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Background. Gut microbiota were recently shown to impact malaria disease progression and outcome, and prior studies have 
shown that Plasmodium infections increase the likelihood of enteric bacteria causing systemic infections. Currently, it is not known 
whether Plasmodium infection impacts human gut microbiota as a prelude to bacteremia or whether antimalarials affect gut micro-
biota. Our goal was to determine to what degree Plasmodium infections and antimalarial treatment affect human gut microbiota.

Methods. One hundred Kenyan infants underwent active surveillance for malaria from birth to 10 months of age. Each malaria 
episode was treated with artemether-lumefantrine (AL). Any other treatments, including antibiotics, were recorded. Stool samples 
were collected on an approximately biweekly basis. Ten children were selected on the basis of stool samples having been collected be-
fore (n = 27) or after (n = 17) a malaria episode and without antibiotics having been administered between collections. These samples 
were subjected to 16S ribosomal ribonucleic acid gene (V3–V4 region) sequencing.

Results. Bacterial community network analysis revealed no obvious differences in the before and after malaria/AL samples, 
which was consistent with no difference in alpha and beta diversity and taxonomic analysis at the family and genus level with one 
exception. At the sequence variant (SV) level, akin to bacterial species, only 1 of the top 100 SVs was significantly different. In addi-
tion, predicted metagenome analysis revealed no significant difference in metagenomic capacity between before and after malaria/
AL samples. The number of malaria episodes, 1 versus 2, explained significant variation in gut microbiota composition of the infants.

Conclusions. In-depth bioinformatics analysis of stool bacteria has revealed for the first time that human malaria episode/AL 
treatment have minimal effects on gut microbiota in Kenyan infants.

Keywords. antibiotics; artemether/lumefantrine; infants; malaria; microbiota.

Almost half of the world population is at risk of malaria, an 
infectious disease caused by apicomplexan protozoan par-
asites of the genus Plasmodium [1]. Recent publications have 
demonstrated the impact of gut microbiota, the complex com-
munity of microorganisms that live in the gastrointestinal tract, 
on malaria disease progression and outcome. Yilmaz et al [2] 
reported that Escherichia coli O86:B7 expresses Galα1-3Galβ1-
4GlcNAc-R (α-gal) carbohydrates that can elicit the production 
of anti-α-gal antibodies that cross-react with α-gal-expressing 
Plasmodium sporozoites, providing protection against the in-
itial liver stage infection. We have shown that gut microbiota 
modulates the magnitude and kinetics of blood stage rodent 

Plasmodium species parasitemia and subsequent severity of 
malaria in mice [3]. Likewise, stool microbiota composition in 
humans is associated with the prospective risk of Plasmodium 
falciparum infection [4]. Rodent Plasmodium species can also 
modulate intestinal tissue and gut bacteria populations; how-
ever, this outcome appears to be dependent on the combination 
of mouse strain and Plasmodium species [5, 6].

Plasmodium infections in humans increase susceptibility of 
enteric bacteria progressing to bacteremia, including nonty-
phoid Salmonella [7], and it is well established that gut micro-
biota dysbiosis increases susceptibility to Salmonella infections 
[8]. Consistent with these observations, Plasmodium yoelii nige-
riensis-induced gut bacteria dysbiosis increased susceptibility 
of mice to nontyphoid Salmonella infection [6]. More impor-
tantly, it remains unknown whether Plasmodium infection alters 
human gut microbiota as a potential prelude to the progression 
of enteric bacteria to bacteremia. Moreover, although oral anti-
biotics cause gut microbiota dysbiosis [9, 10], which increases 
susceptibility to numerous diseases [11–15], it is not known 
whether oral treatment with antimalarial drugs also impacts 
gut microbiota. Therefore, the objective of the current study was 
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to assess to what degree Plasmodium infection, or antimalarial 
treatment, in humans induces gut bacteria dysbiosis that may 
contribute to enteric bacteria progressing to systemic infections.

METHODS

Study Site and Sample Collection

Full details are provided in Supplementary Text. In brief, 100 
infants in Kilifi County, Kenya, were subject to continuous 
active and passive case detection for fever and other health 
parameters from within 14  days of birth until 9  months of 
age (cohort principal investigator R.J.C.). Febrile participants 
with positive rapid diagnostic test (RDT) and/or slide mi-
croscopy were immediately started on a 3-day oral course of 
artemether-lumefantrine (AL). Antibiotic courses were also 
prospectively recorded. Stool samples were collected at home 
every 1–3 weeks. Samples were selected for analysis on the basis 
of having been collected before or fewer than 18  days after a 
malaria diagnosis, with no antibiotics having been admin-
istered during the period in-between the “before” and “after” 
stool samples. Deoxyribonucleic acid was extracted from these 
selected stool samples and subjected to 16S ribosomal ribonu-
cleic acid (rRNA) gene sequence analysis of the V3–V4 hyper-
variable region according to the Illumina 16S metagenomic 
sequencing library preparation protocol (Illumina). Reads un-
derwent quality control to remove phiX reads and filter chi-
meric sequences followed by multiple downstream analyses 
of high-quality sequences using QIIME2(https://qiime2.org/). 
Statistical analysis for alpha and beta diversity were performed 
using linear mixed-effect models at 33  000 sequencing reads 
depth per sample. Metagenomic capacity was predicted using 
Piphillin (http://secondgenome.com/solutions/resources/
data-analysis-tools/piphillin/), and statistical analysis were per-
formed using t test and DESeq2 implemented inside RNA-seq 
2G online tool (http://52.90.192.24:3838/rnaseq2g/). Variation 
and significance level of covariates were determined using 
“envfit” function implemented in “vegan” (http://cc.oulu.
fi/~jarioksa/softhelp/vegan/html/envfit.html).

RESULTS

Participants, Stool Samples, and Sequencing

A total of 1234 stool samples were collected during the cohort. 
Forty-four of these—from 10 participants—met the selection 
criteria for this study (Supplementary Table 1; Figure 1A). Six of 
10 participants had 1 or more antibiotic courses before the first 
selected stool sample (Figure 1A). All antibiotic courses lasted 
5  days (Supplementary Table 2). All 16 malaria episodes were 
nonsevere (ie, not requiring admission to hospital) and treated 
with a 3-day course of AL starting on the day of diagnosis. Rapid 
diagnostic test was positive for all 16 episodes. Plasmodium fal-
ciparum was detected by slide microscopy for 11 episodes, and 
no parasites were seen for 5 episodes (Supplementary Table 3).  
In some analyses, paired stool samples from a single before 

(within 14 days) and after (within 18 days) malaria episode were 
compared (Figure 1A, boxed samples). This paired analysis subset 
comprised 24 stool samples.

Gut Bacterial Communities Are Not Affected by Acute Febrile Malaria 

Artemether-Lumefantrine Treatment

Demultiplexing the raw sequencing reads from an amplicon 
spanning V3–V4 of the 16S rRNA gene in all 44 stool samples 
(Figure 1A) produced an average of 248 577.8 (standard error 
± 7531.72) and median of 251  803 reads per sample (min-
imum = 50 800 and maximum = 335 554) totaling 10 937 425 
reads (Supplementary Table 1). Analysis of the reads identified 
that the forward reads outperformed the joined reads and were 
used for all the analysis performed in this study (Supplementary 
Text and Supplementary Figure 1).

Because every episode of malaria was treated with the 
standard 3-day AL course, malaria episodes and AL treatment 
were treated synonymously when comparing bacterial commu-
nities in stool samples collected before and after these reference 
time points. Observed taxonomic unit (OTU) interaction map 
showed no distinct pattern of shared sequence variants (SVs) 
between before and after malaria/AL episodes among all 44 
stool samples (Figure 1B). Furthermore, the top 300 abundant 
SVs, which represents the core of OTU interaction map (98.92% 
of all SVs), had 224 (74.6%) SVs in common between the before 
and after malaria/AL (Figure 1C), representing 96.31% of total 
SVs detected in the infant stool samples (Figure 1D). Likewise, 
paired analysis of a single stool sample collected before and after 
a malaria/AL episode (12 pairs of samples between the 10 par-
ticipants) (Figure 1A) showed no clear clustering of stool sam-
ples based on the shared SVs (Supplementary Figure 2A). The 
top 300 abundant core SVs (99.61% of all SVs) had 194 (64.7%) 
SVs in common between before and after malaria/AL stool 
samples (Supplementary Figure 2B). This constituted 95.8% of 
all SVs in the infant stool samples (Supplementary Figure 2C).

Bacterial diversity, as measured by alpha diversity (within 
sample diversity) using Observed_OTUs (richness/number 
of species present) and Shannon index (richness and even-
ness), were analyzed between the before and after malaria/AL 
episodes. Neither Observed_OTUs (P  =  .130, linear mixed- 
effects model [LMEM]; Figure 2A and B) nor Shannon index 
(P = .234, LMEM; Figure 2C and D) were significantly different 
between the before and after malaria/AL samples. Furthermore, 
sex, antibiotic use, number of malaria episodes, antibiotic start 
day, and age had no effect on alpha diversity (measured using 
Observed_OTUs, pielou_e, and Shannon index) as shown 
in Supplementary Table 4. Discordant with previous studies 
showing an increase in bacterial alpha diversity with increasing 
age up to 2  years of age [16], in this study of only 10 infants, 
there was marginal negative correlation between infant age and 
Observed_OTUs (R2 = 0.09, P = .044; Supplementary Figure 3A) 
but no correlation between age and Shannon index (R2 = 0.007, 
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Figure 1. Observed taxonomic unit interaction maps show no distinct pattern between before and after malaria episode/artemether-lumefantrine (AL) treatment stool 
samples. (A) Timing of selected stool samples, malaria episodes, and antibiotic courses. Dates of stool collection (n = 44), malaria episodes/AL treatment (n = 16) and antibi-
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P  =  .6) (Supplementary Figure 3B). Similar results were also 
observed when samples were segregated into those infants who 
did or did not have antibiotics through the last stool sample 
selected for this study (Supplementary Figure 3C and D).

Beta diversity (bacterial diversity between samples) was cal-
culated using (1) non-phylogenetic Bray-Curtis distance and 
(2) phylogenetic weighted and unweighted UniFrac distance for 
all samples (n = 44, left column) and paired samples (n = 24, 
right column) (Figure 3). The bacterial community structure 
and composition between the before and after malaria/AL stool 
samples were not different in any of the samples or paired sam-
ples analysis using both non-phylogenetic and phylogenetic 
beta diversity metrics (P > .05, LMEM) (Figure 3). These anal-
yses indicate that an acute malaria/AL episode had no impact 
on the structural composition of the stool bacteria community.

Minimal Differentially Abundant Bacterial Features in Stool of Infants 

Before and After Malaria Artemether-Lumefantrine Episode

The prior analyses did not identify major changes in the bacte-
rial community structures in stool samples collected before and 
after malaria/AL episodes. Yet, smaller taxonomic differences 
may have been present between the stool samples. Graphical 
phylogenetic analysis showed similar taxonomic profile between 

before and after malaria/AL (Supplementary Figure 4). In addi-
tion, linear discriminate effect size (LEfSe) analysis was used 
to identify any differentially abundant bacteria at the phylum, 
class, order, family, genus, and SV level between the before and 
after malaria/AL stool samples. The LEfSe analysis identified 
discriminative bacterial features with a 2 threshold cut off on 
the logarithmic scale (P  <  .05, Wilcoxon and Kruskal-Wallis 
test) (Supplementary Figure 5). However, when accounted for 
repeated measures, Fusobacteriaceae was the only feature that 
was different (higher after malaria/AL treatment; P  =  .025, 
LMEM). Consistently, analysis of the relative abundance of the 
top 12 bacteria family among the individual participants re-
vealed no gross pattern between the before and after malaria/
AL stool samples (Figure 4A). Similar results were seen when 
the overall abundance of these 12 bacterial families were ana-
lyzed between the combined before and after malaria/AL stool 
samples (Figure 4B). When each of the top 12 bacteria families 
were individually compared between the before and after ma-
laria/AL stool samples, none of them were significantly different 
(P >  .05, unpaired t test) (Figure 4C). Likewise, the heat map 
and principal coordinates analysis (PCoA) plot (Supplementary 
Figure 6A and B) of the top 16 genera did not show clustering 
of the before and after malaria/AL stool samples.
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Analysis at the SV level identified minimal differences be-
tween the before and after malaria/AL stool samples. A  ma-
jority of the top 100 SVs, which represents 91.45% and 90.98% 
of total SVs in the before and after samples, respectively, had 
a similar relative abundance between the before and after ma-
laria/AL stool samples (Figure 5A and B), which correlated 
(R2 = 0.948, P < .0001) (Figure 5C). The LEfSe analysis iden-
tified only 5 differentially abundant SVs (Figure 5D). SV43, 
SV80, and SV38 were abundant in stool samples before ma-
laria/AL, whereas SV29 and SV72 were abundant in stool 
samples after malaria/AL (Figure 5D). However, only SV80 
was different when the repeated measures were taken into 
consideration (P  =  .046, LMEM) (Figure 5E, Supplementary 
Figure 7). The top BLASTN (v2.7.1+) hit against the nucleotide 
database for SV43, SV80, SV38, SV72, and SV29 were E coli 
strain Ecol_746, Erysipelatoclostridium ramosum strain CCBE 

141-17, Streptococcus pneumoniae ATCC 49619, Lactobacillus 
fermentum strain S1B1.25, and Lachnospiraceae bacterium, re-
spectively. These analyses demonstrate that malaria/AL epi-
sodes have limited effects on stool bacteria populations at the 
SV level.

Malaria Artemether-Lumefantrine Have Minimal Impact on Predicted 

Functional Activity of Stool Bacterial Communities

The metagenome in the stool samples was predicted using the 
online tool Piphillin. None of the top 20 most highly abun-
dant KEGG pathways (Figure 6A) were more abundant than 
± 0.13 (log2FC) (Figure 6B). KEGG pathways were normal-
ized with DeSeq2, and differentially abundant pathways were 
then calculated using both DeSeq2 and t test with the web 
portal, RNA-Seq 2G (http://rnaseq2g.awsomics.org). Nine 
and eight pathways were enriched in stools before and after 
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malaria/AL using DeSeq2 and t test, respectively (P  <  .05) 
(Figure 6C). Six pathways were common to both tests, which 
was enriched in stool samples before (4 pathways) and after 
(2 pathways) malaria/AL (Figure 6D). Only N-glycan bio-
synthesis had log2FC <1.5 before and after malaria/AL stool 
samples (Figure 6D), but this difference was lost when the 
percentage relative abundance was compared using LMEM 
(P = .217) (Figure 6E).

In addition, the metagenomic capacity of infants with ma-
laria at the KEGG orthology (KO gene) level was analyzed. 
The inferred metagenome at gene level were normalized with 
DeSeq2, and differentially abundant genes were calculated 
using DeSeq2 and t test using RNA-Seq 2G, resulting in 47 
genes common to both tests (Supplementary Figure 8A–C). 
All were abundant in before malaria/AL samples. Stool samples 
were clustered using these differentially abundant genes, yet 
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PCoA and heat map analysis showed overlapping clustering of 
the stool samples, with the exception of 4 before malaria/AL 
stool samples (Supplementary Figure 8D–E). Among these 47, 
most did not fall into any KO pathway (Supplementary Figure 
8F). Inconsistent with the KEGG pathway analysis (Figure 6), 
the pathway with the most gene hits was not N-glycan biosyn-
thesis (Supplementary Figure 8F). Moreover, after visualization 
of the N-glycan biosynthesis pathway with Pathview (https://
pathview.uncc.edu/), only 3 KO were inferred by Piphillin of 
43 KO in the pathway (Supplementary Figure S9). However, 
many KOs of histidine metabolism pathway were enriched 
(Supplementary Figure S8 and S9). Collectively, these data 
provide no compelling evidence that malaria/AL episodes had 
any effect on the potential functional activity of stool bacteria 
communities.

Number of Malaria Episodes Was the Only Significant Covariate Within 

the Stool Sample Bacteria Populations

Finally, variance (r2) explained by various covariates in this 
study was calculated using EnvFit implemented in vegan R 
package. Earlier, we showed no difference in alpha diversity 
among groups of various covariates (Supplementary Table 4). 
Interestingly, using the Bray-Curtis distance matrix at the genus 

and SV levels, only the number of malaria episodes explained 
statistically significant variation in the bacteria composition of 
stool samples (Figure 7A). Furthermore, the PCoA plot showed 
distinct clustering of stool samples between infants with 1 ma-
laria episode compared with 2 malaria episodes (P = .004, per-
mutation-based multivariate analysis of variance) (Figure 7B 
and C). However, the significance was lost between 1 versus 
2 malaria episodes when accounting for the repeated measure 
(P = .169, LMEM) (Figure 7D).

DISCUSSION

This report provides the first longitudinal analysis of stool 
bacteria communities before and after a clinical malaria ep-
isode plus AL treatment in humans. The data identified min-
imal changes in gut microbiota of Kenyan infants due to 
malaria/AL. In contrast to these data in humans, 2 previous 
studies in rodent malaria models have reported larger shifts 
in the gut microbiota of mice before and after malaria infec-
tion associated with intestinal inflammation. Infection of mice 
(C57BL/6) with rodent Plasmodium species (Plasmodium 
berghei ANKA and P yoelii nigeriensis) induced pathological 
changes in the intestine including infiltration of inflammatory 
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macrophages, T cells, detachment of epithelia in the small in-
testine, increased expression of inflammatory cytokines, and 
intestinal permeability [5, 6]. By contrast, no such intestinal 
inflammation and shift in gut microbiota was observed in P 
berghei ANKA-infected BALB/c mice [5], and P yoelii nige-
riensis infection in CBA mice induces anti-inflammatory in-
terleukin (IL)-10 [6, 17]. Likewise, in a nonhuman primate 
model—rhesus macaques (Macaca mulatta) infected with 
Plasmodium fragile—the parasite suppressed gut inflamma-
tion via the induction of IL-10, which blunted the influx of 
neutrophils in the gut [17]. Finally, individuals with severe 
pediatric malaria lack symptoms of gastroenteritis [17, 18]. 
Taken together, these data indicate that inflammation, in-
testinal damage, and changes in gut microbiota might be 
attributed to complex interactions between host genotype and 
Plasmodium species.

Adults with P falciparum infection have been shown to have 
increased gastrointestinal permeability lasting for a couple of 

days depending on the severity of malaria and treatment, which 
reverts to normal during convalescence [19]. In spite of the rela-
tive lack of clinical features of gastroenteritis, malaria is a major 
risk factor for invasive nontyphoid salmonellosis in sub-Sa-
haran Africa [20]. Various mechanisms have been proposed 
that explain why the host immune system struggles to eliminate 
systemic Salmonella during malaria, including macrophage 
dysfunction due to ingestion of the malaria pigment hemozoin 
[21], impaired neutrophil oxidative burst [22], dysfunctional 
spleen in young children, and competition between bacteria 
and damaged red blood cells for phagocytic cells [23] among 
others [24]. However, it is less clear how Salmonella initially 
breaches the intestinal barrier to cause a systemic infection 
during malaria. It is well established that dysbiosis of the normal 
gut flora provides an opportunity for Salmonella to establish in-
fection [8], and it might contribute to nontyphoid salmonellosis 
during malaria. Consistent with this possibility, P yoelii nige-
riensis-induced dysbiosis resulted in increased susceptibility to 
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Salmonella typhimurium enterica infection in C57BL/6 mice 
[6]. In contrast, the analyses reported here identified little to 
no change in stool bacteria in Kenyan infants after nonsevere 
malaria episodes. In addition to dysbiosis, P yoelii nigeriensis 
infections induce elevated production of intestinal IL-10, which 
facilitates increased translocation of S typhimurium enterica out 
of the intestinal tract [17]. Taken together, these results suggest 
that in humans Plasmodium-induced changes in the anti-in-
flammatory status of the intestinal tract may be more likely to 
contribute to intestinal translocation of Salmonella rather than 
gut microbiota dysbiosis.

Of the 16 malaria episodes, all were RDT positive but only 
11 were slide positive. Copresence of fever and slide positivity 
amongst infants in this moderate to high transmission inten-
sity setting is strongly indicative of acute clinical malaria rather 
than incidental parasitaemia [25]. Suspicion is therefore high 
that these 11 fever episodes were indeed acute P falciparum 
infection. Where slide is negative but RDT positive, suspicion 
may be lower. The RDT used detects the P falciparum-specific 
surface antigen histidine-rich protein 2 (HRP-2) in blood. The 
HRP2-based RDTs can remain positive for up to 42 days or be-
yond after the beginning of a treated clinical malaria episode 
[26]. Participants 1 and 4 each had only 1 malaria diagnosis 
throughout follow-up. Participant 1 had a negative RDT 6 days 
before their index malaria diagnosis date. For participant 4, 
RDTs done 16 and 48 days after the index diagnosis date were 
positive and then negative, respectively. Participant 8’s second 
positive RDT occurred 44  days after their last positive slide. 
These 3 circumstances are therefore in keeping with the index 
positive RDT likely indicating the start of an episode of clinical 
malaria despite slide negativity. The same could perhaps not be 
said for the second episodes for participants 3 and 10. These 
positive RDTs (negative slides) occurred 10 and 13 days, respec-
tively, after a positive slide. However, these 2 episodes remain 
in the analysis because they conform to the prospectively de-
termined malaria diagnostic criteria that follow World Health 
Organization guidelines [27]. For participant 3, the stool sample 
collected immediately before the second malaria episode is in 
fact classed as after the first episode (Figure 1A). Therefore, in-
terpretation of this second slide-negative fever episode has no 
bearing on classification of stool samples. Likelihood of missed 
microscopy positive parasitaemia was hopefully very low in 
this study given the diligent passive and active case detection, 
with fieldworkers and phlebotomists continuously resident and 
available in participants’ villages.

Prior studies have identified a positive correlation between 
microbial diversity, measured by alpha diversity, and age of 
infants [16]. In contrast, our analysis did not identify a robust sig-
nificant correlation in these participants (Supplementary Figure 
S3). One explanation may be that—as is frequently observed in 
this setting—many infants in this study had received antibiotics 
(even if in this study, by merit of the stool selection criteria, all 

of these courses occurred prior to the “before” stool samples). 
Another possible explanation is that an association between di-
versity and age does exist, but it is confounded by other factors 
that are themselves correlated with both age and microbial di-
versity. Examples of confounding factors include acute illnesses 
such as diarrhea, subclinical enteropathogen carriage, diet, life 
style, antibiotic usage of infant’s mother during and even after 
pregnancy that can influence infant gut microbiota via moth-
er’s breastmilk. Another example is nutritional status. Severe 
and even moderate acute malnutrition (low weight-for-height) 
has been shown amongst Bangladeshi children to be associated 
with failure of gut microbiota to diversify with age [28]. During 
monthly measurement of weight and length, 5 of the 10 partic-
ipants fulfilled criteria for moderate or severe wasting (weight 
for length Z score ≤2) at 1 or more time points, and 4 fulfilled 
criteria for moderate or severe stunting (length for age Z score 
≤2) (data not shown). It is not yet known whether stunting is 
associated with gut microbiota immaturity. A weaker associa-
tion between age and diversity—as perhaps expected in this un-
dernourished population—may be more difficult to detect with 
this relatively small sample size.

Only the number of malaria episodes explained significant 
variation in the gut microbiome composition of Kenyan infants. 
It is important to note that this observation has been made in 
a small sample size, and that significance is lost when repeti-
tive sampling is taken into consideration. Nevertheless, it raises 
the exciting possibility that differences in gut bacteria may con-
tribute to differential outcomes of malaria in children. Clearly, 
this possibility will need to be examined in the context of a 
larger and more definitive study that determines the ability of 
gut microbiota to modulate the severity of malaria in African 
children.

CONCLUSIONS

We demonstrate for the first time that human malaria epi-
sodes and AL treatment result in a minimal shift in the gut mi-
crobiota of Kenyan infants, which is in contrast to what was 
observed in some murine models of malaria. These results 
suggest that changes in the inflammatory nature of intestinal 
tissue, in contrast to gut microbiota dysbiosis, during malaria 
may contribute to translocation of enteric bacteria and pro-
gression to bacteremia. This study also leaves open exciting, yet 
unanswered, questions regarding interactions between human 
gut microbiota and malaria. For example, are there different 
gut microbiota between healthy individuals and patients with 
severe malaria? Given the increased appreciation of the gut-
brain axis, is there an interplay between gut microbiota and 
cerebral malaria? Can machine learning algorithms predict the 
gut microbiota composition associated with children prone to 
Plasmodium infections? Addressing these questions could make 
substantial improvements in developing novel approaches to 
prevent malaria-related fatalities.
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Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.
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