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Abstract: The objective of this study was to characterize network-level changes in nonfluent/agrammatic
Primary Progressive Aphasia (agPPA) and Primary Progressive Apraxia of Speech (PPAOS) with
graph theory (GT) measures derived from scalp electroencephalography (EEG) recordings. EEGs
of 15 agPPA and 7 PPAOS patients were collected during relaxed wakefulness with eyes closed
(21 electrodes, 10–20 positions, 256 Hz sampling rate, 1–200 Hz bandpass filter). Eight artifact-free,
non-overlapping 1024-point epochs were selected. Via Brainwave software, GT weighted connectivity
and minimum spanning tree (MST) measures were calculated for theta and upper and lower alpha
frequency bands. Differences in GT and MST measures between agPPA and PPAOS were assessed
with Wilcoxon rank-sum tests. Of greatest interest, Spearman correlations were computed between
behavioral and network measures in all frequency bands across all patients. There were no statistically
significant differences in GT or MST measures between agPPA and PPAOS. There were significant
correlations between several network and behavioral variables. The correlations demonstrate a
relationship between reduced global efficiency and clinical symptom severity (e.g., parkinsonism,
AOS). This preliminary, exploratory study demonstrates potential for EEG GT measures to quantify
network changes associated with degenerative speech–language disorders.

Keywords: electroencephalography (EEG); network analysis; graph theory; primary progressive
aphasia; progressive apraxia of speech

1. Introduction
1.1. EEG Graph Theory Measures

The use of electroencephalography (EEG) has expanded from identifying and charac-
terizing seizure disorders to differentiating many different cerebral functions. Past research
has demonstrated that clinical EEG is sensitive to dementia associated with Alzheimer’s
(AD) [1] and Parkinson’s diseases (PD) [2], and nonfluent/agrammatic Primary Progressive
Aphasia (agPPA) [3], but not Primary Progressive Apraxia of Speech (PPAOS; patients
who present with isolated apraxia of speech (AOS)) [4]. However, clinical EEG studies
describe overall brain health and do not quantify interactions among multiple brain areas,
or network activity.

Graph theory is a branch of mathematics that is central to much of the modern
“network neuroscience.” It is premised on representing a system or network as a collection
of nodes, with the interaction among them represented by edges. Node, edge, subgraph,
and global metrics can then be calculated and compared between groups or to a behavioral
measure. For example, degree centrality is a node-level metric calculated as the number of
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edges, or the total weight of edges, to a given node. Nodes can be grouped in modules,
representing nodes that tend to connect to each other more than other nodes and potentially
reflect specialized processing. Some high-degree nodes connect many modules and are
referred to as hubs. At a global scale, most real-world networks balance integration, or a
high level of connectivity between nodes, and segregation, reflecting distinct modules in a
network. The extent to which this balance is optimized is captured in the small world-ness
of the network. In EEG studies, the nodes are represented by the electrodes and the edges
by a measure of coherence within a selected frequency band [5].

1.2. EEG Graph Theory in Neurodegenerative Disease

Studies have shown changes in EEG graph theory measures in dementia associated
with PD [6], AD [7–10], and frontotemporal dementia (FTD) [11]. More specifically, EEGs
of cognitively unimpaired patients with PD showed increased local integration across
frequency bands when compared to cognitively unimpaired controls; those with dementia
associated with PD had decreased integration in the lower alpha band relative to the
cognitively unimpaired PD patients [6], suggesting the latter change was related to cognitive
changes, not simply the presence of the disease. Analysis of brain networks of patients
with AD-related dementia have shown decreased connectivity (or increased randomness),
with loss of hubs compared to cognitively unimpaired controls [9,10].

Different types of network change have been shown in FTD. There were no differ-
ences in clustering coefficient or path length measures; however, the lower alpha band
degree correlation increased in FTD relative to cognitively unimpaired controls, suggesting
reduced segregation [11]. Overall, while AD patients showed less order, FTD patients
showed a more ordered structure, possibly reflecting the differing underlying pathophysi-
ology. However, in that study, the behavioral variant and semantic dementia were the only
clinical phenotypes represented. Overall, it seems that patterns of network breakdown
may be evident in neurodegenerative cognitive disorders and may be specific to the clinical
syndromes and/ or causative pathology. To date, EEG graph theory measures have not
been described in PPAOS and only one study has addressed this in agPPA [12], two other
clinical syndromes associated with FTD pathology.

1.3. Primary Progressive Aphasia and Apraxia of Speech

Briefly, PPA encompasses a group of neurodegenerative syndromes characterized by
progressive and predominant language impairment [13]. The agPPA subtype is charac-
terized by grammatical errors in speech and writing and, not infrequently, accompanied
by AOS, a motor speech disorder characterized by disruption in sensorimotor planning
and/or programming [14]. When AOS, and not aphasia, is the initial manifestation of
neurodegenerative disorders it is referred to as PPAOS [15,16]. In the context of PPAOS,
some patients eventually develop aphasia that remains milder in severity than the AOS [17].
Research has suggested the initial or combination of speech (i.e., AOS) and language (i.e.,
aphasia) features may have implications for imaging findings, underlying pathology and
the anticipated progression of the neurodegenerative disorder [18–21]. Given that more
cortical imaging findings have been associated with the presence of aphasia, we opted to
group those with aphasia, with or without AOS and regardless of predominance, into a
single group referred to as agPPA. Many patients with PPAOS have normal MRIs, with
FDG-PET considered the most sensitive imaging biomarker [22]. Unfortunately, FDG PET
scans are not ubiquitously available and are sometimes cost-prohibited.

1.4. Present Study

The primary goal of this study was to provide foundational information on which to
build our understanding of the network breakdowns in patients with progressive AOS
and/or aphasia. Ultimately, this might inform our theoretical understanding of the neu-
ropathophysiology underlying these clinical presentations, and clinically, inform a more
widely available and cost-effective method to support differential diagnosis. Toward that
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end, we describe graph theory network measures and correlate them with indices of speech
and language deficits to better understand their relationship.

2. Materials and Methods
2.1. Participants

The study was approved by Mayo Clinic’s Institutional Review Board (#17-002468 on
19 July 2017); all patients were native English speakers and gave written consent according
to the Declaration of Helsinki. Between October 2016 and December 2019, a total of
22 patients with agPPA (n = 15) or PPAOS (n = 7) completed a clinical EEG recording as
part of a larger study conducted by the Neurodegenerative Research Group (NRG).

2.2. Clinical Measures

A comprehensive speech–language evaluation was conducted by an experienced
speech–language pathologist (SLP). Clinical judgments regarding the presence, nature
(i.e., type), and severity of AOS and aphasia were made by the examining clinician and
subsequently confirmed by consensus agreement with at least one other non-examining
SLP. The SLPs were experienced in differential diagnosis of neurodegenerative speech and
language disorders.

Severity ratings reflected gestalt clinical judgment on a 5-point scale (0 = absent,
1 = mild, 2 = moderate, 3 = marked, 4 = severe). Other formal measures were administered
and used to inform the overall judgments. The Western Aphasia Battery-Revised (WAB-R)
Aphasia Quotient (WAB-AQ) [23], as a composite measure of global language ability, and
the Northwestern Anagram Test (NAT) [24], a non-speech sentence-production task, were
administered. A conversational speech sample, including narrative picture description,
was collected as a part of the WAB-R. Additionally, supplementary speech and speech-like
tasks (alternating and sequential motion rates) were elicited. The speech samples were used
to reach consensus about the predominance of phonetic or prosodic speech characteristics
by the same SLPs, as previously described [25]. The speech samples were also used to
score the Apraxia of Speech Rating Scale—version 3 (ASRS-3) [25,26], an index of abnormal
speech features and severity of AOS.

As part of the neurological evaluation, the Montreal Cognitive Assessment (MoCA) [27],
a screening test of general cognition, was completed. The Movement Disorder Society-
Sponsored Revision of the Unified Parkinson’s Disease Rating Scale, Motor section (MDS-
UPDRS III) [28], an index of motor functioning, was scored.

2.3. Electroencephalographic (EEG) Recording

Scalp EEG recordings were collected with XLTEK utilizing 21 electrodes placed with
standard 10–20 positions, recording reference electrode of CPZ, a sampling rate of 256 Hz,
1 Hz low-frequency filter, and 70 Hz high-frequency filter, during relaxed wakefulness,
wherein patients sat quietly with their eyes closed for 90% of the 45 to 55 min recording.
A Natus EMU40EX Wireless LTM Amplifier (Natus Medical Incorporated, CA, USA) was
utilized. A time base of 30 mm/sec with patient-individualized sensitivity was utilized
for ongoing monitoring of artifacts. Clinical protocols for “awake” EEG were followed;
no request was made for sleep deprivation. Recording intervals that included mental
activation were not included for analysis.

2.4. EEG Processing

The continuous EEG data were divided into non-overlapping 1024-point (1023 ms)
epochs, dictated by the sampling rate (256 Hz). Each epoch was visually inspected for
artifacts, though rejection of artifacts was uncommon due to the vigilant monitoring of the
online acquisition. For detecting blinking and other eye-movement artifacts, comparison
was made to the vertical and horizontal eye movement channels. Epochs with muscle
artifacts were rejected if such artifact signals were present grossly. No specific criteria were
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applied, but rather gestalt judgment. Consistent with prior research [6], 8 artifact-free
epochs were chosen for analysis.

2.5. Graph Theory Analysis

Graph theory network analysis was performed with Brainwave software (http://
home.kpn.nl/stam7883/brainwave.html, accessed on 27 January 2022). Briefly, functional
connectivity was assessed with phase lag index (PLI), as research has shown it is less
affected by volume conduction than other measures [29]. Complementary traditional graph
theory weighted connectivity and minimum spanning tree (MST) measures [30,31] were
selected. Selected measures are shown in Table 1. All graph theory and MST measures were
calculated for the following frequency bands (Hz): theta (4–8), alpha1 (8–10), and alpha2
(10–13), selected given prior demonstration of slowing and alterations in these ranges [4].

Table 1. Definition of utilized network measures (adapted from Van Steen [5]).

Measure Definition

PLI, Phase lag index Measure of functional connectivity
between nodes

Gamma, Normalized weighted
clustering coefficient

Measure of connectivity between nodes or the
extent to which neighboring nodes are also
neighbors with one another, calculated per

node and averaged over the entire network.

Lambda, Normalized characteristic path length
Measure of the average number of connections

in the shortest path between two nodes of
the network

KappaW, Weighted degree divergence

Measure of the broadness of the weighted
degree distribution, where weighted degree is
the summed weights of all edges connected to

a node

Modularity
Measure of the degree to which nodes are more
connected to each other than to nodes outside a

given cluster (i.e., module)
MST BCmax, Maximum MST

betweenness centrality
Maximum number of paths between any two

MST nodes running through a single node

MST Diameter Maximum number of connections (distance)
between two MST nodes

MST Eccentricity Average maximum distance between any two
MST nodes

MST Leaf, MST leaf fraction
Measure of the number of MST nodes with

only one link relative to the maximum possible
number of leaves

Utilizing Brainwave, the weighted network map of connections and minimum span-
ning tree were visualized for a given frequency band; this was performed for the whole
cohort and separately for each subgroup (PPAOS and agPPA) based on an average of all
individual epochs. In the weighed network map, the lines represent connections with PLI
synchronization above the noted connectivity threshold.

2.6. Statistical Analysis

Differences in clinical characteristics between subgroups were assessed with Wilcoxon
rank-sum tests. Differences between agPPA and PPAOS patients’ graph theory and MST
measures were assessed separately with Wilcoxon rank-sum tests, each collapsed across
frequency bands. Spearman correlations were computed between behavioral and network
measures in all frequency bands across all patients. Statistical analyses were performed
utilizing the JMP computer software (JMP Software, version Pro 14; SAS Institute Inc.,
Cary, NC, USA) with significance set at p < 0.05. Multiple comparison corrections were
not imposed due to the small sample size. Given the exploratory nature of the study, we

http://home.kpn.nl/stam7883/brainwave.html
http://home.kpn.nl/stam7883/brainwave.html
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prioritized avoiding type II error inflation which unfortunately results from all common
multiple comparison corrections (see Figure 5 in the following reference) [32].

3. Results

Demographic information and clinical data for the cohort and each subgroup are
detailed in Table 2. Overall, agPPA patients were slightly younger, with slightly longer
disease durations, compared to PPAOS patients. Sex representation was equivalent (ap-
proximately 60% female in each group). Consistent with the diagnoses, indices of language
functioning (e.g., NAT and WAB-AQ) were lower in agPPA compared to PPAOS. Scores
on the index of general cognition (the MoCA) were lower and ratings of parkinsonism (on
the MDS-UPDRS III) were slightly higher in agPPA compared to PPAOS. There was no
difference in AOS severity or ASRS-3, a quantitative index of AOS, between subgroups. For
all patients, objective testing aligned with the SLP’s gestalt clinical judgment (i.e., normal
language testing for those diagnosed PPAOS).

Table 2. Median clinical and demographic information for this cohort and subgroups.

agPPA (n = 15) PPAOS (n = 7) All (n = 22)

Age at EEG * 69 74 73
Disease Duration at EEG * 4.1 2 3.95

Sex 9 F (60%) 4 F (57%) 13 F (59%)
MoCA* (/30) 21 27 25

MDS-UPDRS III (/81) * 15 12 15
ASRS-3 (/52) 21 16 21
NAT (/10) * 5 9 7

WAB-AQ (/100) * 88.775 97.9 96.4
Aphasia Severity (/4) * 1.5 0 1

AOS Severity (/4) 2 2 2
Note: Age and disease duration (years); MoCA = Montreal Cognitive Assessment; MDS-UPDRS III = Move-
ment Disorder Society-sponsored version of the Unified Parkinson’s Disease Rating Scale, Motor section;
ASRS-3 = Apraxia of Speech Rating Scale-3; NAT = Northwestern Anagram Test; WAB-AQ = Western Aphasia
Battery Revised Aphasia Quotient. Maximum score noted in row header, when applicable. Asterisk in row header
indicates significant non-parametric test of differences between agPPA and PPAOS groups (p < 0.05).

Median network measures are reported in Table 3. Omnibus tests of differences did
not support significant differences in either graph theory or MST measures between agPPA
and PPAOS. The data are visualized in power maps and minimum spanning trees; results
for the whole cohort are presented in Figures 1 and 2, respectively. Data were additionally
visualized relative to the subgroups of agPPA and PPAOS, shown in Figures 3 and 4. The
power maps show differences in the distribution of connectivity for agPPA compared to
PPAOS. The MSTs for the agPPA in the alpha frequency bands show a relatively more
“star-like” quality, with a more central node connecting to the majority of other nodes. The
star-like quality typically relates to a more integrated network, with a smaller diameter and
shorter path length; this MST configuration typically reflects efficient information transfer,
although not always. One possible downfall is information overload at the central node
with subsequent inefficiency.

To better understand the relationship between graph theory measures and clinical
presentations, non-parametric correlations between network and behavioral variables were
calculated across all patients; these are reported in Table 4. Statistically significant relation-
ships were identified between: age and alpha2 gamma (ρ = −0.60), kappaw (ρ = −0.42), and
MST leaf (ρ = −0.48); disease duration and theta modularity (ρ = −0.58); disease duration
and alpha1 lambda (ρ = 0.78); MDS-UPDRS III and alpha1 PLI (ρ = −0.55) and kappaw
(ρ = −0.56); MDS-UPDRS III and alpha2 MST leaf (ρ = −0.47); ASRS-3 and alpha1 gamma
(ρ = 0.54) and lambda (ρ = 0.82); ASRS-3 and alpha2 lambda (ρ = 0.059). No significant
relationships identified between graph theory or MST measures and the MoCA or WAB-AQ.
Correlation scatter plots, with individual data points indicating group membership, are
provided in Supplementary Materials.
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Table 3. Median (interquartile range) for group-level network measures.

Measure agPPA (n = 15) PPAOS (n = 7) All (n = 22)

Theta
PLI 0.189 (0.180, 0.211) 0.187 (0.175, 0.209) 0.188 (0.178, 0.210)

Gamma 1.020 (1.007, 1.038) 1.030 (1.008, 1.040) 1.025 (1.007, 1.039)
Lambda 0.934 (0.932, 0.945) 0.934 (0.922, 0.947) 0.934 (0.930, 0.946)
KappaW 4.001 (3.787, 4.439) 3.978 (3.694, 4.440) 3.998 (3.723, 4.439)

Modularity 0.077 (0.068, 0.083) 0.081 (0.070, 0.082) 0.078 (0.070, 0.082)
MST BCmax 0.723 (0.692, 0.742) 0.711 (0.680, 0.722) 0.711 (0.691, 0.734)

MST Diameter 0.425 (0.413, 0.444) 0.406 (0.394, 0.438) 0.422 (0.405, 0.439)
MST Eccentricity 0.340 (0.324, 0.352) 0.330 (0.313, 0.347) 0.339 (0.323, 0.348)

MST Leaf 0.550 (0.519, 0.569) 0.544 (0.531, 0.575) 0.547 (0.530, 0.570)
Alpha1

PLI 0.242 (0.242, 0.272) 0.257 (0.234, 0.274) 0.248 (0.234, 0.273)
Gamma 1.029 (1.022, 1.043) 1.033 (1.022, 1.039) 1.030 (1.022, 1.040)
Lambda 0.938 (0.937, 0.946) 0.935 (0.932, 0.941) 0.938 (0.935, 0.946)
KappaW 5.143 (4.992, 5.753) 5.434 (4.940, 5.833) 5.296 (4.980, 5.773)

Modularity 0.079 (0.073, 0.084) 0.081 (0.070, 0.084) 0.080 (0.072, 0.084)
MST BCmax 0.721 (0.707, 0.734) 0.733 (0.696, 0.757) 0.723 (0.705, 0.739)

MST Diameter 0.431 (0.388, 0.444) 0.394 (0.388, 0.431) 0.419 (0.388, 0.444)
MST Eccentricity 0.339 (0.306, 0.350) 0.314 (0.310, 0.348) 0.335 (0.309, 0.349)

MST Leaf 0.550 (0.531, 0.588) 0.581 (0.531, 0.600) 0.553 (0.531, 0.595)
Alpha2

PLI 0.215 (0.193, 0.241) 0.207 (0.198, 0.219) 0.210 (0.196, 0.230)
Gamma 1.041 (1.012, 1.057) 1.029 (1.005, 1.044) 1.033 (1.012, 1.046)
Lambda 0.943 (0.932, 0.950) 0.933 (0.925, 0.938) 0.936 (0.928, 0.946)
KappaW 4.553 (4.054, 5.157) 4.327 (4.242, 4.620) 4.440 (4.156, 4.920)

Modularity 0.075 (0.071, 0.086) 0.080 (0.071, 0.080) 0.077 (0.071, 0.084)
MST BCmax 0.714 (0.700, 0.749) 0.734 (0.684, 0.742) 0.719 (0.700, 0.742)

MST Diameter 0.419 (0.388, 0.438) 0.406 (0.400, 0.419) 0.413 (0.398, 0.433)
MST Eccentricity 0.336 (0.309, 0.347) 0.320 (0.314, 0.332) 0.325 (0.314, 0.341)

MST Leaf 0.556 (0.538, 0.594) 0.563 (0.519, 0.581) 0.559 (0.536, 0.583)

Table 4. Non-parametric Spearman correlations between graph theory network and behavioral
variables of interest.

Age Disease
Duration MoCA MDS-UPDRS

III ASRS-3 WAB-AQ

Theta
PLI −0.1404 0.2893 −0.1254 0.0023 0.0788 −0.0589

Gamma 0.0583 0.1509 0.1904 −0.0736 0.0037 0.1218
Lambda −0.1130 0.1524 −0.0325 −0.1586 −0.0283 −0.0558
KappaW −0.1512 0.2995 −0.1005 −0.0068 0.0640 −0.0392

Modularity −0.0261 −0.5790 * 0.1266 −0.0739 −0.0382 0.1539
MST BCmax −0.0798 0.0590 −0.2501 0.1687 −0.1280 −0.3221

MST Diameter 0.2293 0.2937 −0.0906 0.0923 0.3820 0.0083
MST Eccentricity 0. 3000 0.2640 −0.0495 0.0977 0.3879 −0.0021

MST Leaf −0.3106 −0.0500 0.1542 −0.1328 −0.0315 0.0990
Alpha1

PLI −0.3447 −0.0483 0.1778 −0.5537 * −0.2069 0.1552
Gamma 0.0476 0.1421 0.1538 −0.1954 0.5357 * 0.2598
Lambda 0.0340 0.7833 * −0.2614 0.4002 0.8246 * −0.0485
KappaW −0.3505 −0.0596 0.1466 −0.5593 * −0.1625 0.1869

Modularity 0.0986 0.0301 0.2071 0.2310 0.0197 0.1260
MST BCmax −0.0541 −0.2585 0.1364 −0.2593 −0.1016 0.0015

MST Diameter 0.0390 0.0542 −0.2057 0.2736 0.2427 0.0156
MST Eccentricity −0.0456 0.1078 −0.1194 0.2591 0.1932 0.1147

MST Leaf −0.0011 0.1291 0.1326 −0.3163 −0.0167 −0.0109
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Table 4. Cont.

Age Disease
Duration MoCA MDS-UPDRS

III ASRS-3 WAB-AQ

Alpha2
PLI −0.3771 0.0556 −0.1609 −0.0668 0.1822 0.0743

Gamma −0.5991 * 0.0562 0.0650 −0.4110 0.1994 0.3263
Lambda 0.0102 0.3142 −0.2803 0.0221 0.5871 * −0.1249
KappaW −0.4241 * 0.0153 −0.0688 −0.1545 0.1883 0.1735

Modularity 0.2749 −0.1153 0.1483 0.1116 −0.4380 −0.1314
MST BCmax −0.2936 0.3081 −0.0643 −0.0856 0.4436 0.3390

MST Diameter 0.3636 −0.0558 −0.0065 0.1252 −0.1891 −0.3696
MST Eccentricity 0.3539 −0.1016 −0.0295 0.1432 −0.2905 −0.4027

MST Leaf −0.4824 * 0.0546 0.0546 −0.4686 * 0.0722 0.2962

Note: Age and disease duration (years); MoCA = Montreal Cognitive Assessment; MDS-UPDRS III = Move-
ment Disorder Society-sponsored version of the Unified Parkinson’s Disease Rating Scale, Motor section;
ASRS-3 = Apraxia of Speech Rating Scale-3; WAB-AQ = Western Aphasia Battery Revised Aphasia Quotient.
Significant correlations (p < 0.05) are indicated by bold font and *; correction for multiple comparisons was
not applied.

Brain Sci. 2022, 12, x FOR PEER REVIEW 8 of 16 
 

KappaW −0.4241 * 0.0153 −0.0688 −0.1545 0.1883 0.1735 

Modularity 0.2749 −0.1153 0.1483 0.1116 −0.4380 −0.1314 

MST BCmax −0.2936 0.3081 −0.0643 −0.0856 0.4436 0.3390 

MST Diameter 0.3636 −0.0558 −0.0065 0.1252 −0.1891 −0.3696 

MST Eccentricity 0.3539 −0.1016 −0.0295 0.1432 −0.2905 −0.4027 

MST Leaf −0.4824 * 0.0546 0.0546 −0.4686 * 0.0722 0.2962 

Note: Age and disease duration (years); MoCA = Montreal Cognitive Assessment; MDS-UPDRS III 

= Movement Disorder Society-sponsored version of the Unified Parkinson’s Disease Rating Scale, 

Motor section; ASRS-3 = Apraxia of Speech Rating Scale-3; WAB-AQ = Western Aphasia Battery 

Revised Aphasia Quotient. Significant correlations (p < 0.05) are indicated by bold font and *; cor-

rection for multiple comparisons was not applied. 

 

Theta 

 

Alpha1 

 

Alpha2 

 
 

Figure 1. Average network maps for all patients for the theta, alpha1, and alpha2 frequency bands.
The maps demonstrate the presence of correlations between pairs of channels, with threshold of 0.1
(PLI value) or correlations above that threshold.



Brain Sci. 2022, 12, 378 8 of 14

Brain Sci. 2022, 12, x FOR PEER REVIEW 9 of 16 
 

Figure 1. Average network maps for all patients for the theta, alpha1, and alpha2 frequency bands. 

The maps demonstrate the presence of correlations between pairs of channels, with threshold of 0.1 

(PLI value) or correlations above that threshold. 

 

Figure 2. Minimum Spanning Trees for the cohort of all patients for the theta, alpha1, and alpha2 

frequency bands. This visualization connects all nodes, maximizing synchronization. The numbers 

reflect electrode numbers; consistent with assessing mean connectivity, the relationships between 

specific electrodes were not explored in this study. 

Theta Alpha1 Alpha2 

   
 

Figure 2. Minimum Spanning Trees for the cohort of all patients for the theta, alpha1, and alpha2
frequency bands. This visualization connects all nodes, maximizing synchronization. The numbers
reflect electrode numbers; consistent with assessing mean connectivity, the relationships between
specific electrodes were not explored in this study.

Brain Sci. 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 

Figure 3. Average network maps separating the agPPA patients and PPAOS, for the theta, alpha1, 

and alpha2 frequency bands. The maps demonstrate the presence of correlations between pairs of 

channels, with threshold of 0.1 (PLI value) or correlations above that threshold. 

Figure 3. Average network maps separating the agPPA patients and PPAOS, for the theta, alpha1,
and alpha2 frequency bands. The maps demonstrate the presence of correlations between pairs of
channels, with threshold of 0.1 (PLI value) or correlations above that threshold.



Brain Sci. 2022, 12, 378 9 of 14
Brain Sci. 2022, 12, x FOR PEER REVIEW 11 of 16 
 

 

Figure 4. Minimum Spanning Trees (MSTs) separating the agPPA patients and PPAOS, for the theta, 

alpha1, and alpha2 frequency bands. This visualization connects all nodes, maximizing synchroni-

zation. The numbers reflect electrode numbers; consistent with assessing mean connectivity, the 

relationships between specific electrodes were not explored in this study. 

  

 PPAOS agPPA 

Theta 

  

Alpha1 

  

Alpha2 
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theta, alpha1, and alpha2 frequency bands. This visualization connects all nodes, maximizing
synchronization. The numbers reflect electrode numbers; consistent with assessing mean connectivity,
the relationships between specific electrodes were not explored in this study.
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4. Discussion
4.1. General Discussion

The results provide EEG evidence of network alteration in patients with agPPA and
PPAOS. While it is difficult to fully describe or dismiss significant differences between
groups due to the sample sizes, this exploratory study demonstrates potential for EEG
graph theory measures to quantify network changes associated with degenerative speech
and language disorders. The novelty of this study is the patient population and the
correlation between EEG graph theory measures and certain clinical measures.

The results broadly suggest that increased global integration, or reduced network
specificity, occurs in degenerative speech and language disorders. These network changes
exist even in the absence of strong evidence for structural changes on magnetic resonance
imaging [4] and it is therefore considered unlikely these are artifacts of atrophy. The
visualization of the data supports the presence of network alterations, with correlation
analyses offering insight into their clinical manifestations. This study explored global
connectivity, rather than that of smaller cortical regions, which should be the focus of future
studies. Further, it is not yet clear if the network changes represent direct disease effects or
a compensatory response. For example, additional regional graph theory measures and
correlational analyses might clarify whether connectivity in the region of suspected disease
(e.g., precentral gyrus or supplementary motor area) is reduced and/ or whether there
are downstream effects of hyperconnectivity in other areas working to compensate for
that loss; alternatively, if hyperconnectivity is seen in the region of disease, it might reflect
system stress. A more complete understanding of network disruption in neurodegenerative
speech and language disorders, perhaps in the context of the cascading network failure
model [33], might better elucidate the relationship between the underlying pathophysiology
and clinical presentation. Toward that end, future studies will explore the graph theory
measures and relationships with clinical measures longitudinally.

4.2. Tests of Differences and Correlations

In this study, the agPPA patients were, on average, slightly younger with slightly
longer disease durations compared to PPAOS patients. These differences warrant caution
when comparing the graph theory measures between the two groups. Scores on the index of
general cognition (the MoCA) were lower and ratings of parkinsonism (on the MDS-UPDRS
III) were also slightly higher in agPPA compared to PPAOS. However, it is important that
there was no difference in AOS severity or ASRS-3, a quantitative index of AOS, between
the subgroups.

Tests of differences did not support significant differences in either graph theory or
MST measures between agPPA and PPAOS patients. Interestingly, differences in clinical
EEGs were seen between the groups (i.e., relative to the presence of aphasia) [4] in a
smaller subset of those patients included in this study, which is more consistent with the
visualization of the data. In that study, patients with PPAOS (n = 5) had normal EEGS
while two of three those with aphasia had theta slowing. The power maps and minimum
spanning trees for the whole cohort (Figures 1 and 2, respectively) do not equally reflect
the visualization of the agPPA and PPAOS subgroups (Figures 3 and 4). The MSTs for the
agPPA in the alpha1 and alpha2 frequency bands show a more “star-like” quality, although
given the unequal sample sizes, this should be interpreted cautiously. Future studies should
systematically explore other possible sources of differences, including the subtype of AOS
(i.e., phonetic or prosodic predominant speech disturbance [27]).

The correlation analysis offers insight into the relationship between graph theory
measures and clinical presentations (see Table 4) and provides complementary support for
reduced global efficiency and increased integration in patients with agPPA and PPAOS.
There were negative relationships between the MDS-UPDRS III, a measure of motor impair-
ment, and synchronicity, kappa, and MST leaf in the alpha band, likely reflecting severity
(reduced synchronicity with increased motor dysfunction). The strongest correlation was
noted between the ASRS-3, a measure of AOS severity, and lambda in the alpha1 frequency
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band, suggesting a relationship between reduced distance between nodes (measured by
lambda) and more prominent AOS (indexed by the ASRS). This relationship supports the
notion that network measures may better reflect more abstract process breakdowns (such
as that of sensorimotor planning/programming in AOS) that have a less clear structural
correlate, particularly compared to clinical EEG reads which were reportedly normal in
these patients [4]. Interestingly, there were no significant relationships identified between
graph theory or MST measures and the MoCA or WAB-AQ. This work lays the foundation
to better understand whether these relationships (and lack thereof) represent the loss of
ordered correlations (or anti-correlations) resulting from the disease. Frequency band
differences require further exploration.

4.3. Relationship with Functional Connectivity Literature

While this is the first study of EEG graph theory measures in PPAOS, the broader
literature on neurodegenerative disease provides helpful context for these findings. A
recent study showed promising utility of EEG graph theory measures, in conjunction
with machine learning, in distinguishing patients with PPA from controls [12]; however,
the focus of the study was the machine-learning algorithms rather than the graph theory
measures themselves. EEGs from patients with dementia associated with Lewy bodies
had reduced connectivity strength in the alpha frequency band relative to cognitively
unimpaired controls and patients with dementia from Alzheimer’s disease, with additional
evidence of reduced network efficiency. There were associations with clinical measures,
including between leaf fraction and the Mini-Mental State Examination, a test of general
cognition [34]. Another study showed increased connectivity in the theta band in patients
with Alzheimer’s disease dementia and mild cognitive impairment, relative to cognitively
unimpaired controls; the connectivity measures were also correlated with neuropsycho-
logical test scores [35]. Finally, assessment of functional connectivity in multiple sclerosis
via magnetoencephalography showed a less integrated network related to more severe
cognitive impairment [36]. Together, these and other recent studies support the practical
implications of EEG graph theory for accurate diagnosis, early detection, and disease
monitoring [37]. It may be that a relative combination of graph theory metrics and their
clinical correlates are most sensitive for diagnostic precision.

While a different modality, there have been at least four studies of functional con-
nectivity in PPA and PPAOS via fMRI [38–41]. These studies have broadly demonstrated
reduced connectivity in these populations. An fMRI study of functional connectivity in
patients with PPAOS demonstrated reduced connectivity, specifically in the supplementary
motor areas (SMA); reduced connectivity in the right SMA negatively correlated another
measure of AOS, an articulatory error score, while connectivity in the left working memory
network correlated with the ASRS [38]. These can serve as a foundation from which to
formulate hypotheses for future regional analyses; for instance, it is hypothesized that there
may be loss of ordered synchronization between frontal regions, supplementary motor
areas, and, overall, regions in the left hemisphere compared to others.

Other fMRI studies of agPPA patients [40], patients with semantic variant PPA [39],
and PPA patients more broadly [41] showed lower global integration and alteration in
hub distribution in speech-predominant regions compared to cognitively unimpaired
controls that were not entirely explained by structural changes. Taken together, there is
support for looking at more functional, rather than structural, measures of disease burden
in understanding clinical symptoms.

4.4. Limitations and Future Directions

There are limitations to the current study. While this is the largest documented EEG
study of patients with PPAOS, the sample size was relatively small, which limited our
ability to examine smaller subgroup influences (e.g., AOS type, phonetic or prosodic) on
the findings. Further, given the results of the power analysis (which suggests the need for a
much larger sample size; details not reported for brevity), we are unable to assess robust
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effects from this sample size. We are lacking an ideally age- and sex-matched cognitively
unimpaired control cohort to expand the impact beyond patient group description and to
assess the diagnostic power between impaired and unimpaired groups. The patient group
comparisons offer important insight on which to base future hypotheses, but the groups are
imbalanced in size, age, and disease duration. To explore the complex relationship between
EEG network measures, clinical symptoms, and other explanatory variables (such as age
and disease duration), regression models should be considered with relevant covariates.

The novelty of the current study lies in the relationship of network measures and
clinical parameters. Stronger relationships are expected between regional, rather than mean,
network measures, which should be explored in future studies. Additional limitations
are methodological, including the use of 21 electrodes and a 256 Hz sampling rate, as
well as PLI in favor of synchronization likelihood, another connectivity measure; different
parameters, including exploring frequency bands beyond alpha and theta and frequency
band measure ratios, could yield different results. Another modifiable parameter is sample
length; here, the epoch length was limited by the sampling rate. While “clean” epochs were
selected, no specific criteria were applied, which could impact replicability. Finally, differ-
ences in number of epochs and use of other connectivity measures could have influenced
results [42], as could have the reference electrode [43]. While the recording parameters
make it difficult to compare the results to those of published controls or other patient
populations, methodological decisions were made to expedite transfer of these findings
to clinical practice, which is considered a relative strength. Longitudinal assessments in a
larger cohort, across the clinical severity spectrum and with different clinical phenotypes
will also strengthen the interpretability and utility of these findings.

5. Conclusions

This study provides EEG evidence of network alteration and breakdown associated
with primary progressive aphasia and apraxia of speech, although quantifiable differences
between the groups are not yet clear. Nonetheless, this study demonstrates potential for
EEG graph theory measures to quantify network changes that may reflect degenerative
speech and language disturbances, given correlations with clinical measures. It remains
important to compare these patterns to a healthy cognitively unimpaired control group.
Describing network pathophysiology may have utility for understanding these diseases in
a way not previously available, and, importantly, via a widely available and cost-effective
method. This method may parlay into diagnostic EEG biomarkers, and ultimately, biomark-
ers for predicting disease progression and monitoring treatment-mediated improvements.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/brainsci12030378/s1. Figure S1: Correlation scatter plots between
graph theory and behavioral measures, with individual data points indicating frequency band and
group membership.
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