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Many global infectious diseases are not well-controlled, underlining a critical need for

new, more effective therapies. Pathogens and pathogen-infected host cells, like cancer

cells, evade immune surveillance via immune evasion mechanisms. The present study

indicates that pathogenic bacteria, endoparasites, and virus-infected host cells can

have immune evasion mechanisms in common with cancers. These include entry into

dormancy and metabolic reprogramming to aerobic glycolysis leading to excessive

secretion of lactic acid and immobilization of local host immunity. The latter evasion

tactic provides a therapeutic target for cancer, as shown by our recent finding that

patient-derived cancer xenografts can be growth-arrested, without major host toxicity,

by inhibiting their lactic acid secretion (as mediated by the MCT4 transporter)-with

evidence of host immunity restoration. Accordingly, the multiplication of bacteria,

endoparasites, and viruses that primarily depend on metabolic reprogramming to

aerobic glycolysis for survival may be arrested using cancer treatment strategies that

inhibit their lactic acid secretion. Immune evasion mechanisms shared by pathogens

and cancer cells likely represent fundamental, evolutionarily-conserved mechanisms

that may be particularly critical to their welfare. As such, their targeting may lead to novel

therapies for infectious diseases.

Keywords: immune evasion, pathogen, bacteria, endoparasite, virus, cancer, metabolic reprogramming, aerobic

glycolysis

INTRODUCTION

Infectious diseases constitute a major health problem worldwide and impose a substantial burden
on societies in human suffering and economic loss. While diseases like smallpox have essentially
been eliminated, many other pathogen-induced diseases are not well-controlled and new infectious
diseases are continually emerging, thus underlining a critical need for novel therapeutic targets
leading to more effective therapies (Fonkwo, 2008).
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The human body is constantly under attack by foreign
microorganisms such as pathogenic bacteria, parasites, and
viruses, i.e., pathogens whose invasion of the body and
subsequent multiplication can lead to a wide variety of global
infectious diseases. In defense of the body, invading pathogens
are identified by the innate immune system as “non-self ” via cell
surface pattern recognition receptors (PRRs) on innate immune
cells which recognize pathogen-associated molecular patterns
(PAMPs) on the foreign microbes; the latter are then eliminated
by, for example, macrophage-mediated phagocytosis or secretion
of cytotoxins by NK cells (Chaplin, 2010; Vaure and Liu, 2014).

Recognition of foreign microbes by adaptive immunity is
based on the ability of T- and B-lymphocytes to distinguish self
from non-self-antigens via cell surface antigen-specific receptors,
i.e., T-cell receptors (TCRs) and B-cell receptors (BCRs).
Identification of pathogen-infected host cells is achieved by T
cells via recognition of antigen fragments presented by major
histocompatibility complex (MHC) molecules. Elimination
of the intruders is accomplished via cytotoxic responses
by CD8+ T cells and CD45+ lymphocytes, recruitment of
neutrophils, monocytes, and mature B lymphocytes (mediated
by CD4+ helper T cells), as well as antibody production by
plasma cells.

In addition to foreign microorganisms, host cancer cells can
be recognized by the immune system as changes in their cell
surface structure render them foreign (Chaplin, 2010).

Despite vigorous immune surveillance by healthy,
immunocompetent hosts, pathogens often manage to
survive in the body. They accomplish this by employing
a large variety of immune evasion mechanisms based on,
for example, immobilizing immune responses or avoiding
recognition by host immune cells (Finlay and McFadden,
2006; Reddick and Alto, 2014). Such survival tactics can also
be used by cancer cells (Chaplin, 2010; Vinay et al., 2015).
In the last decade it has become evident that metabolic
reprogramming to aerobic glycolysis (the Warburg effect)
is a key mechanism that most cancer types use to evade
host immune surveillance, as the resulting increases in lactic
acid levels and acidity of the tumor micro-environment
immobilize host immune cell activity (Fischer et al., 2007;
Choi et al., 2013; Brand et al., 2016). As recently shown, this
immune evasion tactic provides a target for cancer therapy
(Choi et al., 2016, 2018).

In the present study, we have compared immune evasion
mechanisms of pathogens (i.e., bacteria, endoparasites, and
virus-infected host cells) and human cancer cells in search of
mechanisms common to both groups. Such shared tactics may
represent fundamental, evolutionarily-conserved mechanisms
of immune evasion, which could in turn be useful as targets for
novel therapies of both cancer and infectious diseases.

IMMUNE EVASION MECHANISMS
EMPLOYED BY PATHOGENS AND
CANCER CELLS

A literature survey led to the following information.

Pathogenic Bacteria
A small percentage of bacterial species can cause
globally significant diseases such as tuberculosis and pneumonia.
A typical immune response to pathogenic bacteria consists
of opsonisation of the microbes followed by phagocytosis
by host macrophages and fusion of the phagosomes with
lysosomes. Intra-lysosomal acid hydrolases, reactive oxygen
species (ROS) and nitric oxide ultimately kill the pathogens
(van Kessel et al., 2014).

Bacteria have developed a number of immune evasion
mechanisms and methods to manipulate host machinery
to promote their survival and proliferation. They can avoid
recognition by TLRs by masking their surface antigens with a
carbohydrate capsule (Finlay and McFadden, 2006) or through
alterations of cell surface lipids (Cambier et al., 2014). Some
bacterial species are able to subvert the phagocytic process by
secreting proteinaceous effectors into the host cell via their “type
three secretion systems” (T3SS) (Quitard et al., 2006) to target
host actin remodeling required for phagocytosis (Finlay and
McFadden, 2006) and to promote entry into host cells (Betts
et al., 2009; da Cunha et al., 2014). Other species manage to
use the host intracellular environment for proliferation, with
Mycobacterium tuberculosis, Coxiella burnetii, and Listeria
monocytogenes residing in macrophages, Salmonella enterica in
the intestinal epithelium, Mycobacterium leprae in connective
and nerve tissues, and Chlamydia trachomatis in ocular and
urogenital tissues (Betts et al., 2009; da Cunha et al., 2014). The
MAPK/NFκB pro-inflammatory pathway can also be targeted by
bacterial proteases to inhibit an inflammatory response, and TLR
signaling can be modulated to secrete the immunosuppressive
cytokine IL-10 (Finlay and McFadden, 2006).

When phagocytized, bacteria employ various strategies to
survive. Commonly, they escape the phagosomal environment
prior to its lysosome-mediated acidification: Shigella and L.
monocytogenes escape by remodeling host actin and secreting
phospholipases to cleave the phagosomal membrane (Small
et al., 1994; Baxt et al., 2013). Some bacteria, such as M.
tuberculosis, prevent the acidification of the phagosome by
disrupting phagosome-lysosome fusion using the PtpA tyrosine
phosphatase (Bach et al., 2008). Others exploit the phagosome
to create a suitable microenvironment in which to proliferate:
Legionella pneumophila creates a vacuolar environment
specifically lacking MHC class II molecules, thereby protecting
itself from innate immunity (Clemens and Horwitz, 1992),
whereas C. burnetii requires an acidic environment for growth
and virulence (Maurin et al., 1992).

In response to attack by the immune system, bacteria can enter
a hardy, non-replicating state, termed dormancy, for protection
(Rittershaus et al., 2013). Dormancy comes as two different
types: (i) cellular quiescence, a period of reduced cellular growth
that maintains a basal metabolism as observed for persistent
M. tuberculosis (Betts et al., 2002) and (ii) true dormancy, a
metabolically-arrested spore state promoting survival under
adverse conditions, as exhibited by the difficult-to-treat
Clostridium genus (Rittershaus et al., 2013). Cellular quiescence
is achieved through stress-triggered expression of dormancy-
related genes, e.g., activation of signaling system-related genes
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such as the type II toxin-antitoxin (TA) module and tnaA, a
gene responsible for the conversion of tryptophan to indole,
an intracellular signaling molecule responsible for mediating
persistence (Wood et al., 2013; Pu et al., 2017).

Bacteria can also evade innate immunity by reprogramming
their energy metabolisms. Staphylococcus aureus, in its hypoxic
phagosomal environment, upregulates glycolysis and lactic
acid fermentation in order to maintain a redox balance in
response to immune-induced nitric oxide stress (Vitko et al.,
2015). When glucose is abundant, Escherichia coli reprograms
glycolysis toward the production of acetate in its exponential
growth (Dittrich et al., 2005). Intra-macrophagic Brucella
abortus induces a shift toward aerobic glycolysis in its host—a
mechanism shown to be required for its survival (Czyz et al.,
2017). The lactic acid and derivative short-chain fatty acids
(SCFAs) produced by the bacteria are secreted in order to
maintain an alkaline intracellular pH (Konings et al., 1997).
The lactic acid and SCFAs may also act as immune-modulatory
signaling molecules, as their production by the gut microbiota
generates an immune-tolerogenic environment by promoting
Treg cell differentiation and inhibiting epithelial cell proliferation
(Thangaraju et al., 2009; Iraporda et al., 2015; Asarat et al., 2016;
Corrêa-Oliveira et al., 2016). Other evidence shows that volatile
bacterial SCFAs can markedly inhibit T- and B-cell proliferation
(Kurita-Ochiai et al., 1995).

Pathogenic Endoparasites
Endoparasites, i.e., parasites living inside the human body, can
be grouped into two main categories: single-celled protozoa
and multicellular worms, helminths. Both require successful
evasion of the host immune system for survival and reproduction
(Cox, 2002).

Protozoa employ several adaptive mechanisms to avoid
contact with immune cells, often seeking residence in immune
privileged sites. Plasmodium falciparum, which causes malaria
in humans, produces SPECT-1 and -2 proteins allowing it to
evade humoral immunity while traveling to the liver where
it can mature in a relative immune privileged environment
(Patarroyo et al., 2011). It then travels in the peripheral blood
and infects erythrocytes, which lack MHC I receptors, and
hence cannot be targeted by cytotoxic immune cells (Gomes
et al., 2016). Trypanosoma Brucei, causing African sleeping
disease, proliferates in blood and lymph and invades the central
nervous system—another immune privileged site (Masocha
et al., 2007). Migrating helminths also evade immune attack
by remaining in the central nervous system and liver (Pockros
and Capozza, 2005). Polymorphism also plays a role in immune
evasion by protozoa. P. falciparum, for example, go through
multiple stages during their lifetime and alter their surface
antigens after every stage, whereas T. Brucei survives through
subsurface protein remodeling which is involved in signaling
transitions during developmental stages of dormancy and
disease progression (Batram et al., 2014). These polymorphic
modifications downgrade the ability of B cells to make highly
specific antibodies (Zambrano-Villa et al., 2002).

Another mechanism via which endoparasites survive the
host defense is through immunomodulation; some protozoa

are able to induce host T cell anergy through suppression
of co-stimulators and cytokines (Zambrano-Villa et al.,
2002; Rodrigues et al., 2014). T. brucei uses its “vector
host” to its advantage, in which the saliva of the Tsetse
fly transmitted along with the parasite contains a peptide
which suppresses human host release of cytokines TNF-α,
IFN-γ, IL-6, and IL-10 (Bai et al., 2015; Stijlemans et al.,
2016). Helminths are able to survive in humans for many
years due to their ability to secrete immunomodulatory
products (Hewitson et al., 2009).

Entry into a dormant state is also a survival strategy of some
endoparasites, with stress-induced dormancy allowing their
persistence under adverse conditions. In particular, induction of
cell cycle arrest by ring-stage P. falciparum has been observed
following use of traditional anti-malarial artemisinin-based
combination treatments (Witkowski et al., 2010) and amino acid
starvation (McLean and Jacobs-Lorena, 2017). The dormant
subpopulations upregulate key survival genes (e.g., genes
encoding heat shock proteins), downregulate cell cycle regulators
and DNA biosynthesis proteins, and sustain their energy
needs through fatty acid synthesis and pyruvate metabolism.
Importantly, drug-selected parasites were able to re-enter growth
and development upon stress removal (Witkowski et al., 2010),
accentuating an ever-pressing issue of parasitic persistence in
disease treatment.

The metabolic profiles of endoparasites can also be modulated
in response to variations in their environment and developmental
stage. In proliferative stages, protozoa and helminths can display
a preferred dependence on anaerobic glycolysis and lactic
acid production for ATP generation. The intra-erythrocytic
Plasmodium parasite displays deregulated glycolytic activity
coupled to impaired mitochondrial metabolism, hypothesized
to provide a distinct growth advantage during its proliferative
stage (Salcedo-Sora et al., 2014). Parasitic helminths can
proliferate in high oxygen environments with or without aerobic
respiration, indicating a preference for aerobic glycolysis as well
(Tielens, 1994).

Pathogenic Viruses
Viruses can cause a wide variety of diseases such as influenza,
HIV/AIDS and Ebola. They employ various strategies to evade
and suppress the human host immune response. Primarily,
viruses contain high sequence variability, which contributes
to immune escape via interruption and alteration of antigen
presentations from virus-infected cells (Balamurugan et al., 2017;
Karlsson Hedestam et al., 2017). Influenza viruses, for example,
evolve rapidly in a process called “antigenic drift,” gaining
mutations in genes involved in antigen binding (Peacock et al.,
2017; Wu and Wilson, 2017). Other mechanisms include T cell
exhaustion leading to loss of cytotoxic function (Wieland et al.,
2017) and reduced presentation of MHC class I and NKG2D
molecules resulting in inadequate immune activation (Pymm
et al., 2017; Schmiedel and Mandelboim, 2017).

Immune surveillance of viral pathogens is largely
accomplished via intracellular sensors that detect viral RNA and
DNA (Ma and Damania, 2016; Roy et al., 2016; Nerbøvik et al.,
2017). Viruses can suppress the immune response by interfering
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with antiviral signaling pathways, particularly by modifying their
nucleic acids, inhibiting proper expression of PRRs and their
adaptors (Chan and Gack, 2016), and suppressing the production
of antiviral cytokines (Zou et al., 2016). For example, the Seneca
Valley virus can inhibit interferon responses by targeting host
adaptors (Qian et al., 2017), and Dengue and West Nile viruses
can block IFN-α/β receptors (Gack and Diamond, 2016).
Furthermore, the role of gene-silencing microRNAs produced
by human polyomaviruses has been found to downregulate
expression of large T antigen, a target of antiviral immunity,
thus mediating the immune escape and survival of the viruses
(Martelli and Giannecchini, 2017).

Another immune evasion tactic of viruses consists of
entering a dormant state within a host cell, with subsequent
viral reactivation once cell immunity wanes. Cells infected
with viruses that have become dormant upregulate expression
of latency-associated genes, but not lytic viral genes, making
immune detection of the viruses difficult (Phelan et al., 2017).
Notably, HPV can, upon infection, either actively replicate or
assume a state of dormancy (Hoppe-Seyler et al., 2017a,b).
It has also been shown that migrating HIV-infected cells can
reactivate following dormancy with differential response to
drugs (Bohn-Wippert et al., 2017). Mechanisms underlying viral
dormancy indicate epigenetic regulation in response to host-
induced stressors; for example, binding of the innate immune
sensor, IFI16, to the lytic gene promoter in KSHV-infected cells
results in transcriptional repression of latent KSHV (Roy et al.,
2016). Furthermore, post-translational histone modifications
have also been associated with decreased antigen expression
(Bloom et al., 2010; Arbuckle et al., 2017).

To optimize their environment for infection, viruses can
alter many host cellular metabolic pathways; in particular, cells
infected by actively replicating viruses exhibit cancer phenotypes
such as aerobic glycolysis, upregulated glutaminolysis and fatty
acid synthesis (Sanchez and Lagunoff, 2015). Viruses such as
HBV, HIV, and Zika have been shown to dysregulate glycolysis
by increasing GLUT1 expression, glucose influx and lactic acid
production in their host cells (Masson et al., 2017). Moreover,
an acidified microenvironment resulting from increased lactic
acid secretion may contribute to virus-induced pathogenesis, as
enveloped viruses’ fusion to host cell membrane was observed to
be more effective at a low pH (Desai et al., 2017). The fusion rate
of the Ebola virus can also be increased by a brief exposure to an
acidic environment (Markosyan et al., 2016).

Cancer Cells
Although cancer cells originate from the human host, they
can be recognized by the immune system as non-self due to
changes in their cell surface structures, and must evade immune
recognition to survive. They can accomplish this by masking
their cancer-specific surface neoantigens to prevent recognition
by NK and effector T cells, and by suppressing anticancer
immune responses (Mohme et al., 2017). MHC class I molecules
on tumor cell surfaces are often weakly expressed or lacking,
thus precluding cytotoxic T-cell responses (Garrido et al., 1993).
In another strategy, cancer cells incorporate host platelet-derived
vesicles exhibiting MHC I molecules on their plasma membrane

to disguise themselves with regular host antigens (Placke
et al., 2012). Moreover, immune recognition was found to be
reduced via downregulation of NKG2D, a transmembrane NK
cell receptor complex in pancreatic, gastric, colorectal, and
breast cancers (Wang et al., 2016; Bi and Tian, 2017), while
the inhibitory PD-1/PD-L1 signaling pathway was upregulated
(Munn and Bronte, 2016). Suppression of the immune system
can also be achieved through activation of indoleamine 2,3-
dioxygenase (IDO), an inducible enzyme that catalyzes the
rate-limiting step in tryptophan catabolism. Elevated levels
of IDO are produced by a variety of malignancies (Munn
and Mellor, 2016) and result in IDO-induced degradation
of tryptophan to kynurenine. This metabolite promotes
Treg differentiation (Chen et al., 2008), while tryptophan at
diminished levels cannot activate mTORC1, an enzyme required
for T-cell proliferation (Moon et al., 2015).

Cancer cells are also able to avoid immune surveillance by
entering a latent state, termed tumor dormancy (Aguirre-Ghiso,
2007; Crea et al., 2015; Dong et al., 2017). Dormancy-capable
cells, which express growth-inhibitory signals, self-impose a
slow-cycling state and upregulate expression of pluripotency
and self-renewal genes (Sosa et al., 2015; Malladi et al.,
2016). Circulating tumor cells also adopt this dormant pro-
survival phenotype (Mohme et al., 2017). Changes in the
surrounding environment may awaken dormant cells into an
immune-tolerogenic proliferative state.

A major immune evasion mechanism of cancers consists
of reprogramming glucose metabolism to aerobic glycolysis
(the Warburg effect) as distinct from the mitochondrial
oxidative phosphorylation pathway used by normal cells
(Warburg, 1956; Gatenby and Gillies, 2004; Choi et al.,
2013; Agrawal and Rangarajan, 2015; Wong et al., 2015).
The resulting excessive secretion of lactic acid by cancer
cells, mediated by monocarboxylate transporters, MCT1 and
MCT4, leads to abnormally high extracellular lactic acid
levels and acidification of the tumor microenvironment;
elevated MCT1 and MCT4 levels have been associated with
poor cancer prognosis (Polanski et al., 2014; Marchiq and
Pouysségur, 2016; Noble et al., 2017), with MCT4 being a
main exporter of lactate from glycolytic tissues (Ullah et al.,
2006). The highly elevated levels of extracellular lactic acid and
decreased pH in the microenvironment act in combination
to inhibit lactic acid secretion by T lymphocytes of both
innate and adaptive immunity (Fischer et al., 2007; Calcinotto
et al., 2012), thus reducing their glycolytic flux-dependent
immune functions (Fischer et al., 2007; Calcinotto et al.,
2012; Loftus and Finlay, 2016). The resultant intracellularly
acidified immune cells undergo decreased metabolism and
acidosis while the low-pH environment indirectly impairs
cytokine production and secretion, both effects resulting in
local immunosuppression (Fischer et al., 2007; Calcinotto et al.,
2012; Chang et al., 2013; Tan et al., 2015; Paul et al., 2016; Bi
and Tian, 2017). Aerobic glycolysis also has several proliferative
advantages for cancers as the glycolytic intermediates can
be used for biosynthesis of nucleotides and lipids essential
for rapid cell proliferation (Lunt and Vander Heiden, 2011).
The conversion of pyruvate to lactate is coupled to the
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reconversion of cofactor NADH to NAD+, which is essential
for maintaining the glycolytic flux and intracellular redox
status (Lunt and Vander Heiden, 2011). The acidic tumor
microenvironment may also promote cancer growth by
inducing epigenetic changes toward a proliferative stem cell-
like profile in solid tumors (Som et al., 2016). Moreover,
lactate itself can act as a signaling molecule responsible
for immune modulation, mediating M2-polarization of
tumor-associated macrophages, resulting in secretion of
angiogenic factors and inducing tissue-remodeling inflammation
(Shime et al., 2008; Colegio et al., 2014; Roszer, 2015).

DISCUSSION

As highlighted by this study, pathogenic bacteria, endoparasites
and virus-infected host cells employ, like cancer cells, a large
variety of mechanisms to evade immune surveillance. These
mechanisms are diverse and multifaceted and, even within the
four classes, various species may have their own unique methods
of evading immune surveillance. As such, it is beyond the scope of
this perspective article to elaborate on them. Further information
can be obtained from the following literature references for
pathogenic bacteria (Finlay and McFadden, 2006; Flannagan
et al., 2015; Thammavongsa et al., 2015; Fisher et al., 2017;
Karkhah et al., 2019), endoparasites (Cooper and Eleftherianos,
2016; Gomes et al., 2016; Nakada-Tsukui and Nozaki, 2016;
Stijlemans et al., 2016; Wahlgren et al., 2017; Martínez-López
et al., 2018), viruses (Finlay andMcFadden, 2006; Chan andGack,
2016; Agrawal et al., 2017; Felix and Savvides, 2017; Hsu, 2018;
Soto et al., 2018), and cancer cells (Bhatia and Kumar, 2014;
Vinay et al., 2015; Goodman et al., 2017; Bates et al., 2018).

Of special interest to us are the immune evasion mechanisms
that the various pathogens share with cancer cells, as they likely
represent fundamental, evolutionarily-conserved mechanisms
that may be particularly critical to their welfare. Thus, such
mechanisms could be useful as targets for novel therapies
of both cancer and infectious diseases. In searching for such
shared tactics two were found to be of paramount importance:
(i) Metabolic reprogramming to aerobic glycolysis leading
to excessive lactic acid secretion and consequent local host
immunity suppression, a well-defined mechanism used by
most human cancers (Gatenby and Gillies, 2004; Choi et al.,
2013; Agrawal and Rangarajan, 2015) (Figure 1A). This tactic
can also be used by pathogenic bacteria (Konings et al., 1997;
Thangaraju et al., 2009; Iraporda et al., 2015; Vitko et al.,
2015; Asarat et al., 2016; Corrêa-Oliveira et al., 2016; Czyz
et al., 2017), endoparasites (Tielens, 1994; Salcedo-Sora et al.,
2014), and virus-infected cells (Sanchez and Lagunoff, 2015;
Markosyan et al., 2016; Desai et al., 2017; Masson et al.,
2017). (ii) Entry into dormancy of pathogens or pathogen-
infected host cells (Figure 1B), a less defined mechanism to
avoid recognition by the immune system (Aguirre-Ghiso,
2007; Crea et al., 2015; Dong et al., 2017). It can be used
by pathogenic bacteria (Betts et al., 2002; Rittershaus et al.,
2013; Wood et al., 2013; Pu et al., 2017), endoparasites
(Witkowski et al., 2010; McLean and Jacobs-Lorena, 2017), and

virus-infected cells (Bohn-Wippert et al., 2017; Hoppe-Seyler
et al., 2017a,b; Phelan et al., 2017).

Excessive secretion of lactic acid by cancer cells due to
metabolic reprogramming to aerobic glycolysis provides a new
potential target for cancer therapy. This has been demonstrated
by our recent discovery that treatment of advanced prostate
cancer cells with antisense oligonucleotides (ASOs) targeting
MCT4-mediated lactic acid secretion led to a marked reduction
in MCT4 expression and lactic acid secretion, increased
intracellular lactic acid levels, and marked reductions in aerobic
glycolysis, cell proliferation, cell migration, and tissue invasion
(Choi et al., 2016, 2018). Treatment of PC-3 tumor-bearing
nude mice with the anti-MCT4 ASOs markedly inhibited
tumor growth without inducing major host toxicity (Choi et al.,
2016; Choi, 2017). In addition, a limited study of the effect of
MCT4-targeting on restoration of host immunity was carried
out using clinically relevant, first-generation subrenal capsule
xenograft models of patient-derived advanced prostate cancer.
Such first-generation models lack systemic functional host
immunity, but exhibit viable patient tumor-associated immune
cells (Dong et al., 2017). Importantly, treatment of these models
with anti-MCT4ASOs led to an increase in the number of human
CD45+ lymphocytes and CD8+ cytotoxic T cells, indicative of
restoration of the host anticancer immunity (Choi, 2017). These
findings raise the possibility that pathogens, which use metabolic
reprogramming to aerobic glycolysis as a main immune evasion
tactic, can also benefit from therapy based on inhibition of
lactic acid secretion, particularly as the mechanism underlying
transporter-mediated lactic acid secretion is relatively simple.

Although we here have outlined our perspective regarding
potential therapeutic intervention resulting from inhibiting lactic
acid secretion, we realize that possible approaches to reversing
immune evasion are as vast and varied as the mechanisms
themselves (Beatty and Gladney, 2015; Spranger and Gajewski,
2018). Alternative methods of reactivating the anti-cancer
immune response are being actively investigated, the most
successful of which involve neutralizing antibodies targeting
immune checkpoint inhibitors such as PD-1 and CTLA-4
(Alsaab et al., 2017; Sharpe and Pauken, 2018; Tang et al., 2018).
Furthermore, multiple components within a particular key
pathway can also be considered therapeutic targets. Beyond
MCT4, additional transporters as well as enzymes associated
with aerobic glycolysis are also considered candidates for
therapeutic inhibition of cancer (Tennant et al., 2010; Cairns
et al., 2011; Zhao et al., 2013). Taken together, strategies of
reactivating anti-cancer immunity have recently been shown to
be successful across a number of cancer types (Goodman et al.,
2017; Cascone et al., 2018; Seidel et al., 2018), offering evidence
both scientifically and clinically that immunomodulation can
translate into effective therapies. Similar considerations may
apply to pathogen-induced diseases.

Finally, an additional aspect worth exploring as a potential
therapeutic approach would be the use of combination therapies
targeting multiple biological phenomena as surveyed here. In
particular, targeting the dormant cell/organism population in
conjunction with the actively proliferating population could
offer enhanced efficacy. Given the importance of aerobic
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FIGURE 1 | Metabolic reprogramming to aerobic glycolysis and entry into dormancy: two common immune evasion mechanisms employed by proliferating bacteria,

endoparasites, viruses, and cancer cells. The host immune evasion/suppression processes are regulated via gene mutation and epigenetic reprogramming.

(A) Processes involved in aerobic glycolysis are represented. Cell cycle genes are greatly upregulated. The reprogrammed metabolism leads to increases in (i) glucose

uptake via glucose transporters (green) and (ii) lactic acid and short chain fatty acid secretion via monocarboxylate transporters (red), generating an acidic

microenvironment. The lowered pH and increased lactate levels are immunosuppressive, e.g., inhibiting cytotoxic T cell activation. (B) Processes underlying entry into

and maintenance of dormancy are illustrated. Pluripotency genes (blue) are expressed, while the expression of cell-cycle progression genes (pink) is arrested. Viral

genes (green) of virus-infected cells are not expressed. Limited-nutrient metabolism states are induced (e.g., autophagy, glyoxylate cycle). T cells, recognizing

self-antigens, are not activated.

glycolysis to rapid cellular proliferation and the significance
of cells entering dormancy to avoid immune detection, a
combined effort to inhibit both lactic acid secretion (e.g.,
by MCT4 inhibition as mentioned above) and the unique

metabolic properties of dormant cells could eliminate a
greater proportion of cancers and pathogenic microorganisms.
While mechanisms underlying cellular entry into dormancy
remain to be more fully elucidated, preliminary investigations
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in our laboratory have uncovered changes in amino acid
metabolism as a potentially unique metabolic profile in
dormant cancer cells post-therapy (Nabavi et al., 2017). As
such, targeting the metabolic rewiring that occurs within the
dormant state could help eliminate even difficult-to-target
residual cells.

CONCLUSION

This study indicates that pathogenic bacteria, endoparasites,
virus-infected host cells, and human cancer cells can
share immune evasion mechanisms, i.e., (i) metabolic
reprogramming to aerobic glycolysis leading to excessive
lactic acid secretion and host immunity suppression and (ii)
entry into dormancy. Targeting fundamental, evolutionarily-
conserved mechanisms of immune evasion could be

particularly effective for treatments of both cancer and multiple
infectious diseases.
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