn =
Wdiss,n

4π Wtotal,n
(10)

For a single degree of freedom (SDOF) system, at resonance, the total energy may be
calculated as the amplitude of either the maximum kinetic and potential energy [22]. If the
kinematic energy is considered

Wtotal,n =

∣∣∣∣∣12 ρA
∫ L

0

(
∂y
∂t

)2
dx

∣∣∣∣∣
t

(11)

where y describes the transverse deflection of the beam at some position x, ρ is the vol-
umetric mass, A is the cross-sectional area of the beam, the assumed constant along the
length L, and ∂/∂t represents the partial derivative with respect to time.

In a harmonic vibration cycle, the maximum value of Equation (11) is given by

Wtotal,n =
1
2
(LρA) ωn

2Yn
2 (12)

where Yn is the displacement amplitude; k is the elastic stiffness; and LρA is the total mass.
Equations (12) and (13) shows that the energy of a harmonic oscillator is proportional

to the square of the amplitude of the oscillation.
On another hand, the free vibrations of any real physical system decay with time.

Every such system inevitably has dissipative features through which the mechanical
energy of the vibration is depleted. In this sense, French [23] and King [24] showed that
it is possible to express the damping ratio in terms of an exponential decay of the total
mechanical energy, Wtotal,n.

In such conditions, the oscillations are well described over several cycles by a simple
harmonic motion of constant amplitude Y, such that

Y(t) = Y0e−ht/2 (13)

where Y0 is the initial value of the amplitude and h is the hysteretic damping coefficient.
Hence, from Equation (13), one may define the decay of the total energy as

W(t) = Wtotal,n e−ht (14)

Since the dissipated energy may be computed as Wtotal,n −W(t), when t = 2π/ωn,
and replacing h by a constant given by λ, the damping ratio can be related to the energy
decay as

ξn =
1− e−(2πλ/ωn)

4π
(15)

3. Experimental Programme
3.1. Overview

In this research, the identification of modal characteristics of free-supported beams
is carried out to determine the structural damping of two types of materials, namely:
(i) Steel and (ii) pultruded GFRP.

The experiments are conducted for different beam lengths, namely, 250, 500, and 1000 mm.
The range of lengths chosen makes it possible to assess the scale effects on the modal prop-
erties of the beams, namely on their natural frequencies and damping ratios.
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3.2. Characteristics of the Material and Specimens
3.2.1. GFRP Specimens

The specimens of the pultruded GFRP composite used in the experimental programme
were extracted from the web of an I-section pultruded profile (200 × 100 × 10 mm,
web height × flange width × wall thickness) (Alto-Perfis Pultrudidos Lda, Maia, Por-
tugal). This profile is made of E-glass fibres, combining alternating layers of unidirectional
roving and mats embedded in an isophthalic polyester matrix (68% inorganic content by
weight). The cross-section and dimensions of GFRP specimens are shown in Figure 4 and
their mass and density are shown in Table 1.

Figure 4. Geometry of GFRP specimens (dimensions in mm).

Table 1. Mass and density of GFRP specimens.

Specimen Mass Volumetric Mass (ρ)

(l × w × t) (kg) (kg/m3)

1040 × 100 × 10 mm 2.0088 1931.54
500 × 100 × 10 mm 0.9904 1980.80
250 × 98 × 10 mm 0.4891 1996.33

The dimensions of the composite specimens present some differences compared to the
steel ones, which resulted from the cutting process. However, the relative differences are
small and exact (measured) geometric values were considered in the calculations. Given
the very low porosity of the pultruded material, the apparent density of the specimens was
considered, by determining the weight/volume ratio.

The material characterisation tests [25] of GFRP were performed on small-scale
coupons extracted from the web plate: (i) Tensile tests (according to ISO 527 [26]),
(ii) compression tests (ASTM D695-02 [27]), (iii) in-plane shear tests (ISO 527-5 [28]),
and (iv) interlaminar shear tests (ASTM D2344 [29]).

The elastic and strength properties of the GFRP laminates are listed in Tables 2 and 3,
respectively, where E is the elastic modulus, G is the shear modulus, υ is the Poisson
ratio, σ is the axial strength, and τ is the in-plane shear strength. The subscripts L
and T correspond to the in-plane longitudinal (pultrusion) and transverse directions,
while subscripts t and c correspond to tensile and compressive loading, respectively.

3.2.2. Steel Specimens

The steel specimens used in the experimental programme were produced with DIN
45WCrV7 steel grade, equivalent to ASTM 681A S1 or S355, a cold work alloy tool steel
category. The cross-section and dimensions of steel specimens are shown in Figure 5 and
their mass and density are listed in Table 4.
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Table 2. Elastic properties of GFRP.

EL,t EL,c ET,c GLT υ

(GPa) (GPa) (GPa) (GPa)

32.7 33.4 10.8 3.65 0.266

Table 3. Strength properties of GFRP.

σL,t σL,c σT,c τLT

(MPa) (MPa) (MPa) (MPa)

365 468 110 30.6

Figure 5. Geometry of steel specimens (dimensions in mm).

Table 4. Mass and density of steel specimens.

Specimen Mass Volumetric Mass (ρ)

(l × w × t) (kg) (kg/m3)

1000 × 100 × 8 mm 6.1611 7701.38
500 × 100 × 8 mm 3.0802 7700.50
250 × 100 × 8 mm 1.5417 7865.82

The elastic and strength properties of steel are listed in Table 5, namely the modulus
of elasticity E, the minimum yield stress fy, the ultimate tensile stress fu, the shear modulus
G, and the Poisson ratio υ (properties stated in the supplier catalogue).

Table 5. Elastic and strength properties of A681 Steel.

E fy fu G υ

(GPa) (MPa) (MPa) (GPa)

210 335 510 80 0.300

3.3. Test Setup, Instrumentation, and Procedure

The modal identification tests were performed to extract the modal data from the
specimens, namely, the vibration frequencies, damping ratios, and modal shapes of the
beams. For this purpose, input-output tests were conducted based on the excitation by
an impact hammer and the measurement of both the applied excitation and the structural
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acceleration. From the collected time series relating the acceleration at a certain number
of points with the force applied at another point, frequency response functions were
constructed, and modal identification techniques (described above) were applied.

Figure 6 shows the experimental setup. The test specimens were supported by a
(1) low-density foam to simulate a free-supported condition. Impacts were applied with an
(2) impulse hammer on the beam and the respective response was measured in terms of
vertical accelerations with (3) a high sensitivity and low mass piezoelectric accelerometer
(model 393A03, PCB Group, Inc., New York, NY, USA) connected to (4) an amplifier
(model SignalCalc Ace, Data Physics, Santa Clara, CA, USA). The data were acquired
and processed using a (5) Fourier analyser (model 480E09, PCB Group, Inc., New York,
NY, USA).

Figure 6. Experimental setup: (a) GFRP and (b) steel specimens.

The frequency range that can be induced by hammer excitation depends on the mass
of the hammer and the hardness of the tip applied to its head. The chosen tip that allowed
excitation in the frequency range of 0 to 800 Hz was a rubber- and steel-head for respectively
the GFRP and steel specimens.

For each test conducted on, a given specimen (made of steel or GFRP), four different
FRFs were constructed relating the accelerations measured at points 1, 2, and 3, with the
impact applied at point 1, 2, and 3 (see Figure 7 and Table 6).
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Figure 7. Modal identification test setups: (a) Setup 1, (b) setup 2, (c) setup 3, and (d) setup 4.

Table 6. Measurement setting.

Setup Chanel 1 Chanel 2

Impact Load Point Accelerometer Point

1 1 2
2 1 3
3 3 3
4 2 2

The modal identification test setups described in Figure 7 were repeated for the
three beam lengths. Figure 8 shows one of the modal identification tests being performed.
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Figure 8. Experimental tests: Example of impact being applied.

In this campaign, 19 tests were conducted and the 14 most relevant results are pre-
sented. Figure 9 shows the tested beams arranged in pairs, namely (1) 1000, (2) 500,
and (3) 250 mm-length.

Figure 9. Experimental couples.

The series of experiments were classified following the setup number, as described
above, the beam material (C—for composite; S—for steel) and the length (in mm).
Table 7 describes the complete set of experiments performed for each series and the beam
nomenclature adopted.

Table 7. Test description.

Test Setup Impact Load Point Accelerometer Point Beam Nomenclature

1 1 1 2 C-1000
2 2 1 3 C-1000
3 3 3 3 C-1000
4 1 1 2 S-1000
5 2 1 3 S-1000
6 3 3 3 S-1000
7 1 1 2 C-500
8 4 2 2 C-500
9 1 1 2 S-500
10 4 2 2 S-500
11 1 1 2 S-250
12 4 2 2 S-250
13 1 1 2 C-250
14 4 2 2 C-250
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4. Experimental Results

This section describes the experimental results of the tests carried out on each pair of
beams, made of either GFRP or steel. First, results are presented for each of the test lengths.
Next, the identified frequencies are summarized. Finally, the mode shapes are described.

4.1. 1000 mm-Length

This subsection presents the results of the modal identification test performed on
specimens with 1000 mm of length, namely, for setups 1, 2, and 3 (Table 7). Figure 10
shows the FRF plots and summarises the identified natural frequencies. Figure 11 shows
the power spectral density (PSD) of amplitude response plots of the 1000 mm-length tests.

Figure 10. Modal identification for 1000 mm-length specimens—FRF plot for (a) setup 1, (b) setup 2,
and (c) setup 3.
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Figure 11. Power spectral density plot for the 1000 mm-length: (a) C-1000 and (b) S-1000.

It is first noted that the plots presented in Figure 10 show that the resonance frequen-
cies for both materials are very close. This is confirmed by the values of the resonance
frequencies listed in Table 8.

Table 8. Identified natural frequencies for the 1000 mm-length.

Mode C-1000 S-1000

No.
Resonance Freq. Resonance Freq.

(Hz) (Hz)

0 27.333 ± 0.312 23.000 ± 1.080
1 52.500 ± 0.204 53.127 ± 0.625
2 118.875 ± 0.125 119.083 ± 0.285
3 226.250 ± 0.205 228.417 ± 0.192
4 370.875 ± 0.375 376.083 ± 0.176
5 551.000 ± 0.204 561.083 ± 0.118
6 766.667 ± 0.514 783.334 ± 0.204

4.2. 500 mm-Length

Figure 12 presents the FRF plots for setups 1 and 4, corresponding to modal identi-
fication tests performed on specimens with 500 mm-length, and Table 9 summarises the
identified natural frequencies. Figure 13 shows the PSD of amplitude response plots of the
500 mm-length tests.
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Figure 12. Modal identification for the 500 mm-length—FRF plot for (a) setup 1 and (b) setup 4.

Table 9. Identified natural frequencies for the 500 mm-length.

Mode C-500 S-500

No.
Resonance Freq. Resonance Freq.

(Hz) (Hz)

0 27.656 ± 1.094 23.125 ± 0.313
1 44.219 ± 0.156 46.563 ± 0.001
2 169.219 ± 0.156 170.156 ± 0.156
3 456.406 ± 0.156 463.281 ± 0.156
4 887.504 ± 1.559 907.031 ± 0.469

As in the previous series, it can be noted that the curves shown in Figure 12 and the
values given in Table 9 show that the peak frequencies for both materials are close.

4.3. 250 mm-Length

Figure 14 shows the FRF plots for setups 1 and 3, referring to modal identification
tests performed on specimens with the 250 mm-length, and Table 10 summarises the
identified natural frequencies. Figure 15 shows the PSD of amplitude response plots of the
250 mm-length tests.
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Figure 13. Power spectral density plot for the 500 mm-length: (a) C-500 and (b) S-500.

Figure 14. Modal identification for the 250 mm-length—FRF plot for (a) series 1 and (b) series 4.
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Table 10. Identified natural frequencies for the 250 mm-length.

Mode C-250 S-250

No.
Resonance Freq. Resonance Freq.

(Hz) (Hz)

0 27.817 ± 0.004 24.375 ± 0.625
1 657.501 ± 0.624 668.594 ± 0.156
2 1784.362 ± 4.674 1840.000 ± 2.188

Figure 15. Power spectral density plot for the 250 mm-length: (a) C-250 and (b) S-250.

As mentioned in the previous tests, even for the small length beams, the peak frequen-
cies are very close for both materials, as depicted by the FRF plots in Figure 16 and the
values listed in Table 10.
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Figure 16. Modal identification: First four mode shapes with impact excitation. The prefix “Mi”
indicates the mode number, the suffix “-C” and “-S” indicates the material, composite (GFRP) and
steel, respectively.

4.4. Summary of Identified Frequencies

Table 11 summarises the identified frequencies for the different materials-lengths and
modes. The frequencies associated with the mode identified as “0” correspond to the
rigid-body mode and are discarded. From the values shown in Table 11, it is possible to
verify the existence of similarity in the vibratory behaviour of beams with the same length,
but different constituent materials. To confirm this hypothesis, Table 12 shows the ratio
between the identified frequencies for GFRP and steel beams with the same length, for the
same vibration mode.

Table 11. Summary of identified frequencies (in Hz).

Specimen
Mode

0 1 2 3 4 5 6

C-1000 27.33 52.50 118.88 226.25 370.88 551.00 766.67
S-1000 27.00 53.13 119.08 228.42 376.08 561.08 783.33
C-500 44.22 169.22 456.41 887.50
S-500 46.56 170.16 463.28 907.03
C-250 27.82 657.50 1784.36
S-250 24.38 668.59 1840.00

Table 12. Ratio of identified frequencies for different setups.

Specimen
Mode

1 2 3 4 5 6

C-1000/S-1000 0.99 1.00 0.99 0.99 0.98 0.98
C-500/S-500 0.99 0.99 0.98
C-250/S-250 0.98 0.97

The values listed in Table 12 show that the relative difference between the values of the
identified frequencies for both materials remains within the range of 0 to 0.03, which reflects
the resemblance of modal characteristics of specimens with the same length, regardless of
the material. It is important to note that, for the same length, while the bending stiffness
ratio is about three times (the estimated bending stiffness of the steel specimens being
greater than that of the composite ones), the stiffness-to-mass ratio (composite/steel)
of those specimens is less than 8% on average, as already mentioned. This is ascribed to
the much lower density of GFRP compared to steel.
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4.5. Mode Shapes

To obtain the solution of the vibration modes, the Euler-Bernoulli theory [30] was
applied and the modal displacement amplitudes of the beams were calculated. The first
four mode shapes are presented in Figure 16, in which the prefix “Mi” indicates the mode
number, and the suffix “-C” and “-S” indicates the material, composite (GFRP) and steel,
respectively. It is noted that it was not the purpose of the tests to define in a refined way
the modal shapes, as a small number of points were used in the measurements.

5. Comparison of Identified and Calculated Modal Parameters

This section presents a comparison between the modal parameters obtained from the
analytical formulae and the experimental results. For this purpose, the Euler-Bernoulli
theory [30] and the values of the corresponding wavenumber are used.

Table 13 summarizes the elastic properties of the beams in which the “Ratio EI/m”
column emphasizes the relationship between the bending stiffness and the mass of the
specimen. It is possible to verify that the relationship “stiffness ×mass” for specimens of
the same geometry is similar, with a relative difference of only 8% between both (with the
calculated ratio for the GFRP composite being higher than that for steel). Table 14 shows
the analytical values of natural frequencies, fn, given by Equation (9).

Table 13. Elastic properties set for the direct problem.

Specimen Length Cross-Section Young’s Modulus Moment of Inertia Mass Ratio

L (w × t) E I m EI/m
(mm) (mm) (GPa) (mm4) (kg)

C-1000 1040 100 × 10 37.7 8333.33 2.0088 156
S-1000 1000 100 × 8 210.0 4266.67 6.1611 145
C-500 500 100 × 10 37.7 8333.33 0.9904 317
S-500 500 100 × 8 210.0 4266.67 3.0802 291
C-250 250 98 × 10 37.7 8166.67 0.4891 630
S-250 250 100 × 8 210.0 4266.67 1.5417 581

Table 14. Natural frequencies obtained from analytical modelling (in Hz).

Specimen
Mode

1 2 3 4 5 6

C-1000 41.987 115.738 226.893 375.065 560.282 782.543
S-1000 42.941 118.369 232.051 383.592 573.020 800.334
C-500 179.378 494.463 969.345 1602.376 2393.674 3343.230
S-500 171.775 473.504 928.257 1534.456 2292.212 3201.519
C-250 714.717 1970.145 3862.272 6384.532 9537.389 13,320.816
S-250 686.743 1893.032 3711.100 6134.637 9164.089 12,799.430

According to the Euler-Bernoulli theory, the natural frequency is inversely propor-
tional to the square of specimen length. In this sense, as the EI/m ratios are similar between
specimens with the same geometry, it is expected that the natural frequencies of the speci-
men C-1000 mm are lower than those of the specimen S-1000, since the length of the latter
is 3.85% smaller than that of the former, it did not occur with the other specimens.

A comparison between the analytical and experimental values of natural frequen-
cies is made to assess the accuracy of the analytical modelling and the test approach,
and further, to validate the accuracy of the proposed model in simulating the free-supported
beam boundary conditions.

Table 15 summarises the ratios between the experimental and numerical values of the
natural frequencies for the different materials-lengths and for each mode.
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Table 15. Ratios between experimental and analytical frequencies.

Specimen Mode

1 2 3 4 5 6

C-1000 1.25 1.03 1.00 0.99 0.98 0.98
S-1000 1.24 1.01 0.98 0.98 0.98 0.98
C-500 0.94 0.92 0.92
S-500 0.99 0.98 0.98
C-250 0.92 0.91
S-250 0.97 0.97

In what concerns the accuracy aspect mentioned above, a value of ±0.10 was defined
as an acceptable threshold. In this sense, the first mode of specimens C-1000 and S-1000
should be discarded from the analysis. Except for the first mode of the 1000 mm-length
specimens, the good agreement between the experimental frequencies and those estimated
with the analytical models shows that the hypothesis of the free-supported condition
was achieved with the use of low-density foam as beams supports. It was not possible
to unequivocally identify a clear cause for the differences between experimental and
analytical results.

6. Damping Analysis

In this section, the damping ratios extracted for each pair of specimens with an
identical length is analysed and compared. The procedure described in Section 2 is applied
to calculate the damping ratios.

From the power spectrum of amplitude response plots, the half-power bandwidth
method is used and the damping ratio is calculated. The values obtained are shown in
Table 16.

Table 16. Damping ratio −ξn.

Mode C-1000 S-1000 Ratio

(%) (C/S)

1 - - -
2 1.01 0.42 2.4
3 0.70 0.16 4.4
4 0.46 0.14 3.3
5 0.36 0.08 4.5
6 0.34 0.06 5.7

Mode C-500 S-500 Ratio

(%) (C/S)

1 0.75 0.33 2.3
2 0.37 0.12 3.1
3 0.40 0.09 4.4

Mode C-250 S-250 Ratio

(%) (C/S)

1 0.37 0.09 4.1
2 0.46 0.16 2.9

The values given in Table 17 show that for a given mode, the damping ratio, ξn, of the
GFRP composite is higher than that of the corresponding steel-based specimen. It must
be noted that for the same structure, at the same frequency, different response amplitudes
will generate different levels of damping [31]. In this sense, it is important to assess the
damping ratio concerning the ratio of the response amplitudes of the structure.
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Table 17. Amplitudes of acceleration and the respective damping ratios.

Mode C-1000 S-1000 Ratios

Amplitude Damping Amplitude Damping Amplitude Damping

(g/N) % (g/N) % (C/S) (C/S)

1 - - - - - -
2 0.0276 1.01 0.0236 0.42 1.2 2.4
3 0.0083 0.70 0.0493 0.16 0.2 4.4
4 0.0113 0.46 0.0015 0.14 7.8 3.3
5 0.0283 0.36 0.0516 0.08 0.6 4.5
6 0.0480 0.34 0.1700 0.06 0.3 5.7

Mode C-500 S-500 Ratios

Amplitude Damping Amplitude Damping Amplitude Damping

(g/N) % (g/N) % (C/S) (C/S)

1 0.0088 0.75 0.0097 0.33 0.9 2.3
2 0.1413 0.37 0.1723 0.12 0.8 3.1
3 0.1881 0.40 0.4178 0.09 0.5 4.5

Mode C-250 S-250 Ratios

Amplitude Damping Amplitude Damping Amplitude Damping

(g/N) % (g/N) % (C/S) (C/S)

1 0.0865 0.37 0.0844 0.09 1.0 4.1
2 0.0036 0.46 0.0051 0.16 0.7 2.9

To confirm the conclusion on the enhanced damping ability of the GFRP composite
with respect to steel, the evaluation of the relative response amplitudes associated with each
mode component for the two different materials is performed using the power spectrum
amplitude response. Table 17 summarises the amplitude response for each identified mode
and the ratio between the measured amplitudes (GFRP/steel) as well as the ratio between
the measured damping (GFRP/steel).

Table 17 shows that the response amplitude for the various identified modes has an
average ratio of 1.4 between the GFRP composite and steel specimens, while the average
ratio of damping between those two materials is 4.0. These two figures highlight the fact
that the difference in measured amplitudes does not have a direct impact on the damping
values. It should be noted that at certain modes the response amplitude for steel was higher
than in the GFRP composite.

A consideration to be made refers to the scaling effect, which relates the length of the
specimens to the damping variation, within the same frequency range, and which is directly
related to the choice of specimen lengths adopted in this research. Furthermore, the natural
frequencies of a full-scale system can be related to those of a reduced model, relating the
two sets of frequencies by a scaling law taking into account the physical parameters of the
model and the full-scale system [32]. In this sense, the damping ratio as a function of the
length (scale) was evaluated to identify whether the scale influences material damping.
Figure 17 shows the variation of the damping ratio with the frequency for all tested
specimens. The damping ratio decreases as the frequency increases, up to a frequency
of approximately 700 Hz. At high frequencies (above 800 Hz), the damping ratio starts
to increase.

It may be noted that the material damping varies as a function of frequency but is
not explicitly affected by the length of the specimens. As far as only material damping is
concerned, the damping ratio is similar for specimens with different lengths, at the same
frequency range. This is corroborated by a curve fitting in power law terms that exhibits
a very-strong correlation between the damping ratio values and frequency for different
lengths, as depicted in Figure 18.
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Figure 17. Damping ratio vs. frequency for different materials and lengths.

Figure 18. Damping ratio vs. frequency: Curve fitting.

The curve fittings depicted in Figure 18 can be compared to those obtained based on
the energy method. From Equation (15), one may evaluate the damping ratio as a function
of a constant λ, in terms of exponential decay. In this sense, the results obtained for the
GFRP composite, depicted in Figure 19, show that the damping ratios estimated based on
the energy ratio are similar to the ones calculated from the curve fitting described above.

Figure 19. Damping ratio: Curve fitting from the energy method.
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7. Conclusions

This paper presents a modal analysis of the dynamic characteristics of free-supported
beams, made of pultruded GFRP and steel, to identify and compare their resonance
frequencies, damping ratios, and vibration modes.

For the modal identification process, an experimental campaign was conducted by
applying the input-output method with the hammer impact and measuring the responses in
terms of acceleration of specimens with various lengths. This approach allowed evaluating
the damping variation as a function of resonance frequencies as well as achieving a wide
range of frequencies, from 27 to 1800 Hz.

The comparison between the identified frequencies and the results obtained from the
analytical model showed that the use of low-density foam as support enable a free-support
beam condition, also allowing the retrieval of the material damping ratios from the test
specimens. The same comparison showed a resemblance between the identified frequency
for specimens with similar lengths but made of different materials. Furthermore, the order
of magnitude of the relative differences between the frequencies identified for the same
mode in the two different materials, did not exceed 3%.

The half-power bandwidth method was applied to the PSD plots and values of
material damping ratios could be identified. For similar lengths, the values of the damping
ratios of the two materials presented significant differences, with the GFRP composite
presenting higher values, between two and six times higher than steel. This better damping
behaviour of GFRP was confirmed through the evaluation and comparison of the measured
acceleration amplitudes: The ratio of acceleration amplitudes between GFRP and steel was
relatively small compared to the corresponding ratio of damping ratios. It is noteworthy
that, for certain modes, the response amplitude of steel was higher than that of the GFRP.
These results reflect the better performance of the polymer-based composite material in
terms of energy dissipation and vibration attenuation.

Finally, an evaluation of the importance of the beam length was assessed to identify its
influence on the material damping ratios. It was observed that the material damping ratio
varies as a function of frequency but is not explicitly affected by the length of the specimens.

For the materials and geometries used in this study, it was shown that longer speci-
mens exhibited modal characteristics that resemble those of the shorter specimens. Despite
the limitations of this study, this points to the feasibility of estimating the material damping
of full-scale structures based on small-scale tests at the material level.
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Nomenclature

Symbol Description
mn modal mass of nth order mode (kg)
ωn circular frequency of nth order mode (rad/s)
ξn damping ratio of nth order mode (%)
i complex number

(
i2 = −1

)
X(ω) Fourier transform of the response
Y(ω) Fourier transforms of the excitation
H(ω) frequency response function (FRF)
Hr,n real part of FRF at the circular frequency ωn
Hi,n imaginary part of FRF at ωn
φn amplitude of vibration related to mode n
Wdiss,n dissipated energy at resonance in mode n
Wtotal,n total energy at resonance in mode n
ρ volumetric mass (kg/m3)
A cross-sectional area (m2)
L length of beam (m)
Yn modal displacement amplitude at nth order mode (m)
k elastic stiffness (kN/m)
E elastic modulus (GPa)
G shear modulus (GPa)
υ Poisson ratio
σ axial stress (MPa)
τ in-plane shear stress (MPa)
fy minimum yield stress (MPa)
fu tensile stress (MPa)
I second moment of area of A (mm4)
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