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Abstract: Coupled signaling between bone-forming osteoblasts and bone-resorbing osteoclasts is
crucial to the maintenance of bone homeostasis. We previously reported that v-crk avian sarcoma
virus CT10 oncogene homolog-like (CrkL), which belongs to the Crk family of adaptors, inhibits
bone morphogenetic protein 2 (BMP2)-mediated osteoblast differentiation, while enhancing receptor
activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation. In this
study, we investigated whether CrkL can also regulate the coupling signals between osteoblasts and
osteoclasts, facilitating bone homeostasis. Osteoblastic CrkL strongly decreased RANKL expression
through its inhibition of runt-related transcription factor 2 (Runx2) transcription. Reduction in
RANKL expression by CrkL in osteoblasts resulted in the inhibition of not only osteoblast-dependent
osteoclast differentiation but also osteoclast-dependent osteoblast differentiation, suggesting that
CrkL participates in the coupling signals between osteoblasts and osteoclasts via its regulation of
RANKL expression. Therefore, CrkL bifunctionally regulates osteoclast differentiation through both
a direct and indirect mechanism while it inhibits osteoblast differentiation through its blockade of
both BMP2 and RANKL reverse signaling pathways. Collectively, these data suggest that CrkL is
involved in bone homeostasis, where it helps to regulate the complex interactions of the osteoblasts,
osteoclasts, and their coupling signals.
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1. Introduction

Bone is a complex and dynamic tissue, and it undergoes continuous renewal via bone
remodeling processes to maintain appropriate bone mass and quality [1]. These continuous
processes of synthesis and destruction are fine-tuned by an equilibrium between bone-
forming osteoblasts and bone-resorbing osteoclasts [2,3]. In addition to the inherent
functions of osteoblasts and osteoclasts, they contribute to each other’s functions via direct
and indirect communication to maintain bone homeostasis [4–7]. Moreover, osteoblasts can
influence osteoclastic bone resorption by producing osteoclast regulatory factors, such as
macrophage colony-stimulating factor (M-CSF), receptor activator of nuclear factor kappa-
B ligand (RANKL), Fas ligand, complement component 3a, and semaphorins [5,8–16].
Additionally, various osteoclast-derived factors, such as those released from the matrix,
secreted from the osteoclast, and expressed on the cell membrane, can also influence the
osteoblast differentiation and function [16,17]. For example, matrix-derived factors, such
as transforming growth factor β, BMP2, and insulin-like growth factors, which are released
from osteoclastic bone resorption sites on the bone surface, stimulate the differentiation of
the osteoblast progenitors. Osteoclasts also secrete products, such as BMP6, sphingosine-1-
phosphate, and Wnt-10b to promote osteoblast precursor recruitment and differentiation.
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In addition, osteoclast membrane-bound factors, such as ephrin B2 and semaphorin D, are
expected to support various interactions between the osteoclasts and mature osteoblasts
promoting their osteoblastic activity [17]. The communication between osteoclasts and
osteoblasts is often the cause of the side effects of the presently available antiresorptive
agents and anabolic agents for the treatment of bone disease [18–22]. Therefore, a more
detailed understanding of the cellular and molecular mechanisms of bone remodeling is
necessary to identify and explore new therapeutic targets for bone disorders.

The cytoplasmic adaptor CrkL (v-crk avian sarcoma virus CT10 oncogene homolog-
like) belongs to the Crk family of adaptors and is comprised of a single N-terminal Src
homology 2 (SH2) domain and two consecutive SH3 domains (nSH3 and cSH3). CrkL is
ubiquitously expressed in most tissues and exhibits several biological functions, such as
adhesion, proliferation, migration, and survival [23–26]. This adaptor protein can function
via an interaction between its own SH2 or SH3 domain and numerous adaptor proteins,
including paxillin, p130Cas, p120 c-cbl, insulin receptor substrate proteins, STAT5, and
PI3K [25–40]. We previously found that CrkII, another adaptor in the Crk family, plays a
pivotal role in osteoclast and osteoblast differentiation [41,42]. CrkII enhances osteoclast
differentiation by activating Rac1, whereas it inhibits osteoblast differentiation via JNK
activation [41,42]. Furthermore, CrkII and CrkL exhibit overlapping functions in certain
processes, including osteoclast and osteoblast differentiation, as they share several binding
partners, due to remarkable homology between them. In contrast, several studies have
reported that Crk proteins exhibit separate functions, notably during development [43,44].
We previously reported that CrkL and CrkII show redundant function during osteoclast
and osteoblast differentiation, as CrkL is a distinct gene transcribed from the CrkL locus
but not Crk locus. The role of CrkL in communication between osteoclasts and osteoblasts
during bone remodeling processes remains unknown; therefore, in the present study,
we thoroughly investigated the role of CrkL during bone remodeling by considering
various aspects.

2. Results
2.1. CrkL Has a Positive and Negative Effect on Osteoclast and Osteoblast Differentiation,
Respectively

We previously reported that CrkL and CrkII exhibit overlapping functions in osteo-
clasts and osteoblasts. In the present study, to confirm the roles of CrkL in osteoclasts
and osteoblasts, we determined the effects of retrovirus-mediated overexpression of CrkL
in bone marrow-derived monocyte/macrophage lineage cells (BMMs) and primary os-
teoblasts. The formation of large multinucleated osteoclasts, induced by RANKL, was sig-
nificantly enhanced in BMMs overexpressing CrkL compared to that in control (Figure 1a);
however, alkaline phosphate (ALP) activity and bone mineralization induced by osteogenic
media (OGM) was significantly inhibited in osteoblasts overexpressing CrkL (Figure 1b).
These results confirmed that CrkL upregulates RANKL-mediated osteoclast differentiation,
while it downregulates osteoblast differentiation and function.

2.2. CrkL Indirectly Inhibits Osteoclast Differentiation by Regulating RANKL
(Tnfsf11) Expression

Osteoblasts produce RANKL and osteoprotegerin (OPG), that contribute to bone
homeostasis via the regulation of osteoclastogenesis [15]. We further examined whether
CrkL is associated with osteoblast-mediated osteoclast differentiation. Overexpression
of CrkL in osteoblasts significantly inhibited the mRNA expression of Tnfsf11 in both
nonstimulated and 1,25 (OH)2 vitamin D3 (Vit D3)-stimulated osteoblasts without affecting
the OPG (Tnfrsf11b) expression (Figure 2a). Conversely, downregulation of CrkL by siRNA
led to an increase in the mRNA levels of Tnfsf11 (Figure 2b). To functionally validate
the role of CrkL in osteoblastic RANKL expression, we cocultured the osteoblasts with
osteoclast precursor cells. The coculture of osteoblasts overexpressing or downregulating
CrkL with osteoclast precursor cells displayed decreased or increased osteoclast formation,
in contrast to each control osteoblast culture (Figure 2c,d).



Int. J. Mol. Sci. 2021, 22, 7007 3 of 13

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 13 
 

 

role of CrkL in osteoblastic RANKL expression, we cocultured the osteoblasts with osteo-
clast precursor cells. The coculture of osteoblasts overexpressing or downregulating CrkL 
with osteoclast precursor cells displayed decreased or increased osteoclast formation, in 
contrast to each control osteoblast culture (Figure 2c,d). 
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TRAP staining images. Osteoclast differentiation of BMMs overexpressing the control or CrkL ret-
rovirus following treatment with M-CSF, or M-CSF and RANKL (left panel). Number of TRAP-
positive multinuclear cells (right panel). Bar: 200 µm. (b,c) Primary osteoblast precursors overex-
pressing the control or CrkL retrovirus were cultured in OGM. (b) ALP activity assay. (c) Alizarin 
red staining images (left panel). Quantification of alizarin red staining intensities (right panel). # p < 
0.05; * p < 0.01 as compared with the controls. 

To further assess the role of CrkL in osteoblast-mediated osteoclast differentiation, 
osteoblast and osteoclast precursor cells were transduced with control or CrkL retrovirus, 
as illustrated in Figure 2e, and then cocultured in the presence of vitamin D3 (Vit D3) and 
prostaglandin E2 (PGE2). Interestingly, a significant decrease in osteoclast formation was 
observed when BMMs overexpressing CrkL were cocultured with osteoblasts overex-
pressing CrkL, compared to the control (Figure 2e). These results indicated that CrkL in-
hibits osteoblast-mediated osteoclast differentiation by blocking RANKL expression, 
though it increases RANKL-mediated osteoclast differentiation in osteoclast precursor 
cells. 

2.3. CrkL Inhibits RANKL-Mediated Osteoblast Differentiation 
Recently, it has been reported that vesicular receptor activator of nuclear factor 

kappa-B (RANK) secreted from mature osteoclasts activates RANKL reverse signaling in 
osteoblasts and enhances osteoblast differentiation [45]. Moreover, the W9 peptide, which 
is known to bind RANKL and inhibits RANKL-induced osteoclast differentiation in vitro, 
also binds RANKL on osteoblasts and promotes osteoblast differentiation, presumably 
via RANKL reverse signaling [46–48]. Therefore, we tested the effects of CrkL on W9-
induced osteoblast differentiation, to evaluate whether the inhibition of RANKL expres-
sion in osteoblasts caused by CrkL affects osteoblast differentiation by regulating RANKL 
reverse signaling. As illustrated in Figure 3, overexpression of CrkL in osteoblasts signif-
icantly inhibited W9-induced bone mineralization. Consistent with bone mineralization, 
expression of typical osteogenic marker genes, including Runx2, alkaline phosphatase 

Figure 1. CrkL enhances osteoclast differentiation, while it inhibits osteoblast differentiation.
(a) TRAP staining images. Osteoclast differentiation of BMMs overexpressing the control or CrkL
retrovirus following treatment with M-CSF, or M-CSF and RANKL (left panel). Number of TRAP-
positive multinuclear cells (right panel). Bar: 200 µm. (b,c) Primary osteoblast precursors overex-
pressing the control or CrkL retrovirus were cultured in OGM. (b) ALP activity assay. (c) Alizarin red
staining images (left panel). Quantification of alizarin red staining intensities (right panel). # p < 0.05;
* p < 0.01 as compared with the controls.

To further assess the role of CrkL in osteoblast-mediated osteoclast differentiation,
osteoblast and osteoclast precursor cells were transduced with control or CrkL retrovirus,
as illustrated in Figure 2e, and then cocultured in the presence of vitamin D3 (Vit D3) and
prostaglandin E2 (PGE2). Interestingly, a significant decrease in osteoclast formation was
observed when BMMs overexpressing CrkL were cocultured with osteoblasts overexpress-
ing CrkL, compared to the control (Figure 2e). These results indicated that CrkL inhibits
osteoblast-mediated osteoclast differentiation by blocking RANKL expression, though it
increases RANKL-mediated osteoclast differentiation in osteoclast precursor cells.

2.3. CrkL Inhibits RANKL-Mediated Osteoblast Differentiation

Recently, it has been reported that vesicular receptor activator of nuclear factor kappa-
B (RANK) secreted from mature osteoclasts activates RANKL reverse signaling in os-
teoblasts and enhances osteoblast differentiation [45]. Moreover, the W9 peptide, which is
known to bind RANKL and inhibits RANKL-induced osteoclast differentiation in vitro,
also binds RANKL on osteoblasts and promotes osteoblast differentiation, presumably via
RANKL reverse signaling [46–48]. Therefore, we tested the effects of CrkL on W9-induced
osteoblast differentiation, to evaluate whether the inhibition of RANKL expression in
osteoblasts caused by CrkL affects osteoblast differentiation by regulating RANKL reverse
signaling. As illustrated in Figure 3, overexpression of CrkL in osteoblasts significantly in-
hibited W9-induced bone mineralization. Consistent with bone mineralization, expression
of typical osteogenic marker genes, including Runx2, alkaline phosphatase (Alpl), and bone
sialoprotein (Ibsp), was significantly inhibited by CrkL overexpression (Figure 3a,b). In
contrast, downregulation of endogenous CrkL expression markedly increased the ALP ac-
tivity, bone mineralization, and expression of typical osteogenic marker genes (Figure 3c–e).
Collectively, these results indicate that osteoblastic CrkL regulates osteoblast differentiation
by inhibiting both BMP2 signaling and RANKL reverse signaling.
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Figure 2. CrkL attenuates RANKL expression. (a) Primary osteoblast precursors overexpressing the control or CrkL
retrovirus in the presence or absence of Vit D3. mRNA expression of the indicated genes. (b) Primary osteoblast precursors
were transfected with control or CrkL siRNAs in the presence or absence of Vit D3. mRNA expression of the indicated
genes was assessed by real-time PCR. (c) Primary osteoblast precursors overexpressing the control or CrkL retrovirus were
cocultured with BMMs and Vit D3 in the presence or absence of PGE2. TRAP staining images (left panel) where used to
enumerate the number of TRAP-positive multinuclear cells (right panel). Bar: 200 µm. (d) Primary osteoblast precursors
transfected with control or CrkL siRNAs and cocultured with BMMs and Vit D3 in the presence or absence of PGE2. TRAP
staining images (left panel) where used to enumerate the number of TRAP-positive multinuclear cells (right panel). Bar:
200 µm. (e) Osteoclast differentiation in BMMs, cocultured with osteoblasts, treated as indicated in the presence of Vit D3

and PGE2. TRAP staining images (left panel) where used to enumerate the number of TRAP-positive multinuclear cells
(right panel) in each sample. Bar: 200 µm. # p < 0.05; * p < 0.01; ** p < 0.001 as compared with the controls.
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Runx2 expression. As illustrated in Figure 4a, Runx2 expression controlled by CrkL was 
similar to that of Tnfsf11. Moreover, the expression of Tnfsf11 as well as that of Runx2 was 
suppressed when CrkL was overexpressed, whereas it was increased when CrkL was 
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Figure 3. CrkL inhibits RANKL–RANK reverse signaling pathway. (a,b) Primary osteoblast precursors overexpressing
the control or CrkL retrovirus were cultured in OGM supplemented with W9. (a) Alizarin red staining images (left panel)
allowed for the quantification of the alizarin red staining intensities (right panel) under each condition. (b) mRNA expression
of the indicated genes. (c–e) Primary osteoblast precursors transfected with control or CrkL siRNAs were cultured in
OGM with W9. (c) ALP activity assay. (d) Alizarin red staining images (left panel). Quantification of alizarin red staining
intensities (right panel). (e) mRNA expression of the indicated genes. # p < 0.05; * p < 0.01; ** p < 0.001 as compared with
the controls.

2.4. CrkL Inhibits RANKL Expression via Interaction with Runx2

As Runx2 has been implicated in RANKL expression in various cell types, such as
prostate cancer cells, vascular smooth muscle cells, and osteoblasts [49–52], we further
examined whether CrkL-inhibited Tnfsf11 expression is involved in the regulation of Runx2
expression. As illustrated in Figure 4a, Runx2 expression controlled by CrkL was similar to
that of Tnfsf11. Moreover, the expression of Tnfsf11 as well as that of Runx2 was suppressed
when CrkL was overexpressed, whereas it was increased when CrkL was downregulated.
Moreover, inhibition of Tnfsf11 expression by CrkL was rescued by the forced expression
of Runx2 (Figure 4b). In order to gain a deeper insight into the mechanisms underlying
the inhibition of Tnfsf11 expression by CrkL, we examined whether CrkL directly interacts
with Runx2. Coimmunoprecipitation revealed the direct interaction between CrkL and
Runx2 in HEK-293T cells (Figure 4c). Furthermore, Runx2 induced the expression of 6XOSE
(Runx2 DNA-binding elements), Ibsp, and Tnfsf11 promoter reporter, and its effects were
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significantly inhibited by CrkL (Figure 4d). Collectively, these results indicated that the
CrkL-induced decreased expression of RANKL is mediated via the suppression of Runx2
transcriptional activity.
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Figure 4. CrkL inhibits Runx2 transcriptional activity. (a) Primary osteoblast precursors overexpressing control or CrkL
retrovirus and primary osteoblast precursors transfected with control or CrkL-siRNAs were cultured in the presence or
absence of Vit D3. (b) Primary osteoblast precursors overexpressing control, CrkL or CrkL and Runx2 were cultured in the
presence or absence of Vit D3. mRNA expression of Tnfsf11. (c) Co-immunoprecipitation assays in Runx2 or Runx2 and
CrkL-transfected HEK-293T cells. (d) Luciferase assay of HEK-293T cells transfected with various expression plasmids.
# p < 0.05; * p < 0.01; ** p < 0.001 as compared with the controls.

2.5. Downregulation of CrkL Can Protect RANKL-Induced Bone Loss In Vivo

Eventually, we assessed the local administration of siRNA, targeting CrkL, in a mouse
calvaria model. In microcomputed tomography (µCT) analyses, the injection of RANKL to
the calvaria led to a significant decrease in bone mass. RANKL-induced bone loss was at-
tenuated by the local administration of CrkL siRNA (Figure 5). These results indicated that
CrkL may be a potential target in the development of new therapeutics for bone diseases.
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Figure 5. CrkL knockdown prevents RANKL-induced bone loss. Bone volume to tissue volume
(BV/TV) and the number of TRAP-positive cells in the murine calvarial model treated with PBS,
RANKL and control, or CrkL siRNA. # p < 0.05; * p < 0.01 as compared with the controls.

3. Discussion

In the present study, we demonstrated that CrkL can be involved in regulating precise
bone remodeling by affecting osteoclast differentiation, osteoblast differentiation, and
osteoclast–osteoblast communication. The ectopic expression of CrkL in osteoclast pre-
cursor cells enhanced osteoclast differentiation and function, whereas that in osteoblasts
inhibited osteoblast differentiation and function. Moreover, the inhibition of RANKL pro-
duction, by the ectopic expression of CrkL in osteoblasts, hampered osteoclast-mediated
osteoblast differentiation, as well as osteoblast-mediated osteoclast differentiation. Col-
lectively, CrkL is remarkably involved in bone remodeling, and can lead to bone loss, by
acting directly on osteoclasts and osteoblasts, while inhibiting both bone resorption and
bone formation, by acting indirectly by regulating osteoclast–osteoblast communication.

In a previous study, we revealed that CrkII increased osteoclast differentiation via Rac1
activation and reduced osteoblast differentiation by regulating JNK activation; moreover,
we demonstrated that CrkII and CrkL exhibit similar functions in osteoclast and osteoblast
differentiation [41,42]. According to the results of the present study, the new function of
CrkL in osteoblasts—the downregulation of Tnfsf11 expression—is due to the inhibition of
Runx2 transcriptional activities caused by the formation of a complex of Runx2 and CrkL.
Runx2 acts as a master transcription factor for osteoblast differentiation, which transac-
tivates numerous essential genes in osteogenesis, such as those encoding Sp7, Alpl, Col1,
Ibsp, and Bglap [53,54]. Notably, Runx2 is responsible for osteoblast differentiation because
bone formation is inhibited, due to the arrest of osteoblast differentiation in mice subjected
to a targeted disruption of Runx2 [53]; however, the mechanisms involved in osteoclast
differentiation, regulated by Runx2 in osteoblasts, remain unclear. Bone formation and
osteoclasts were completely absent in Runx2-deficient mice, in which OPG and M-CSF
were normally expressed, but RANKL was significantly less expressed [50]. Transgenic
mice overexpressing Runx2 in osteoblasts revealed a dramatic increase in osteoclast dif-
ferentiation and bone resorption [49]. Furthermore, the 0.7-kb 5′-flanking region of the
Tnfsf11 promoter contains two putative Runx2 binding sites [55]; however, whether Runx2
simulates Tnfsf11 expression in osteoblasts to support osteoclast differentiation remains
controversial. A previous study reported that neither Runx2 nor the dominant negative
form of Runx2 expression significantly affect Tnfsf11 expression in a stromal/osteoblastic
cell line, UAMS-32 [56]. In contrast, Runx2 has been shown to directly bind to the promoter
and upregulate Tnfsf11 expression in calcifying smooth muscle cells [52]. Consistent with
the latter results, we confirmed that Runx2 increased Tnfsf11 transcription. CrkL interacts
with Runx2 to inhibit Runx2 transcriptional activity, thereby suppressing the autoregulation
of Runx2 and the expression of Runx2 target genes, including Tnfsf11. Presumably, CrkL
functions primarily via the inhibition of Runx2 signaling pathway in osteoblasts. Moreover,
it decreases Runx2 expression and subsequently attenuates osteoblast differentiation or
osteoblast-mediated osteoclast differentiation. Furthermore, CrkL reduces the Tnfsf11
expression, which is successfully recovered by Runx2 overexpression. As we previously
reported that CrkII inhibits osteoblast differentiation by regulating JNK activation, we
assumed that CrkL, similar to CrkII, also functions by regulating the JNK signaling path-
way in osteoblasts. Unexpectedly, the blocking of JNK activation did not affect the Tnfsf11
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expression controlled by CrkL. Therefore, CrkII and CrkL affect the osteoblast function
by mainly regulating the Runx2 signaling pathway; in particular, they inhibit osteoblast
differentiation, partly by activating the JNK signaling pathway.

RANKL–RANK signaling pathway is a crucial factor in the coupling of osteoblasts and
osteoclasts during bone remodeling. Osteoblasts secrete RANKL to support osteoclast dif-
ferentiation. RANKL–RANK forward signaling pathway induces osteoclast differentiation
and bone resorption. Meanwhile, mature osteoclasts secrete vesicular RANK, which binds
osteoblastic RANKL and triggers RANKL–RANK reverse signaling pathway to stimulate
osteoblast differentiation and bone formation [45]. As Runx2 activation is required for
RANKL–RANK reverse signaling pathway-mediated bone formation, CrkL crucially par-
ticipates in bone remodeling processes, by inhibiting the RANKL–RANK reverse signaling
pathway-mediated bone formation.

The coupling of osteoblasts and osteoclasts during bone remodeling induces unex-
pected side effects of bone disease treatments currently in use [18–20,22]. Considering
the bifunctional properties of CrkL, we tested whether CrkL could serve as a potential
therapeutic target in the treatment of bone diseases. Our results indicated that CrkL
knockdown can protect RANKL-induced bone loss in vivo; moreover, the net effect of two
opposing qualities of CrkL in vivo is biased toward promoting bone resorption during bone
remodeling. Although CrkL knockdown might promote osteoblast-dependent osteoclast
differentiation, it contributes to bone formation by activating bone formation signaling
and RANKL reverse signaling in osteoblasts and inhibiting RANKL forward signaling in
osteoclast precursors. Therefore, CrkL is a potential therapeutic target for diseases related
to bone loss. However, since our local and transient calvarial model is not sufficient to
elucidate the precise physiological or pathological role of CrkL in vivo, further evaluations,
possibly using transgenic mice with engineered CrkL expression, are required.

4. Materials and Methods
4.1. Reagents

Recombinant human BMP2 was purchased from Cowellmedi (Busan, Korea). Alizarin
Red, β-glycerophosphate, PGE2, and Vit D3 were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Ascorbic acid was purchased from Junsei Chemical (Tokyo, Japan).
Recombinant hRANKL and hM-CSF were purified from BL21.

4.2. Osteoclast Differentiation

Murine bone marrow cells were isolated by flushing the bone marrow of tibiae and
femurs of 6–8-week-old mice with α-minimal essential medium (MEM) (HyClone Labora-
tories, Logan, UT, USA) and followed by red blood cell lysis. Thereafter, the isolated bone
marrow cells were cultured with α-MEM containing 10% FBS and 30 ng/mL M-CSF for 3
days. Nonadherent cells were removed, and the remaining adherent cells, i.e., BMMs, were
used as osteoclast precursors. BMMs were transduced with pMX-IRES-EGFP (control) or
CrkL retrovirus, or transfected with control or CrkL siRNAs, depending on the experi-
mental conditions. Transduced or transfected BMMs were cultured in M-CSF (30 ng/mL)
or M-CSF and RANKL (20–150 ng/mL) for 3 days. For coculture experiments, BMMs
were cultured with osteoblasts in the presence of Vit D3 (10−8 M) or Vit D3 (10−8 M) and
PGE2 (10−7 M) for 6 days. Cultured cells were fixed and stained with tartrate-resistant
acid phosphatase (TRAP) solution. TRAP-positive cells with more than three nuclei were
counted as osteoclasts.

4.3. Osteoblast Differentiation

Primary osteoblast precursor cells were obtained from the enzymatic lysis of the skulls
of neonatal ICR mice using 0.1% collagenase (Life Technologies, Carlsbad, CA, USA) and
0.2% dispase II (Roche Diagnostics GmbH, Mannheim, Germany). Primary osteoblasts were
transduced with pMX-IRES-EGFP (control) or CrkL retrovirus, or transfected with control
or CrkL siRNAs, depending on the experimental conditions. Transduced or transfected
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osteoblasts were cultured in α-MEM, supplemented with 10% FBS. Osteoblast differen-
tiation was induced by culturing cells in OGM, containing BMP2 (100 ng/mL), ascorbic
acid (50 µg/mL), and β-glycerophosphate (100 mM) for 3 or 6 days. Cultured cells (3 days)
were lysed using osteoblast lysis buffer (50 mM Tris-HCl (pH 7.4), 1% Triton X-100, 150 mM
NaCl, and 1 mM EDTA), and then these lysates were incubated with p-nitrophenyl phos-
phate substrate (Sigma-Aldrich) for 10 min at room temperature, before their ALP activity
was evaluated at 405 nm using a spectrophotometer. Cultured cells (6 days) were fixed with
70% ethanol and stained with 40 mM alizarin red (pH 4.2) for 10 min at room temperature,
to visualize calcium deposits. After washing with phosphate-buffered saline to remove
the nonspecific staining, alizarin red-stained cells were visualized with CanoScan 4400F
(Canon Inc., Tokyo, Japan) and extracted using a 10% cetylpyridinium chloride solution
for 30 min at room temperature. Intensities of the extracts were quantified at 562 nm via
densitometry.

4.4. Luciferase Assay

HEK-293T cells were plated in 24-well plates at a density of 5 × 104 cells/well in
Dulbecco’s modified Eagle’s medium (HyClone), supplemented with 10% FBS. The cells
were then transfected with reporter luciferase plasmids expressing or not expressing Runx2
or CrkL using FuGENE 6 (Promega, Madison, WI, USA), according to the manufacturer’s
instructions. After 48 h, the cells were lysed using 200 µL of passive lysis buffer (Promega),
and the cell lysates were evaluated for luciferase activity using a dual-luciferase reporter
assay system (Promega) according to the manufacturer’s protocol. Each of these evaluations
were completed in triplicate.

4.5. Quantitative Real-Time PCR Analysis

Quantitative real-time PCR analysis was performed in triplicate with Rotor-Gene
Q (Qiagen, GmbH, Hilden, Germany) and SYBR Green (Qiagen). The thermal cycling
conditions were as follows: 15 min at 95 ◦C, followed by 40 cycles at 94 ◦C for 15 s, 58 ◦C
for 30 s, and 72 ◦C for 30 s. The amount of mRNA was normalized to the expression level of
an endogenous housekeeping gene encoding glyceraldehyde-3-phosphate dehydrogenase
(Gapdh). The relative value for the expression of each target gene, compared to that of the
calibrator for that target gene, was expressed as 2−(Ct-Cc) (where Ct and Cc are the mean
threshold cycle differences of the target gene and the calibrator gene, respectively, after
normalization to the expression level of Gapdh). The primer sequences were as follows:
Gapdh, 5′-TGA CCA CAG TCC ATG CCA TCA CTG-3′ and 5′-CAG GAG ACA ACC TGG
TCC TCA GTG-3′; Crkl, 5′-GTG TCT CGC ACT ACA TCA TCA A-3′ and 5′-GCT GAG
ACA GAA CCC ACT GG-3′; Runx2, 5′-CCC AGC CAC CTT TAC CTA CA-3′ and 5′-CAG
CGT CAA CAC CAT CAT TC-3′; Alpl, 5′-CAA GGA TAT CGA CGT GAT CAT G-3′ and
5′-GTC AGT CAG GTT GTT CCG ATT C-3′; Ibsp, 5′-GGA AGA GGA GAC TTC AAA CGA
AG-3′ and 5′-CAT CCA CTT CTG CTT CTT CGT TC-3′; Tnfsf11, 5′-CCT GAG ACT CCA
TGA AAA CGC-3′ and 5′-TCG CTG GGC CAC ATC CAA CCA TGA-3′; and Tnfrsf11b,
5′-CAG TGA GAG TGTGTGTAT TGC AG-3′ and 5′ -TTA TAC AGG GTG CTT TCG ATG
AAG -3′.

4.6. Retroviral Infection

The packaging cell line Plat-E was transfected with retroviral vectors using Fu-
GENE 6 (Promega), according to the manufacturer’s protocol. The retroviral supernatant
was collected after 48 h of transfection, and the collected supernatant was used as the
medium for culturing BMMs or osteoblasts for 6 h, in the presence of 10 µg/mL polybrene
(Sigma-Aldrich). This medium was later replaced with growth or differentiation medium
as necessary.
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4.7. siRNA Transfection

BMMs or osteoblasts were transfected with control siRNA or CrkL siRNA purchased
from Dharmacon using Lipofectamine RNAiMAX (Invitrogen, Waltham, MA, USA), ac-
cording to the manufacturer’s protocol, for 4 h at 37 ◦C, and thereafter, the medium was
replaced with a growth medium or differentiation medium.

4.8. In Vivo Experiments

The calvarial bone destruction model was established by injecting the control of CrkL
siRNA (30 µL of 20 µM), mixed with 10 µL of Lipofectamine RNAiMAX (Invitrogen) into
the mice calvaria 1 day prior to the implantation of the collagen sponge. On the next day, a
collagen sponge treated with PBS or RANKL (2 mg/kg) was implanted onto the calvariae
of the mice. Thereafter, control or CrkL siRNA was injected into the calvariae of mice from
post-sponge implant from days 1–5 with 2 day intervals. Mice were euthanized and their
calvariae were obtained for µCT analyses using a high-resolution Skyscan 1172 system
(Skyscan, Kontich, Belgium) at 50 kV and 201 µA, with a 0.5-mm aluminum filter and
a resolution of 17 µm pixel−1. All animal experiments were approved by the Chonnam
National University Medical School Research Institutional Animal Care and Use Committee
and were carried out in accordance with approved guidelines.

4.9. Immunoprecipitation and Immunoblotting

HEK-293T cells that were transfected with expression plasmids for 2 days were lysed
in NP-40 lysis buffer (150 mM NaCl, 1 mM EDTA, 1% NP-40, 50 mM Tris-HCl (pH 8.0),
supplemented with aprotinin and phenylmethylsulfonyl fluoride (PMSF). The lysate was
incubated with protein G (Invitrogen) for preclearing, and further incubated overnight
with anti-FLAG M2 antibody (Sigma-Aldrich). On the next day, immunoprecipitated lysate
was incubated with protein G (Invitrogen), according to the manufacturer’s instructions,
and, thereafter, the immunoprecipitated protein or whole cell lysate was subjected to
sodium dodecyl sulfate–polyacrylamide gel electrophoresis and polyvinylidene difluoride
membrane transfer. The membrane was blocked with 5% skim milk in TBS-T (10 mM
Tri-HCl (pH 7.6), 150 mM NaCl, and 0.1% Tween 20), and immunoblotted with primary
antibodies against FLAG (Sigma-Aldrich) and Runx2 (Santa Cruz), followed by washing
and incubation with appropriate horseradish peroxidase-linked secondary antibodies.
Signals were detected with ECL solution (Millipore) and analyzed using an Azure c300
luminescent image analyzer (Azure Biosystems, Dublin, CA, USA).

4.10. Statistical Analysis

All values are expressed as the means ± standard deviation (SD). Statistical signifi-
cance was determined by using two-tailed Student’s t-tests for two independent samples,
or analysis of variance (ANOVA) with post hoc Tukey’s HSD test for multiple group
comparisons. p values less than 0.05 were considered as statistically significant.

5. Conclusions

CrkL inhibits BMP2-mediated osteoblast differentiation of the osteoblast precursors,
while enhancing RANKL-induced osteoclast differentiation of the osteoclast precursors.
CrkL also affects both osteoblast-dependent osteoclast differentiation and osteoclast-
dependent osteoblast differentiation via its suppression of RANKL expression in os-
teoblasts. Further evaluations of the in vivo roles of CrkL during bone remodeling will help
to understand the potential therapeutic value of CrkL in the future treatment of various
bone diseases.
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Abbreviations

ALP alkaline phosphatase
BMMs bone marrow-derived monocyte/macrophages lineage cells
BMP2 bone morphogenic protein 2
BSP bone sialoprotein
CrkL v-crk avian sarcoma virus CT10 oncogene homolog-like
M-CSF macrophage colony-stimulating factor
OGM osteogenic media
OPG osteoprotegerin
PGE2 prostaglandin E2
RANK receptor activator of nuclear factor kappa-B
RANKL receptor activator of nuclear factor kappa-B ligand
Runx2 runt-related transcription factor 2
TRAP tartrate-resistant acid phosphatase
Vit D3 1,25 (OH)2 vitamin D3
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