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����������
�������

Citation: Maryška, M.; Svobodová,

L.; Dehaen, W.; Hrabinová, M.;

Rumlová, M.; Soukup, O.; Kuchař, M.
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Abstract: Kynurenic acid is a neuroprotective metabolite of tryptophan formed by kynurenine
aminotransferase (KAT) catalyzed transformation of kynurenine. However, its high brain levels
are associated with cognitive deficit and with the pathophysiology of schizophrenia. Although
several classes of KAT inhibitors have been published, the search for new inhibitor chemotypes is
crucial for the process of finding suitable clinical candidates. Therefore, we used pharmacophore
modeling and molecular docking, which predicted derivatives of heterocyclic amino ketones as
new potential irreversible inhibitors of kynurenine aminotransferase II. Thiazole and triazole-based
amino ketones were synthesized within a SAR study and their inhibitory activities were evalu-
ated in vitro. The observed activities confirmed our computational model and, moreover, the best
compounds showed sub-micromolar inhibitory activity with 2-alaninoyl-5-(4-fluorophenyl)thiazole
having IC50 = 0.097 µM.

Keywords: KAT-II; inhibitor; drug design; heterocyclic cathinones; enzyme assay

1. Introduction

Kynurenic acid (KYNA) is a neuroactive metabolite produced in L-tryptophan catabolism,
specifically in the kynurenine pathway (Figure 1). KYNA is known especially as an endoge-
nous antagonist of N-methyl-D-aspartate receptor (NMDAR) and α7 nicotinic acetylcholine
receptor (α7nAChR), and is considered to have a neuroprotective effect [1,2]. However, its
high brain tissue levels are associated with imbalances in the glutamate, dopamine, and
acetylcholine system [3]. Therefore, it can be related to the neurological disease schizophre-
nia, for which glutamatergic and dopaminergic hypoactivity is characteristic [4–6]. Con-
currently, in the brain of patients with schizophrenia, higher levels of KYNA, compared
to healthy individuals, have been demonstrated [7–11]. KYNA is formed via irreversible
transamination from L-kynurenine and the reaction is catalyzed by a class of enzymes
called kynurenine aminotransferases (KATs) [12]. From four known isoforms named
KAT-I–IV, KAT-II is predominant in brain tissue and plays the primary role of KYNA
biosynthesis in neurons [13,14]. Therefore, KAT-II is a good target for lowering brain levels
of KYNA. Studies on mice have proven that the inhibition of KAT-II leads to improvement
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in cognitive functions, highlighting the potential use of KAT-II inhibitors in schizophrenia
treatment [4,11,15].
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Figure 1. Schematic representation of the kynurenine pathway and the detailed description of KAT-II catalyzed trans-
formation of kynurenine to kynurenic acid. IDO = indolamine-2,3-dioxygenase, TDO = tryptophan-2,3-dioxygenase,
KMO = kynurenine-3-monooxygenase, KAT = kynurenine aminotransferase, NMDAR = N-methyl-D-aspartate receptor,
KYN = kynurenine, KYNA = kynurenic acid, 3-HK = 3-hydroxykynurenine, QUIN = quinolinic acid, PLP = pyridoxal-5′-phosphate.

Several KAT-II inhibitors have been published and some of them used as tool com-
pounds for preclinical exploration. Early published inhibitors include (S)-ESBA (1) and BFF-
122 (2) (Figure 2), both have been used for in vivo experiments on rodents [16–18] While 1 is
a substrate-like competitive inhibitor, 2 acts as an irreversible inhibitor as it forms a covalent
bond with the pyridoxal-5′-phosphate (PLP) cofactor. The most examined group of KAT-II
inhibitors are hydroxamate derivatives from Pfizer with their lead compound PF-04859989
(3) (Figure 2) [19]. Compound 3 is a brain-penetrable, nanomolar irreversible inhibitor and
its effects have been explored in numerous in vivo experiments [20–27]. However, this
inhibitor suffers from poor pharmacokinetic properties due to its fast metabolism [28]. This
issue was addressed in further research of hydroxamate derivatives [28–33], resulting in
the discovery of compound 4 (Figure 2), the most effective irreversible KAT-II inhibitor
known to date [32]. Some reversible KAT-II inhibitors have also been described including
BFF-816 (5) [34], glycyrrhetinic acid (6) and its derivatives [35], compound 7 [36], and
compound 8 (Figure 2) [37]. However, they often lack activity or the ability to penetrate the
blood–brain barrier effectively, or there is limited information available (compound 8). Re-
cently, compound 9 and a class of 9-oxodiazaspiro[5,5]undecan-2-carboxamide derivatives
(e.g., compound 10) (Figure 2) were published as sub-micromolar reversible inhibitors of
KAT-II [38], but, so far, there is no evidence of further examination in vivo.

Although there has been ongoing research of KAT-II inhibitors over the last few
decades, none of the inhibitors advanced into clinical trials and the number of chemotypes
remains rather low. Therefore, our objective was to discover a new class of KAT-II inhibitors
using a structure-based drug discovery approach utilizing pharmacophore modelling and
molecular docking. We designed and modeled thiazole- or triazole-based heterocyclic
amino ketones as irreversible inhibitors of KAT-II and synthesized them to evaluate their
inhibitory activity in vitro.
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Figure 2. Examples of published KAT-II inhibitors.

2. Results and Discussion
2.1. Pharmacophore Modeling and Design

Using an overlay of crystallized KAT-II inhibitor–enzyme complexes, common features
were selected, and a simple 3D pharmacophore was constructed (Figure 3). Important
features were (1) an amino group that will form an imine with the PLP cofactor; (2) a
hydrogen bond acceptor that will accept a hydrogen bond from Asn202; and (3) a hydrogen
bond acceptor that will accept a hydrogen bond from Arg399 or a backbone H bond from
the Gly-39 amine. Furthermore, a pocket around the inter-subunit interface of the KAT-II
homodimer was found to typically accommodate an aromatic ring. With this knowledge in
mind, a common substructure consisting of a heterocyclic α-amino ketone was designed to
target these interactions (Figure 4).

A docking study was undertaken to validate the rationale behind the generated
compounds in silico. The structure of KAT-II covalently bound to Pfizer’s tricyclic com-
pound was employed because the hydrogen bonding patterns are most prominently visible
(Figure 5). The docking results show that for heterocyclic α-amino ketones (also called
heterocyclic cathinones), the ketone group accepts a hydrogen bond from Asn202 (over-
laying with the carbonyl oxygen of PF-04859989 (3)) and the heterocycle nitrogen’s lone
pair accepts a backbone hydrogen bond from Gly-39 (overlaying with the hydroxamate
oxygen of 3). Interestingly, an H–π interaction between the five-membered heterocycle and
Ile-19 was detected in some docking poses. Finally, the α-amino functionality was found
to be quite close to the nucleophilic amine site (at a distance of about 1 Å, depending on
the compound).
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Figure 4. Heterocyclic α-amino ketones as a promising inhibitor class, showing the main interactions,
from left to right: aromatic heteroatom accepting a H-bond from G39 or R399; ketone accepting a
H-bond from N202; α-amino group in the vicinity of the PLP cofactor.
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2.2. Synthesis of In Silico Designed Amino Ketones 
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phenylthiazole (11) and 4-alaninoyl-1-phenyl-1H-1,2,3-triazole (12). Thiazole and triazole 

fragments were chosen because of their good performance in docking studies and their 

chemical properties, as they commonly occur as fragments in medicinal chemistry. Both 

syntheses of 11 and 12 started from Boc-L-alanine (13), which was converted to the corre-

sponding Weinreb amide 14 (Figure 6) [39]. The reaction of the prepared amide 14 with 

ethynylmagnesium bromide [40] or magnesiated 2-bromo-5-phenylthiazole [41] gave al-

kynone 15 and 2-acylated 5-phenylthiazole 16, respectively. Thiazole 11 was obtained by 

deprotection in methanolic HCl, generated by the addition of acetyl chloride into a meth-

anolic solution of 16. Triazole intermediate 17 was prepared by the copper(I)-catalyzed 

alkyne-azide cycloaddition (CuAAC) reaction [42] with phenyl azide followed by depro-

tection to afford amino ketone 12. 

Figure 5. Structure of the representative triazole-based amino ketone (purple) in an overlay with the
4GDY ligand (cyan), which is covalently bound to the cofactor (brown) inside the KAT-II binding
pocket. The triazole nitrogen binds to G39, but not to R399. The ketone oxygen binds to N202. An
H–π interaction between the triazole π system and an Ile19 hydrogen is also visible. Coloring of the
surface is purple: H-bonding, green: hydrophobic, and blue: mild polar. PF-04859989 (3) is shown in
red to show the overlay of the equivalent functional groups.

2.2. Synthesis of In Silico Designed Amino Ketones

To confirm the activity of the designed chemotype, we first prepared 2-alaninoyl-5-
phenylthiazole (11) and 4-alaninoyl-1-phenyl-1H-1,2,3-triazole (12). Thiazole and triazole
fragments were chosen because of their good performance in docking studies and their
chemical properties, as they commonly occur as fragments in medicinal chemistry. Both
syntheses of 11 and 12 started from Boc-L-alanine (13), which was converted to the cor-
responding Weinreb amide 14 (Figure 6) [39]. The reaction of the prepared amide 14
with ethynylmagnesium bromide [40] or magnesiated 2-bromo-5-phenylthiazole [41] gave
alkynone 15 and 2-acylated 5-phenylthiazole 16, respectively. Thiazole 11 was obtained
by deprotection in methanolic HCl, generated by the addition of acetyl chloride into a
methanolic solution of 16. Triazole intermediate 17 was prepared by the copper(I)-catalyzed
alkyne-azide cycloaddition (CuAAC) reaction [42] with phenyl azide followed by depro-
tection to afford amino ketone 12.
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imidazole (CDI), DCM, r.t., (ii) N,O-dimethylhydroxylamine hydrochloride, DCM, r.t.; (b) (i) 2-bromo-5-phenylthiazole,
i-PrMgCl.LiCl, THF, −10 ◦C, (ii) 14, i-PrMgCl.LiCl, −10 ◦C–r.t.; (c) AcCl, MeOH, r.t.; (d) (i) ethynylmagnesium bromide,
THF, −78 ◦C, (ii) NaHSO4, H2O, 0 ◦C; and (e) phenyl azide, CuSO4.5H2O, sodium ascorbate, t-BuOH/H2O 1:1, r.t.

2.3. Inhibitory Activity of the Designed Lead Compounds

The inhibitory activity of amino ketones 11 and 12 was evaluated using a fluorimet-
ric in vitro assay. The activity was determined as the percentage of inhibition (%I) at a
concentration of 1 µmol/L and also as IC50 values (Table 1). The observed inhibitory
activity confirmed the validity of the computational model and was suitable to conduct a
synthesis-directed SAR study around the predicted heterocyclic α-amino ketone structure.

Table 1. Inhibitory activities of compounds 11 and 12.

Entry Compound Inhibitory Activity [%I ± SEM]
c = 1 µM IC50 ± SEM [µM]

1 11 41.41 ± 4.15 1.62 ± 1.43
2 12 43.19 ± 2.30 3.21 ± 0.26

2.4. Synthesis of Derivatives for SAR Study
2.4.1. Amino Ketone Derivatives with Variation of the Alkyl Chain

First, we prepared a series of derivatives based on thiazole and triazole with variation
of the amino ketone sidechain. For triazole derivatives, the same synthetic approach was
used as for the preparation of 12, altering only the starting Boc-amino acids (Figure 7).
Alkynones 18a–f derived from amino acids 19a–f were prepared and converted via CuAAC
reaction to corresponding triazoles 20a–f. After subsequent deprotection, amino ketones
21a–f were obtained in very high yields.
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alkynon 15 (Table 2) to prepare Boc-protected triazole derivatives 27a–v. Based on the 

available precursors, two methods for the synthesis of aryl azides were employed–Cu cat-

alyzed azidation of haloarenes (Method A) [43] or diazotation of anilines followed by sub-

stitution by azide (Method B) [44]. In both cases, crude azides were used for CuAAC with-
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Figure 7. Synthesis of triazole derivatives with variation of the alkyl chain. Reagents and conditions: (a) (i) CDI, DCM, r.t.,
(ii) N,O-dimethylhydroxylamine hydrochloride, DCM, r.t., 91–100%; (b) (i) ethynylmagnesium bromide, THF, −78 ◦C, (ii)
NaHSO4, H2O, 0 ◦C, 86–95%; (c) phenyl azide, CuSO4.5H2O, sodium ascorbate, t-BuOH/H2O 1:1, r.t., 83–94%; and (d)
AcCl, MeOH, r.t., 94–97%.

In the same way, a series of thiazole derivatives with a side chain variation was
synthesized. A similar synthetic approach as for the preparation of 11 was used, but
with different reaction conditions used for the acylation step (Figure 8). Lithiation of 5-
phenylthiazole (22) at −78 ◦C and subsequent acylation with Weinreb amides 23a–f at the
same temperature allowed for the preparation of acylated thiazoles 24a–f in higher yields
than in the synthesis of 11 and without the formation of intensively colored by-products,
leading to easier purification. As in the case of the previous Boc-amino ketones, acidic
deprotection of 24a–f gave amino ketones 25a–f in great yields.
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Figure 8. Synthesis of thiazole derivatives with variation of the alkyl chain. Reagents and conditions: (a) (i) 5-phenylthiazole
(22), n-BuLi, THF, −78 ◦C, (ii) 23a–f, n-BuLi, −78 ◦C, 67–78%, and (b) AcCl, MeOH, r.t., 69–93%.

2.4.2. Triazole Derivatives with Variation of Aryl Substituent

Furthermore, we explored the effect of aryl substitution on the inhibitory activity
within the series of triazole-based amino ketones 26a–v. We used the same synthetic ap-
proach as for previous triazole derivatives using CuAAC of respective aryl azides with
alkynon 15 (Table 2) to prepare Boc-protected triazole derivatives 27a–v. Based on the
available precursors, two methods for the synthesis of aryl azides were employed–Cu
catalyzed azidation of haloarenes (Method A) [43] or diazotation of anilines followed
by substitution by azide (Method B) [44]. In both cases, crude azides were used for
CuAAC without any purification. As we discovered, azido pyridines were shown not
to be compatible with the aqueous conditions used for the CuAAC used in the previous
preparations of triazole derivatives. Therefore, we used a different CuAAC method, em-
ploying copper(I) thiophene-2-carboxylate (CuTC) as a catalyst in toluene [45]. Moreover,
this method had another advantage in the handling with aryl azides in the previous step–if



Pharmaceuticals 2021, 14, 1291 8 of 20

the azides were extracted with toluene, then these crude extracts could be used directly in
the CuAAC reaction.

Table 2. Synthesis of triazole derivatives with variation in the aryl moiety.
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reflux (X = Br, I); (b) (i) NaNO2, HCl, 0 °C, (ii) NaHCO3, NaN3, 0 °C–r.t. (X = NH2); (c) 15, CuSO4.5H2O, sodium ascor-

bate, t-BuOH/H2O 1:1, r.t.; (d) 15, CuTC, toluene, r.t.; and (e) AcCl, MeOH, r.t. 

 

Entry Ar X 
Boc 

Derivative 

Amino 

Ketone 
Entry Ar X 

Boc 

Derivative 

Amino 

Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

Br 27e, 76% 26e, 85% 16
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Derivative 
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Entry Ar X 

Boc 

Derivative 
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Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

NH2 27p, 69% 26p, 70%

6
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Entry Ar X 
Boc 

Derivative 

Amino 

Ketone 
Entry Ar X 

Boc 

Derivative 

Amino 

Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

NH2 27f, 67% 26f, 72% 17
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Entry Ar X 
Boc 

Derivative 

Amino 

Ketone 
Entry Ar X 

Boc 

Derivative 

Amino 

Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

NH2 27q, 72% 26q, 75%
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Reagents and conditions: (a) CuI, N,N’-dimethylethylenediamine (DMEDA), NaN3, sodium ascorbate, EtOH/H2O, 

reflux (X = Br, I); (b) (i) NaNO2, HCl, 0 °C, (ii) NaHCO3, NaN3, 0 °C–r.t. (X = NH2); (c) 15, CuSO4.5H2O, sodium ascor-

bate, t-BuOH/H2O 1:1, r.t.; (d) 15, CuTC, toluene, r.t.; and (e) AcCl, MeOH, r.t. 

 

Entry Ar X 
Boc 

Derivative 

Amino 

Ketone 
Entry Ar X 

Boc 

Derivative 

Amino 

Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

NH2 27g, 73% 26g, 71% 18
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Reagents and conditions: (a) CuI, N,N’-dimethylethylenediamine (DMEDA), NaN3, sodium ascorbate, EtOH/H2O, 

reflux (X = Br, I); (b) (i) NaNO2, HCl, 0 °C, (ii) NaHCO3, NaN3, 0 °C–r.t. (X = NH2); (c) 15, CuSO4.5H2O, sodium ascor-

bate, t-BuOH/H2O 1:1, r.t.; (d) 15, CuTC, toluene, r.t.; and (e) AcCl, MeOH, r.t. 

 

Entry Ar X 
Boc 

Derivative 

Amino 

Ketone 
Entry Ar X 

Boc 

Derivative 

Amino 

Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

Br 27r, 44% 26r, 79%

8
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reaction. 

Table 2. Synthesis of triazole derivatives with variation in the aryl moiety. 
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bate, t-BuOH/H2O 1:1, r.t.; (d) 15, CuTC, toluene, r.t.; and (e) AcCl, MeOH, r.t. 

 

Entry Ar X 
Boc 

Derivative 

Amino 

Ketone 
Entry Ar X 

Boc 

Derivative 

Amino 

Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

NH2 27h, 72% 26h, 70% 19
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reflux (X = Br, I); (b) (i) NaNO2, HCl, 0 °C, (ii) NaHCO3, NaN3, 0 °C–r.t. (X = NH2); (c) 15, CuSO4.5H2O, sodium ascor-

bate, t-BuOH/H2O 1:1, r.t.; (d) 15, CuTC, toluene, r.t.; and (e) AcCl, MeOH, r.t. 

 

Entry Ar X 
Boc 

Derivative 

Amino 

Ketone 
Entry Ar X 

Boc 

Derivative 

Amino 

Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

NH2 27s, 78% 26s, 67%
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Reagents and conditions: (a) CuI, N,N’-dimethylethylenediamine (DMEDA), NaN3, sodium ascorbate, EtOH/H2O, 

reflux (X = Br, I); (b) (i) NaNO2, HCl, 0 °C, (ii) NaHCO3, NaN3, 0 °C–r.t. (X = NH2); (c) 15, CuSO4.5H2O, sodium ascor-

bate, t-BuOH/H2O 1:1, r.t.; (d) 15, CuTC, toluene, r.t.; and (e) AcCl, MeOH, r.t. 

 

Entry Ar X 
Boc 

Derivative 

Amino 

Ketone 
Entry Ar X 

Boc 

Derivative 

Amino 

Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

Br 27i, 58% 26i, 90% 20
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Reagents and conditions: (a) CuI, N,N’-dimethylethylenediamine (DMEDA), NaN3, sodium ascorbate, EtOH/H2O, 

reflux (X = Br, I); (b) (i) NaNO2, HCl, 0 °C, (ii) NaHCO3, NaN3, 0 °C–r.t. (X = NH2); (c) 15, CuSO4.5H2O, sodium ascor-

bate, t-BuOH/H2O 1:1, r.t.; (d) 15, CuTC, toluene, r.t.; and (e) AcCl, MeOH, r.t. 

 

Entry Ar X 
Boc 

Derivative 

Amino 
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Entry Ar X 

Boc 

Derivative 

Amino 

Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

NH2 27t, 69% 26t, 72%
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Reagents and conditions: (a) CuI, N,N’-dimethylethylenediamine (DMEDA), NaN3, sodium ascorbate, EtOH/H2O, 

reflux (X = Br, I); (b) (i) NaNO2, HCl, 0 °C, (ii) NaHCO3, NaN3, 0 °C–r.t. (X = NH2); (c) 15, CuSO4.5H2O, sodium ascor-

bate, t-BuOH/H2O 1:1, r.t.; (d) 15, CuTC, toluene, r.t.; and (e) AcCl, MeOH, r.t. 

 

Entry Ar X 
Boc 

Derivative 

Amino 

Ketone 
Entry Ar X 

Boc 

Derivative 

Amino 

Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

Br 27j, 86% 26j, 91% 21

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 8 of 20 
 

 

extracted with toluene, then these crude extracts could be used directly in the CuAAC 

reaction. 

Table 2. Synthesis of triazole derivatives with variation in the aryl moiety. 

 
Reagents and conditions: (a) CuI, N,N’-dimethylethylenediamine (DMEDA), NaN3, sodium ascorbate, EtOH/H2O, 

reflux (X = Br, I); (b) (i) NaNO2, HCl, 0 °C, (ii) NaHCO3, NaN3, 0 °C–r.t. (X = NH2); (c) 15, CuSO4.5H2O, sodium ascor-

bate, t-BuOH/H2O 1:1, r.t.; (d) 15, CuTC, toluene, r.t.; and (e) AcCl, MeOH, r.t. 

 

Entry Ar X 
Boc 

Derivative 

Amino 

Ketone 
Entry Ar X 

Boc 

Derivative 

Amino 

Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

I 27u, 82% 26u, 76%

11

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 8 of 20 
 

 

extracted with toluene, then these crude extracts could be used directly in the CuAAC 

reaction. 

Table 2. Synthesis of triazole derivatives with variation in the aryl moiety. 

 
Reagents and conditions: (a) CuI, N,N’-dimethylethylenediamine (DMEDA), NaN3, sodium ascorbate, EtOH/H2O, 

reflux (X = Br, I); (b) (i) NaNO2, HCl, 0 °C, (ii) NaHCO3, NaN3, 0 °C–r.t. (X = NH2); (c) 15, CuSO4.5H2O, sodium ascor-

bate, t-BuOH/H2O 1:1, r.t.; (d) 15, CuTC, toluene, r.t.; and (e) AcCl, MeOH, r.t. 

 

Entry Ar X 
Boc 

Derivative 

Amino 

Ketone 
Entry Ar X 

Boc 

Derivative 

Amino 

Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

Br 27k, 47% 26k, 79% 22

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 8 of 20 
 

 

extracted with toluene, then these crude extracts could be used directly in the CuAAC 

reaction. 

Table 2. Synthesis of triazole derivatives with variation in the aryl moiety. 

 
Reagents and conditions: (a) CuI, N,N’-dimethylethylenediamine (DMEDA), NaN3, sodium ascorbate, EtOH/H2O, 

reflux (X = Br, I); (b) (i) NaNO2, HCl, 0 °C, (ii) NaHCO3, NaN3, 0 °C–r.t. (X = NH2); (c) 15, CuSO4.5H2O, sodium ascor-

bate, t-BuOH/H2O 1:1, r.t.; (d) 15, CuTC, toluene, r.t.; and (e) AcCl, MeOH, r.t. 

 

Entry Ar X 
Boc 

Derivative 

Amino 

Ketone 
Entry Ar X 

Boc 

Derivative 

Amino 

Ketone 

1 

 

NH2 27a, 65% 26a, 82% 12 
 

Br 27l, 67% 26l, 88% a 

2 

 

Br 27b, 67% 26b, 65% 13 
 

Br 27m, 66% 26m, 93% a 

3 

 

NH2 27c, 88% 26c, 79% 14 

 

I 27n, 72% 26n, 95% 

4 

 

I 27d, 83% 26d, 89% 15 

 

NH2 27o, 66% 26o, 71% 

5 
 

Br 27e, 76% 26e, 85% 16 

 

NH2 27p, 69% 26p, 70% 

6 
 

NH2 27f, 67% 26f, 72% 17 

 

NH2 27q, 72% 26q, 75% 

7 
 

NH2 27g, 73% 26g, 71% 18 

 

Br 27r, 44% 26r, 79% 

8 

 

NH2 27h, 72% 26h, 70% 19 

 

NH2 27s, 78% 26s, 67% 

9 

 

Br 27i, 58% 26i, 90% 20 

 

NH2 27t, 69% 26t, 72% 

10 
 

Br 27j, 86% 26j, 91% 21 

 

I 27u, 82% 26u, 76% 

11 

 

Br 27k, 47% 26k, 79% 22 

 

NH2 27v, 77% 26v, 79% 

a Product isolated as a dihydrochloride salt. 

2.4.3. Triazole Derivatives with Alkyl Linker 

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle 

was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent 

NH2 27v, 77% 26v, 79%

a Product isolated as a dihydrochloride salt.



Pharmaceuticals 2021, 14, 1291 9 of 20

2.4.3. Triazole Derivatives with Alkyl Linker

The effect of a short hydrocarbon linker between the phenyl ring and the heterocycle
was also examined. Triazole derivatives 28a,b with benzyl and 2-phenethyl substituent
were prepared using the same reaction sequence as above-mentioned (Figure 9). The corre-
sponding azides were prepared by nucleophilic substitution of benzyl bromide (29) and by
diazotransfer to phenethylamine (30) from ADMP (2-azido-1,3-dimethylimidazolinium
hexafluorophosphate), respectively (Figure 9) [46].
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2.5. Evaluation of Inhibitory Activity of SAR Derivatives

The obtained inhibition data for the series of triazole derivatives with alkyl chain
variation (21a–f), in comparison with the lead compound 12, suggested that any variation
in the alkyl chain led to a decrease in activity (Table 3, entry 1–6). Within the examined
substituents, the ethyl-substituted derivative 21e showed reasonable activity (Table 3,
entry 5), but larger groups had a greater influence on the decrease in the activity, and
cyclopropyl was the least suitable (Table 3, entry 6). A similar trend was also observed
in the series of thiazole derivatives 25a–f (Table 3, entry 7–12), but in this case, the ethyl-
derivative 25e showed even slightly higher inhibitory activity (Table 3, entry 11) than the
methyl-derivative 11.

Table 3. Inhibitory activities of the prepared triazole and thiazole-based amino ketones in the
SAR study.

Entry Compound Inhibitory Activity [%I ± SEM]
c = 1 µM

Triazole derivatives with the alkyl chain variation
1 21a 10.32 ± 4.81
2 21b 14.52 ± 3.71
3 21c 16.50 ± 3.71
4 21d 13.46 ± 5.46
5 21e 21.82 ± 4.80
6 21f 7.44 ± 3.75

Thiazole derivatives with the alkyl chain variation
7 25a 31.24 ± 3.64
8 25b 7.22 ± 2.70
9 25c 31.32 ± 0.88

10 25d 37.22 ± 2.53
11 25e 44.18 ± 3.42
12 25f 6.12 ± 2.66
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Table 3. Cont.

Entry Compound Inhibitory Activity [%I ± SEM]
c = 1 µM

Triazole derivatives with alkyl linker
13 28a 14.54 ± 3.19
14 28b 11.84 ± 5.76

Triazole derivatives with the aryl variation
15 26a 38.50 ± 2.21
16 26b 18.20 ± 2.27
17 26c 23.41 ± 3.97
18 26d 0.98 ± 1.98
19 26e 18.56 ± 2.33
20 26f 9.10 ± 2.07
21 26g 41.60 ± 6.39
22 26h 25.38 ± 2.22
23 26i 4.32 ± 1.32
24 26j 27.81 ± 3.33
25 26k 20.73 ± 1.83
26 26l 23.63 ± 2.30
27 26m 33.48 ± 4.88
28 26n 41.77 ± 3.01
29 26o 9.70 ± 1.67
30 26p 41.43 ± 2.67
31 26q 41.73 ± 2.66
32 26r 23.86 ± 2.95
33 26s 20.63 ± 3.78
34 26t 35.52 ± 3.63
35 26u 19.33 ± 1.06
36 26v 23.62 ± 4.30

It was also found that the short alkyl linker had no positive effect on inhibitory activity
(Table 3, entry 13–14). The values of %I were lower for both derivative 28a and 28b, in
comparison with 12.

From the inhibition data obtained for the series of triazole derivatives with aryl
modification 26a–v (Table 3, entry 15–36), it was found that para-substitution with electron
withdrawing groups led to the best results. Derivatives with 4-fluoro (26n) and 4-nitro
(26q) groups had the highest inhibitory activity (Table 3, entries 28 and 31), followed by
the 3-nitro derivative 26p (Table 3, entry 30), which was the most active among the other
meta-substituted derivatives (Table 3, entries 16, 26, 30, and 33). In contrast to these results,
the use of electron donating or sterically demanding groups led to a decrease in inhibitory
activity (Table 3, entries 18, 19, 23, 24, 29, and 32). The only and significant exception
was the use of the 4-methoxy group with derivative 26a belonging among the most active
compounds. The explanation for this compound’s activity is not straightforward, as this
goes against the general trend. It is not related to ring electronics generally, as the ortho and
meta isomer of 26a showed reduced activity (Table 3, entries 16 and 17). One explanation
we considered is hydrogen bonding, but inspection of the docking pose of derivative
26a did not show any hydrogen bonding. Therefore, we speculate a sterically favorable
orientation may be a better explanation. However, only follow-up measurements can
confirm this hypothesis. Interesting values of %I were also measured for 2,4-dimethyl
and 2-chloro derivatives 26g and 26t (Table 3, entries 21 and 34). However, use of 2,6-
dimethyl and 3,4-dimethyl groups led to a greater decrease in activity, as in the case of
other 3,4-disubstituted derivatives (Table 3, entries 20, 22, 35, and 36).

Although some structure–activity trends between substitution patterns on synthesized
derivatives and experimentally measured activity are clearly present within the examined
group of derivatives, none of them showed increased inhibitory activity in comparison
to compound 12. Only derivatives 26a, 26g, 26n, 26p–q retained comparable potency.
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Therefore, the best performing aryl substituent (4-fluorophenyl) was further examined
with thiazole-based derivatives.

2.6. Synthesis of Optimized Inhibitors Based on SAR Evaluation

Based on the obtained inhibition data from SAR, we chose the best fragments and
combined them to design a series of optimized amino ketones 32a–c and 33a–d (Figure 10).
Methyl and ethyl were chosen as the most suitable alkyl side chains together with 4-
fluorophenyl as the best aryl substituent. The combination of 4-fluoro and 2-chloro sub-
stitution was also examined, assuming there may be an additive positive contribution
by both groups. In addition, benzo[d]thiazole derivatives 34a–d were prepared since this
motif could not be explored in the triazole-based series because the aromatic nitrogen atom
cannot accommodate a merged ring.
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Figure 10. Structures of inhibitors prepared based on SAR optimization.

Triazole derivatives 32a–c were prepared from corresponding aryl azides and alkynones
15 or 18e (Figure 11) and by subsequent deprotection of Boc-intermediates 35a–c. Ben-
zothiazole derivatives 34a–d were synthesized by acylation of either commercially avail-
able benzo[d]thiazole (36) or 6-fluorobenzo[d]thiazole (37) obtained in two steps from
4-fluoroaniline (38) (Figure 12) [47,48]. Deprotection of Boc-intermediates 39a–d gave
amino ketones 34a–d.

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 11 of 20 
 

 

2.6. Synthesis of Optimized Inhibitors Based on SAR Evaluation 

Based on the obtained inhibition data from SAR, we chose the best fragments and 

combined them to design a series of optimized amino ketones 32a–c and 33a–d (Figure 

10). Methyl and ethyl were chosen as the most suitable alkyl side chains together with 4-

fluorophenyl as the best aryl substituent. The combination of 4-fluoro and 2-chloro sub-

stitution was also examined, assuming there may be an additive positive contribution by 

both groups. In addition, benzo[d]thiazole derivatives 34a–d were prepared since this mo-

tif could not be explored in the triazole-based series because the aromatic nitrogen atom 

cannot accommodate a merged ring. 

 

Figure 10. Structures of inhibitors prepared based on SAR optimization. 

Triazole derivatives 32a–c were prepared from corresponding aryl azides and al-

kynones 15 or 18e (Figure 11) and by subsequent deprotection of Boc-intermediates 35a–

c. Benzothiazole derivatives 34a–d were synthesized by acylation of either commercially 

available benzo[d]thiazole (36) or 6-fluorobenzo[d]thiazole (37) obtained in two steps from 

4-fluoroaniline (38) (Figure 12) [47,48]. Deprotection of Boc-intermediates 39a–d gave 

amino ketones 34a–d. 

 

Figure 11. Synthesis of triazole derivatives based on SAR. Reagents and conditions: (a) 15 or 18e, 

CuTC, toluene, r.t., 79–83%, and (b) AcCl, MeOH, 0 °C–r.t., 65–90%. 
Figure 11. Synthesis of triazole derivatives based on SAR. Reagents and conditions: (a) 15 or 18e,
CuTC, toluene, r.t., 79–83%, and (b) AcCl, MeOH, 0 ◦C–r.t., 65–90%.

For the series of thiazole-based derivatives, two synthetic approaches were employed.
First, bromo derivatives 40a,b were prepared in high overall yields of 71% and 65% from
thiazole (41) by a sequence of four steps: acylation, reduction of the carbonyl group,
bromination, and oxidation of the alcohol group (Figure 13). Intermediates 40a,b were
then reacted in Suzuki coupling with (4-fluorophenyl)boronic acid [49], giving aryl deriva-
tives 45a,b in good yields (Figure 13). Contrary to these results, the use of (2-chloro-4-
fluorophenyl)boronic acid did not lead to the expected coupling products 46a,b. Therefore,
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we prepared corresponding aryl thiazole 47 by the Suzuki coupling of 5-bromothiazole (48)
and 2-chloro-4-fluorophenyl)boronic acid (Figure 14). Compound 47 was then converted to
thiazole derivatives 46a,b by acylation using the conditions described earlier. Subsequent
Boc deprotection gave amino ketones 49a–d (Figures 13 and 14).
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◦C–r.t.; (b) NaBH4, MeOH/THF, 0 ◦C–r.t.; (c) NBS, DMF, 0–50 ◦C; (d) DMP, DCM, r.t.; (e) (4-fluorophenyl)boronic acid,
XPhos Pd G2, K3PO4, THF/H2O, 40 ◦C; and (f) AcCl, MeOH, 0 ◦C–r.t.
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2.7. Inhibitory Activity of Structurally Optimized Derivatives

Within the structurally optimized compounds, the best inhibitory activity was ob-
served in the case of fluoro-derivative 49a (Table 4, entry 8). The benzo[d]thiazole motif
proved to be active, with derivatives 34a and 34c having similar or higher activity as com-
pounds 11 and 25e, and fluorinated analogue 34b being even more potent (Table 4, entries
4, 6 and 5). Although we could not explain the substantially lower inhibitory activity
for derivative 34d (Table 4, entry 7), similar derivatives showed the observed activity in
accordance with the estimated SAR findings. Unexpectedly, combination of 4-fluoro and
2-chloro substituents had a different effect for triazole and thiazole derivatives. Com-
pounds 32a,b performed worse than the derivatives 26n and 26t (Table 3, entry 1–2). On
the other hand, inhibitory activity of thiazole derivatives 49c,d was higher in comparison
to compound 11 (Table 4, entries 10–11). Moreover, derivative 49d showed comparable
inhibitory activity as derivative 49a, making the two of them the best inhibitors from our
study with sub-micromolar IC50 values.

Table 4. Inhibitory activities of the optimized derivatives based on SAR evaluation.

Entry Compound Inhibitory Activity [%I ± SEM]
c = 1 µM IC50 ± SEM [µM]

1 32a 25.30 ± 1.10 N.D.
2 32b 21.25 ± 0.67 N.D.
3 32c 35.94 ± 2.87 N.D.
4 34a 52.49 ± 1.31 N.D.
5 34b 56.60 ± 3.68 0.987 ± 0.088
6 34c 36.16 ± 3.81 N.D.
7 34d 9.73 ± 1.41 N.D.
8 49a 61.54 ± 7.16 0.097 ± 0.014
9 49b 57.07 ± 0.31 N.D.

10 49c 47.65 ± 1.71 N.D.
11 49d 59.71 ± 0.97 0.304 ± 0.039

3. Materials and Methods
3.1. Computational Methods
3.1.1. Pharmacophore Modeling

An overlay of inhibitors was generated based on the selection of the available inhibitor-
enzyme structures. The used structures were pdb:4GDY, pdb:4UE8, pdb:4GE9, and
pdb:2R2N. The Pharmacophore Builder tool of the Molecular Operating Environment [50]
software package was subsequently used to hand-select common features apparent in the
overlay. Prospective compounds were screened by performing a pharmacophore search.
Conformations for screened compounds were prepared using the Conformational Search
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tool. A stochastic search with a maximal conformation limit of 1000 and a high energy
window (50 kcal/mol) and otherwise standard settings was used so a large amount of
conformations would be sampled for the pharmacophore search.

3.1.2. Docking

All ligands were docked to pdb:4GDY, a structure of a cofactor-bound tricyclic KAT
inhibitor bound to KAT, using the docking algorithm of the Molecular Operating Envi-
ronment [50] software package. The docking was performed under standard settings:
the used forcefield was MMFF94x, placement was made by the Triangle Matcher and
scored using the London dG scoring function, retaining 100 poses. Refinement was made
under induced fit settings, using the GBVI/WSA dG scoring function, retaining 20 poses.
Compounds were pre-prepared for docking by protonation at physiological pH and energy
minimization with an MMFF94x forcefield.

3.2. Enzyme Production and Purification

The nucleotide sequence encoding hKAT-II gene was constructed by Invitrogen,
Thermo Fisher Scientific. The hKAT-II gene, optimized for heterologous expression in
E. coli, was cloned into a pET15b vector using NdeI-XhoI. The hKAT-II protein, carrying an
N-terminal hexahistidine tag, was produced in E.coli BL21(DE3)-RIL cells for 4 h at 37 ◦C.
The bacterial cells were then harvested and disintegrated using One-Shot. Low-speed
(25.000× g, 30 min) centrifugation cleared cell lysate containing hKAT-II was loaded on
the top of a HisTrap Fast Flow column (Cytiva) equilibrated in loading buffer (40 mM Tris,
pH 8; 1000 mM NaCl, 40 µM PLP, 5 mM MgCl2, 20 mM imidazole). Following elution of
the bound proteins by the loading buffer containing 600 mM imidazole, purified hKAT-II
was dialyzed into a storage buffer (20 mM Hepes pH 7.5; 50 mM NaCl, 70 µM PLP, 10%
glycerol), concentrated to 1.0–1.5 mg/mL, aliquoted, and stored at −80 ◦C.

3.3. Activity Assay of hKAT-II

hKAT-II activity was measured using a fluorescence assay utilizing L-α-aminoadipic
acid (AAD) and α-ketoglutarate as the substrates as previously described [51]. The assay
medium (100 µL) consisted of 0.75 µM of hKAT-II, 0.3 mM of AAD, 50 µM α-ketoglutarate,
3 mM NAD+, 88 µg/mL of glutamic dehydrogenase, and 5 µM pyridoxal phosphate (PLP)
in a 0.1 M phosphate buffer pH 7.5. The activity of the enzyme was assessed on a Spark
multiple mode reader (Tecan Group Ltd., Männedorf, Switzerland) with an excitation
wavelength of 340 nm and emission wavelength of 390 nm at 37 ◦C. The plate was shaken
for 20 s before reading. The kinetic interval was set at 30 s between each reading, and data
were collected for 30 min. The activity of the enzyme was assayed in pentaplicate in each
measurement (n = 3). Kinetic data were then collected over a period of 30 min, and the
linear part of the initial velocity was used to calculate the enzyme activity expressed as the
slope of the linearized curve via the linear regression function (Excel, Microsoft, USA).

3.4. Coupled Fluorescence In Vitro Inhibition Assay

The inhibitory activity of the tested compounds was determined via 30 min pre-
incubation with the enzyme at various concentrations of the inhibitor at room temperature
in a 0.1 M phosphate buffer pH 7.5 with 5 µM PLP. The enzyme reaction was initiated
by the addition of a substrate and cofactors. The final mixture contained 20 nM of hKAT-
II, 0.3 mM of AAD, 50 µM α-ketoglutarate, 3 mM NAD+, and 88 µg/mL of glutamic
dehydrogenase. Kinetic data were collected over a period of 30 min, and the slope of
the linearized curve was calculated as above. The inhibitory activity in %I at a given
concentration was calculated for novel compounds using the following equation:

Inhibition [%I] =
(

V0− Vi
V0

)
× 100, (1)
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where V0 and Vi are the activity of the enzyme in the absence and presence of the inhibitor,
respectively. All the data were obtained in pentaplicate for each measurement (n = 3).
Alternatively, the IC50 values for selected novel compounds were assessed. GraphPad
Prism 8 software (San Diego, USA) was used for the IC50 value calculation using non-linear
regression (four parameters). PF-04859989 (3) was used as the reference inhibitor to validate
the assay. The obtained IC50 value for the reference inhibitor 3 (IC50 = 28 ± 5 nM) was in
agreement with the published data [19,51].

3.5. Chemistry

All commercially available chemicals and reagents were purchased from either Sigma-
Aldrich (Merck) (Darmstadt, Germany), Fluorochem (Hadfield, United Kingdom), TCI
(Zwijndrecht, Belgium), or ABCR (Karlsruhe, Germany), and were used without any
further purification. The reference inhibitor PF-04859989 (3) was synthesized according
to the published procedure [51]. Anhydrous solvents were prepared by drying with
molecular sieves. All reactions were carried out under an argon atmosphere. Thin layer
chromatography (TLC) was performed on aluminum backed sheets coated with 60F 254
silica gel from Merck (Darmstadt, Germany). Flash chromatography was performed on a
CombiFlash Rf 200 apparatus (Teledyne ISCO, Lincoln, NE, USA) using either silica gel
(45–200 µm) from Merck, or prepacked Redisep Rf Gold columns (packed with silica gel).
NMR spectra were recorded on Agilent 400-MR DD2 (400 MHz for 1H; 101 MHz for 13C) or
Varian Gemini 300 (300 MHz for 1H; 282 MHz for 19F) spectrometers. Chemical shifts δ were
reported in ppm and referenced to residual peaks of NMR solvents (1H, 13C): CDCl3–7.26
(1H), 77.0 (13C); DMSO-d6–2.50 (1H), 39.5 (13C); CD3OD–3.31 (1H), 49.0 (13C). Chemical
shifts in 19F spectra were referenced to the peak of CFCl3 (0.0 ppm). High resolution
mass spectra were measured on an Agilent 6550 iFunnel Q-TOF (Agilent, Santa Clara, CA,
USA) or LTQ Orbitrap Velos (Thermo Fischer Scientific, Waltham, MA, USA) spectrometer
using ESI ionization. Melting points were measured using a PHMK 78/1742 VEB Analytik
Dresden apparatus (Kofler type) and were uncorrected. The purity of all compounds used
for biochemical testing was 95% or higher, as determined by HPLC/UV on Agilent 1290
Infinity LC (Agilent, Santa Clara, CA, USA ).

Detailed procedures and characterization of the synthesized compounds together
with copies of the NMR spectra are available in the Supplementary Materials related to
this manuscript. Analytical data of compounds 14 [52], 23a [53], 23b [52], 23c [54], 23d [54],
23e [54], 23f [55], 15 [56], 18a [57], 18b [40], 22 [58], 24b [59] and 42a [60] were in agreement
with those previously reported.

3.5.1. General Procedure 1 (GP1): Synthesis of Weinreb Amides from Boc-L-Amino Acids

To the solution of Boc-L-amino acid (1.0 eq.) in dry DCM (2.5 mL/mmol) was added
CDI (1.1 eq.) portionwise and the mixture was stirred at r.t. for 1.25 h. Solid N,O-
dimethylhydroxylamine hydrochloride (1.11 eq.) was then added and the suspension
was stirred overnight. DCM was evaporated and the residue was partitioned between
EtOAc and 1 M HCl. The organic phase was washed once more with 1 M HCl, followed by
saturated NaHCO3 (2×), and brine, and was dried by MgSO4. Evaporation of the solvent
gave pure Weinreb amides.

3.5.2. General Procedure 2 (GP2): Synthesis of Alkynones from Weinreb Amides

The solution of Weinreb amide (1.0 eq.) in dry THF (4 mL/mmol) was cooled to
−78 ◦C, followed by dropwise addition of ethynylmagnesium bromide (4.0 eq., 0.5M solu-
tion in THF). The resulting solution was stirred at −78 ◦C for 1 h and then at r.t. overnight.
The mixture was then poured into an ice-cold 1 M aqueous NaHSO4 (16 mL/mmol) and
the biphasic mixture was stirred for 1 h at 0 ◦C. Most of the THF was evaporated and the
aqueous layer was extracted by Et2O (3 × 15 mL/mmol). The combined organic phases
were washed with 1 M NaHSO4, saturated NaHCO3, and brine, and dried by MgSO4.
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The crude product was purified by flash chromatography (SiO2, 15–35% EtOAc/hexane),
yielding the corresponding alkynones.

3.5.3. General Procedure 3 (GP3): Acylation of Thiazoles and Benzo[d]thiazoles with
Weinreb Amides

Step 1: The thiazole derivative (1.5 eq.) was dissolved in dry THF (2 mL/mmol) and
the solution was cooled either to −10 ◦C or −78 ◦C. Then, a solution of i-PrMgCl.LiCl
(1.5 eq. 1.3 M solution in THF) or n-BuLi (1.5 eq, 2.5 M solution in hexane) was added
dropwise and the resulting mixture was stirred at −10 ◦C (if i-PrMgCl.LiCl was used) or at
−78 ◦C (if n-BuLi was used) for 1–2 h.

Step 2: The suspension/solution of Weinreb amide (1.0 eq.) in dry THF (2 mL/mmol)
was cooled to −10 ◦C or −78 ◦C, and i-PrMgCl.LiCl (1.0 eq. 1.3 M solution in THF) or
n-BuLi (1.0 eq, 2.5 M solution in hexane) was added dropwise. The resulting mixture
was stirred for 10 min and then transferred into the solution of metallated thiazole from
step 1. The reaction mixture was stirred for 15 min at −10 ◦C and then at r.t. overnight (if
i-PrMgCl.LiCl was used) or was stirred 3–6 h at −78 ◦C (if n-BuLi was used). The mixture
was quenched with saturated NH4Cl, diluted with water, and extracted with EtOAc
(2 × 10 mL/mmol). The combined organic phases were washed with brine and dried by
MgSO4. Purification of crude products by flash chromatography (SiO2, EtOAc/hexane, or
Et2O/hexane) gave acylated thiazole or benzo[d]thiazole derivatives.

3.5.4. General Procedure 4 (GP4): Synthesis of Aryl Azides

Method A (GP4A): Concentrated HCl (0.2 mL/mmol) was added to the mixture of the
aniline derivative (1.0 eq.) and water (2.2 mL/mmol), and the resulting solution was cooled
with an ice bath, followed by dropwise addition of NaNO2 (1.0 eq., 5 M aqueous solution).
After 30 min, the mixture was neutralized with a cold saturated NaHCO3 solution and
then, still with cooling, NaN3 (1.0 eq., 4M aqueous solution) was slowly added. The cooling
bath was removed, and the mixture was stirred vigorously for 1 h at r.t. The mixture was
extracted with toluene (6 mL/mmol), and the organic phase was washed with saturated
NaHCO3, and brine, and dried by MgSO4. The obtained toluene solutions of crude azides
were used directly in the next step.

Method B (GP4B): Degassed EtOH/H2O (7:3, 4 mL/mmol), followed by DMEDA
(0.15 eq.) was added to the mixture of aryl bromide or aryl iodide (1.0 eq.), NaN3 (2.0 eq.),
CuI (0.1 eq.), and sodium ascorbate (0.05 eq.), and the resulting mixture was refluxed
under argon for 1.5 h (aryl bromide) or 40 min (aryl iodide). After cooling, the mixture
was diluted with water and extracted with hexane (3 × 10 mL/mmol). The combined
organic phases were washed with brine and dried by MgSO4. Careful removal of hexane
on a rotavap (30 ◦C water bath) gave crude azides, which were used directly in the next
step. Alternatively, the crude mixture was extracted by toluene and used directly in the
next step.

3.5.5. General Procedure 5 (GP5): Synthesis of Triazole Derivatives by CuAAC

Method A (GP5A): t-BuOH/H2O (1:1, 5 mL/mmol) was added to the mixture of crude
azide (1.0 eq.) and alkynone (1.0 eq.), followed by sodium ascorbate (0.1 eq., 1 M aqueous
solution), and CuSO4.5H2O (0.01 eq., 50 mg/mL aqueous solution). The mixture was
stirred under argon at r.t. overnight. The suspension was diluted with ice-cold water and
filtered. Solids were washed several times with water and vacuum dried. Trituration of the
crude product with hexane gave pure triazoles. If no precipitation occurred after dilution
with water, the mixture was extracted with EtOAc (3 × 15 mL/mmol) and the combined
organic phases were washed with brine (2×) and dried by MgSO4. The crude product was
purified by flash chromatography (SiO2, EtOAc/hexane).

Method B (GP5B): Alkynone (1.0 eq.) and crude azide (1.0 eq.) were dissolved in
toluene (10 mL/mmol) (or the solution of crude azide in toluene from previous step was
used), followed by the addition of CuTC (0.1 eq.) and the resulting mixture was stirred
under argon overnight. The toluene was evaporated, and the residue was partitioned be-
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tween DCM (20 mL/mmol) and saturated aqueous NH4Cl. The aqueous phase was further
extracted with DCM (2 × 20 mL/mmol) and the combined organic phases were washed
with brine and dried by MgSO4. The crude product was purified by flash chromatography
(SiO2, EtOAc/hexane), followed by precipitation from the hexane (if needed).

3.5.6. General Procedure 6 (GP6): Suzuki Coupling of 2-acyl-5-bromothiazoles

Degassed THF/H2O (4:1, 10 mL/mmol) was added to the mixture of the bromothia-
zole derivative (1.0 eq), (4-fluorophenyl)boronic acid (1.1 eq), XPhos Pd G2 (0.03 eq.), and
K3PO4 (2.0 eq.), and the resulting mixture was stirred under an argon atmosphere at 40 ◦C.
To achieve full conversion of the starting bromothiazole, additional (4-fluorophenyl)boronic
(0.5 eq.) was added a few times in 2–3 h intervals (progress was monitored by TLC). Then,
the reaction mixture was diluted with saturated aqueous NH4Cl and extracted with EtOAc
(3 × 20 mL/mmol). The combined organic phases were washed with brine and dried
by MgSO4. The crude products were purified by flash chromatography (SiO2, 10–25%
EtOAc/hexane).

3.5.7. General Procedure 7 (GP7): Synthesis of Heterocyclic Cathinones by Deprotection of
the Boc Protecting Group

Acetyl chloride (8.0 eq.) was added dropwise to a solution/suspension of Boc-
derivative (1.0 eq.) in dry MeOH (4 mL/mmol), cooled with an ice bath. The resulting
mixture was then stirred at r.t. until full consumption of the starting material (5–18 h,
checked by TLC). Volatiles were evaporated on a rotavap and the products were precip-
itated with acetonitrile or i-PrOH. In some cases, the crude products were purified by
recrystallization from EtOH/ether, acetonitrile, or i-PrOH.

4. Conclusions

We successfully designed irreversible α-amino ketone inhibitors of KAT-II using
pharmacophore modeling and molecular docking. A series of thiazole- and triazole-based
amino ketones was synthesized within the SAR study. Their inhibitory activity was
determined in vitro, ultimately leading to sub-micromolar inhibitors of KAT-II 34a,b, 49a,b,
and 49d. The most potent inhibitor 49a showed considerable activity with IC50 = 0.097 µM,
which is comparable to the most active KAT-II inhibitors that have been published so far.
Currently, we are focusing on the in vivo evaluation of the prepared inhibitors together
with pharmacokinetic experiments and possible further structure optimization. In addition,
our inhibitors have great potential for use in behavioral studies on rodents.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14121291/s1.
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40. Pirc, S.; Bevk, D.; Golobič, A.; Stanovnik, B.; Svete, J. Transformation of amino acids into nonracemic 1-(heteroaryl)ethanamines
by the enamino ketone methodology. Helv. Chim. Acta 2006, 89, 30–44. [CrossRef]

41. Liu, J.; Ikemoto, N.; Petrillo, D.; Armstrong, J.D. Improved syntheses of α-BOC-aminoketones from α-BOC-amino-Weinreb
amides using a pre-deprotonation protocol. Tetrahedron Lett. 2002, 43, 8223–8226. [CrossRef]

42. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis
of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc. 2005, 127, 210–216. [CrossRef]
[PubMed]

43. Andersen, J.; Madsen, U.; Björkling, F.; Liang, X. Rapid Synthesis of Aryl Azides from Aryl Halides under Mild Conditions.
Synlett 2005, 2209–2213. [CrossRef]

44. Berry, M.T.; Castrejon, D.; Hein, J.E. Oxidative Esterification of Aldehydes Using Mesoionic 1,2,3-Triazolyl Carbene Organocata-
lysts. Org. Lett. 2014, 16, 3676–3679. [CrossRef]

45. Ran, R.Q.; He, J.; Xiu, S.D.; Wang, K.B.; Li, C.Y. Synthesis of 3-pyrrolin-2-ones by rhodium-catalyzed transannulation of
1-sulfonyl-1,2,3-triazole with ketene silyl acetal. Org. Lett. 2014, 16, 3704–3707. [CrossRef]

46. Kitamura, M.; Kato, S.; Yano, M.; Tashiro, N.; Shiratake, Y.; Sando, M.; Okauchi, T. A reagent for safe and efficient diazo-transfer
to primary amines: 2-azido-1,3-dimethylimidazolinium hexafluorophosphate. Org. Biomol. Chem. 2014, 12, 4397–4406. [CrossRef]

47. Sharma, D.K.; Spencer, T.; Adams, J.; Liebmann, K.L.; Miller, S.C. Rapid Access to a Broad Range of 6′-Substituted Firefly Luciferin
Analogues Reveals Surprising Emitters and Inhibitors. Org. Lett. 2017, 19, 5836–5839. [CrossRef]

48. Tsuruoka, A.; Kaku, Y.; Kakinuma, H.; Tsukada, I.; Yanagisawa, M.; Nara, K.; Naito, T. Synthesis and Antifungal Activity of Novel
Thiazole-Containing Triazole Antifungals. II. Optically Active ER-30346 and Its Derivatives. Chem. Pharm. Bull. 1998, 46, 623–630.
[CrossRef] [PubMed]

http://doi.org/10.1002/jnr.24489
http://www.ncbi.nlm.nih.gov/pubmed/31257634
http://doi.org/10.1016/j.bbrc.2019.11.130
http://www.ncbi.nlm.nih.gov/pubmed/31787239
http://doi.org/10.1007/s00213-020-05507-x
http://doi.org/10.1523/JNEUROSCI.1107-14.2014
http://doi.org/10.1039/C2MD20166F
http://doi.org/10.1021/ml300237v
http://www.ncbi.nlm.nih.gov/pubmed/24900560
http://doi.org/10.1016/j.bmcl.2013.02.039
http://doi.org/10.1093/schbul/sbt157
http://doi.org/10.1038/s41598-019-46666-y
http://doi.org/10.1371/journal.pone.0196404
http://www.ncbi.nlm.nih.gov/pubmed/29689093
http://doi.org/10.1016/j.bmcl.2020.127060
http://www.ncbi.nlm.nih.gov/pubmed/32113843
http://doi.org/10.1021/ol020092s
http://www.ncbi.nlm.nih.gov/pubmed/12153204
http://doi.org/10.1002/hlca.200690010
http://doi.org/10.1016/S0040-4039(02)02031-2
http://doi.org/10.1021/ja0471525
http://www.ncbi.nlm.nih.gov/pubmed/15631470
http://doi.org/10.1002/chin.200602076
http://doi.org/10.1021/ol501458p
http://doi.org/10.1021/ol501514b
http://doi.org/10.1039/c4ob00515e
http://doi.org/10.1021/acs.orglett.7b02806
http://doi.org/10.1248/cpb.46.623
http://www.ncbi.nlm.nih.gov/pubmed/9579038


Pharmaceuticals 2021, 14, 1291 20 of 20
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