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Investigating the dynamics of microbial consortia
in spatially structured environments
Sonali Gupta 1, Tyler D. Ross1, Marcella M. Gomez2, Job L. Grant1, Philip A. Romero1,3 &

Ophelia S. Venturelli 1,3,4✉

The spatial organization of microbial communities arises from a complex interplay of biotic

and abiotic interactions, and is a major determinant of ecosystem functions. Here we design a

microfluidic platform to investigate how the spatial arrangement of microbes impacts gene

expression and growth. We elucidate key biochemical parameters that dictate the mapping

between spatial positioning and gene expression patterns. We show that distance can

establish a low-pass filter to periodic inputs and can enhance the fidelity of information

processing. Positive and negative feedback can play disparate roles in the synchronization

and robustness of a genetic oscillator distributed between two strains to spatial separation.

Quantification of growth and metabolite release in an amino-acid auxotroph community

demonstrates that the interaction network and stability of the community are highly sensitive

to temporal perturbations and spatial arrangements. In sum, our microfluidic platform can

quantify spatiotemporal parameters influencing diffusion-mediated interactions in microbial

consortia.
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M icrobiomes ranging from soil1 to the human gastro-
intestinal tract2 exhibit spatial organization spanning
multiple scales: variation in abiotic parameters dictate

behaviors over centimeters to meter, whereas inter-microbial
interactions impact community behaviors over micrometers to
centimeters3,4. The spatial structure of microbial communities
has been shown to influence ecological stability, functional
activities, and responses to environmental perturbations5–9.
However, we do not fully understand the effects of microbial
spatial distributions on community functions and stability, or
how to manipulate spatial and temporal dynamics to program
community properties.

The majority of microbial interactions are mediated by diffu-
sible compounds9, which can enhance or inhibit community
member’s growth rates, as well as modify the activities of intra-
cellular networks. The spatial proximity of community members
is a major determinant of the costs and benefits of microbial
interactions, and shapes the evolution of ecological networks10,11.
Spatial structure has been shown to provide ecological benefits,
such as promoting population survival through local public good
production12 and enhancing biofilm resilience to environmental
perturbations7,13. Spatial heterogeneity can also enable coex-
istence among members of a community by modulating the
distribution of positive and negative interactions5,14. Finally,
spatial structure can dictate the outcome of invasion of non-
resident strains into a community15.

There are key challenges to studying and controlling the spatial
arrangement of microbes on the micrometer scale3,4. Bacterial
populations have been physically separated using patterned
agarose16, hydrogels17, partitioned microfluidics18, nanoporous
membranes14, cellulose nanofibrils19, nanochannels20, and bio-
printing21 techniques to study interactions and chemical signal
communication. We develop a microfluidic platform, MISTiC
(Mapping Interactions across Space and Time in Communities),
to deepen our understanding of the effects of defined spatial
structure and temporally changing environmental signals on
microbial community properties. MISTiC enables temporal
control of environmental inputs, spatial control of bacterial
populations on the micrometer-scale, and time-lapse imaging of
single-cell and population-level growth and gene expression in a
continuous culture environment.

We use MISTiC to quantify the role of defined spatial structure
and fluctuating environmental signals on information transmis-
sion and the temporal robustness of a distributed gene circuit
oscillator in synthetic microbial consortia. We demonstrate that
spatial separation can enhance the fidelity of information trans-
mission and biomolecular feedback loops can critically shape the
stability of the oscillator to variations in spatial positioning. In
addition, we investigate how spatial arrangements influence
metabolite cross-feeding and community stability using an
amino-acid auxotroph consortium. The inferred interaction net-
works in different environmental contexts within MISTiC cou-
pled to measurements of amino acid release highlight key
parameters that determine the stability of the consortium.
Together, these data show that MISTiC can be used to precisely
quantify the role of micrometer-scale spatial separation and
temporal perturbations on microbial interaction networks, com-
munity functions and stability.

Results
A microfluidic platform to interrogate microbial interactions.
We designed MISTiC to study diffusion-mediated microbial
interactions between pairs of strains, which are major drivers of
multi-member community behaviors22–24 (Fig. 1a). Our micro-
fluidic design balances the pressures between growth chambers

and prevents convective flow through 25, 50, 100, and 250 μm
interaction channels, which spatially separate the strains25. Each
10 × 50 × 1 μm growth chamber contains ∼150 cells that are
restricted to a monolayer for real-time quantification of gene
expression and growth. The interaction channels are <0.5 μm tall
and structurally supported by 0.5 μm pillars, which serve as a
physical barrier for the cells, while permitting diffusion of bio-
molecules between growth chambers. As the population grows
and divides, excess cells are washed away by continuous media
flow, enabling long-term imaging.

The environmental conditions can be dynamically controlled
for each strain using separate inlets. To characterize the molecular
gradients established across interaction channels, we loaded a
fluorescent dye into the source chambers and imaged its diffusion
across the interaction channel into the sink chambers (Supple-
mentary Fig. 1). The concentration of fluorescein within the
interaction channels decreased as a function of the distance from
the source chamber. The average fluorescein concentrations
within sink chambers decreased with increasing interaction
channel length. We used this data to develop a computational
model that represents diffusion as a one-dimensional process by
discretizing the interaction channel into 1 μm regions (Methods
and Supplementary Methods). A linear degradation rate of
fluorescein was required to recapitulate the steady-state experi-
mental data (Supplementary Fig. 1).

Investigating unidirectional bacterial signaling. Microbes
communicate via chemical signals to monitor their population
size, coordinate gene expression, and efficiently allocate intra-
cellular resources26–29. We investigated the impact of spatial
separation on the dynamics of signal communication mediated by
quorum-sensing between engineered Escherichia coli populations.
This community consisted of a sender strain that produced a
quorum-sensing signal (3-oxo-C6-HSL or AHL) and a receiver
strain that sensed the signal and activated a red fluorescent
reporter (RFP) (Fig. 1b). The sender strain harbored an
arabinose-inducible AHL synthetase (LuxI) transcriptionally
fused to a green fluorescent protein (GFP) and the receiver strain
contained an aTc-inducible AHL receptor (LuxR) and RFP
regulated by a LuxR promoter (Supplementary Fig. 2).

We seeded MISTiC growth chambers with the sender and
receiver strains and monitored their gene expression using time-
lapse fluorescence microscopy (Methods) (Experiment 1, Table 1).
After an initial growth phase, arabinose was administered to
induce inter-strain communication. The steady-state of GFP was
constant across distance, demonstrating the uniformity of
arabinose concentration across the device (Fig. 1c). By contrast,
the receiver’s steady-state RFP expression decreased as a function
of distance from the sender strain (Fig. 1d). The RFP response
time did not vary with the length of the interaction channel
(Supplementary Fig. 3a). The orientation of the sender and
receiver strains within the growth chambers did not impact the
gene expression patterns (Experiment 2, Table 1, and Supple-
mentary Fig. 4a, b), indicating the absence of pressure imbalances
and convective flow within MISTiC. In sum, these results indicate
that MISTiC can resolve quantitative changes in the spatiotem-
poral patterns of gene expression in microbial consortia.

A dynamic model for inter-strain communication. To under-
stand the roles of molecular factors in diffusion-mediated inter-
strain communication within MISTiC, we constructed a dynamic
computational gene expression model building on our chemical
diffusion model (Fig. 2a and Supplementary Methods). In the
sender strain, the model captures the concentrations of arabinose
(ara), GFP mRNA (GFPm), GFP protein (GFPp), LuxI mRNA
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(LuxIm), LuxI protein (LuxIp), and AHL (AHL). The species in
the receiver strain include RFP mRNA (RFPm), RFP protein
(RFPp), LuxR protein (LuxRtot), and the activated receptor
(LuxRAHL) consisting of a complex of AHL bound to LuxR. The
model includes time delays for arabinose transport and the

sequential assembly reactions of GFPp, LuxIp, and RFPp30. We
used a genetic algorithm to estimate the parameters based on
time-series fluorescent reporter measurements (Methods).

The model accurately recapitulates the temporal changes in
GFP and RFP at different distances (Fig. 1c, d). The model
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predicts that the receiver steady-states are highly sensitive to
variation in spatial separation less than 100 μm and forecasts that
∼150 sender cells can transmit information across 1000 μm
(defined as 1% of the RFPp steady-state for 2 μm separation)
(Fig. 2b). In the model, increasing the separation distance from 25
to 250 μm resulted in a 2.3 min RFP response time delay
(Supplementary Fig. 3b), consistent with an unresolved time
delay in our experimental data (Supplementary Fig. 3a).

The diffusion rate of AHL into the main channel (D2) and the
degradation rate of AHL (γAHL) influence the AHL concentration
gradient established in the interaction channel. We sought to
investigate the effects of these parameters on the distance-
dependent gene expression pattern. Setting γAHL and/or D2 to
zero significantly altered absolute RFPp steady-state concentra-
tions and their relative differences across distance, indicating that
the stability of the chemical signal and the physical properties of
the environment can dictate the response of a microbial
community to spatial separation (Supplementary Fig. 5).

In response to temporally changing environmental stimuli, the
allocation of intracellular resources can be optimized by
modulating the response times of intracellular networks31,32.
Therefore, we explored how the RFPp response time depends on
two key parameters: the diffusion constant through the interac-
tion channel, D1, and the binding affinity of LuxRAHL to the
RFP promoter, KRFP. The delay in RFPp increases with decreasing
D1 and remains relatively constant as a function of KRFP.
At intermediate values of D1, the delay is inversely related to KRFP

(Fig. 2c). The estimated parameters for the sender–receiver
consortium map to a regime that display small time delays,
indicating that a measurable time delay between the 25 and
250 μm conditions would require a large change in D1.

We analyzed the effects of biochemical parameters on the
relative changes in steady-state RFPp as a function of distance,
defined as distance sensitivity. Changing the binding affinity of
LuxR to AHL (KLuxR) and/or KRFP (Fig. 2d), or the Hill coefficient
of RFPp production (nRFP) (Fig. 2e) relative to their estimated
values shifts the system between the linear and saturated regimes
of the AHL dose response. In the linear regime, steady-state RFPp
exhibits larger relative differences as a function of distance
(greater distance sensitivity) compared with the saturated regimes
(lower distance sensitivity). These results suggest that circuits
could be programmed to realize different spatial patterns by
modifying distance sensitivity via ultrasensitivity33,34, the affinity
of transcription factors to promoters or a chemical inducer35, or
the concentration of molecular factors in the circuit (Fig. 2f).

Parameters impacting fidelity of information transmission.
The spatial organization of a community can influence its
response to temporal variations in environmental stimuli36. We
applied a periodic input to the sender–receiver consortium to

characterize how distance impacts information transmission in
fluctuating environments. To predict system behavior, we simu-
lated square wave oscillations in arabinose (ara) with a period of
2 h (Fig. 3a). The steady-state amplitude and mean RFPp
decreases with increasing spatial separation. To test the model
predictions, the sender–receiver consortium was exposed to
alternating arabinose between 0% and 0.1% with a period of 2 h
(Supplementary Movie 1) (Experiment 3, Table 1). The periods of
GFP and RFP were synchronized with the arabinose input and
therefore did not vary with distance (Supplementary Fig. 6a). In
response to the oscillatory signal, both GFP and RFP mean
intensities increased over time and reached a steady-state oscil-
latory phase (Fig. 3b, c). The GFP mean and amplitude did not
vary across distance (Fig. 3b and Supplementary Fig. 6b). Mir-
roring the model prediction, the RFP mean and amplitude
decreased as a function of distance (Fig. 3b, c and Supplementary
Fig. 6b). At steady-state, the mean activation and decay response
times of GFP and RFP were ∼30–40min across all distances
(Supplementary Fig. 6c, d). These response times are similar to
the exponential phase doubling time of E. coli in Luria Broth (LB)
media, suggesting that cell growth/division dictated the oscillatory
timescale.

We next explored whether information transfer across distance
is corrupted by stochastic processes within the cell37 near a
critical input frequency. We measured the response of the
sender–receiver consortium to a periodic arabinose input with a
period of 1 h (Experiment 4, Table 1). Simulations of arabinose
oscillations with a 1 h period yielded a distance-dependent change
in steady-state RFPp with lower means and amplitudes than the
response to an input period of 2 h (Fig. 3a, d). In response to
alternating arabinose concentrations with a 1 h period, GFP
exhibited steady-state oscillations and the GFP mean did not vary
across distance (Fig. 3e). RFP displayed irregular variability
around the mean at steady-state and a distance-dependent change
in the steady-state fluorescence intensity (Fig. 3f).

Distance or higher input frequencies reduced the RFP
amplitude in model simulations and in our experimental data
(Fig. 3g). These results demonstrate that distance establishes a
low-pass filter, wherein the RFP amplitude above a threshold (Ac)
will vanish at high frequencies and larger distances. Increasing
nRFP augments the relative differences in RFP amplitudes across
distance as a function of the input period (Supplementary
Fig. 7a), indicating that ultrasensitivity can establish a switch-like
low-pass filter with distance. In the 1 h forced oscillator
experiment, the RFP amplitudes did not vary across distance
(Fig. 3f, g), highlighting diminished information transmission in
diffusion-mediated communication38.

Communication between physically separated populations is
impacted by extracellular noise due to diffusion39 and noise from
intracellular processes such as transcriptional40 or translational

Fig. 1 Design of a microfluidic platform to investigate the role of spatiotemporal parameters in microbial consortia. a Schematic of the microfluidic
device. The inlets I11, I12 or I21, I22 connect to the outlets O1 or O2, respectively, and allow temporal control of the environmental conditions. Cells are initially
seeded into growth chambers and the continuous flow of media through the main channels removes excess cells. Pairs of growth chambers are separated
by a lattice of pillars, defined as the interaction channel, which allows diffusion of biomolecules and prevents cells from entering the interaction channel.
The device has ten pairs of growth chambers for each separation distance. b Top: schematic of the genetic circuit in the E. coli sender and receiver strains.
In the sender strain, the operon containing the synthetase LuxI and GFP is induced in response to arabinose. The synthetase LuxI produces the acyl-
homoserine lactone (3-oxo-C6-HSL or AHL), which diffuses through the interaction channel into the receiver strain growth chamber. In the receiver strain,
AHL binds to LuxR to form an activated LuxR–AHL complex, which in turn activates expression of RFP driven by a LuxR-regulated promoter. Bottom:
overlaid representative fluorescence and phase-contrast microscope images of the sender and receiver strains in the device for each interaction channel
length. The scale bar represents 25 μm. c GFP fluorescence in sender growth chambers as a function of time. The vertical line indicates the time at which
arabinose was introduced. Shaded regions represent one standard deviation from the mean. The dashed line denotes the model fit. d RFP fluorescence over
time in the receiver growth chambers. The vertical line indicates the time at which arabinose was introduced. Shaded regions represent one standard
deviation from the mean. The dashed line denotes the model fit. Source data are provided as a Source Data file.
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bursting41. We investigated how information in the periodic
input signal is encoded in the frequency domains of the gene
expression responses. The power spectrum represents how the
variance in gene expression is distributed across frequencies. The
power spectrum for GFP and RFP displayed prominent peaks at
the frequency of the input signal for both experiments (Fig. 3h
and Supplementary Fig. 7b, c). The major peak in the RFP power
spectrum at the input frequency decreased with distance in the 2
h forced oscillation experiment (Fig. 3h, top), reflecting the trend
in amplitude across distance. In response to a 1 h period, RFP

power spectrum frequencies larger than the signal bandwidth
decreased with distance (Fig. 3h, bottom).

To evaluate the fidelity of information transmission across
distance, we defined the signal-to-noise ratio (SNR) as the total
power of the input signal bandwidth divided by the total power
across all frequencies greater than the signal bandwidth
(Methods). The GFP SNR did not vary as a function of distance
in either of the forced oscillator experiments (Fig. 3i and
Supplementary Fig. 7d). In response to a 2 h period, the RFP
SNR was inversely related to distance since it was dominated by
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Fig. 2 Computational model of inter-strain communication in defined spatial environments. a Model schematic depicting the physical and biological
processes represented by the model equations (Supplementary Methods). b The model RFPp steady-states decrease with the distance from the
sender strain. The blue dashed line represents the maximum RFPp steady-state concentration for a 2 μm interaction channel. The gray dashed line denotes
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the power of the input signal bandwidth (Supplementary Fig. 7d).
Notably, the RFP SNR increased with distance in the 1 h forced
oscillation experiment (Fig. 3i).

Therefore, in the regime of a critical input frequency38, the
fidelity of inter-strain communication is diminished at short
distances due to elevated noise but diffusible signals have a

limited spatial range over long distances42. Our results suggest
that the reliability of information transmission in bacterial signal
communication can vary non-monotonically with distance in
response to inputs near a critical frequency. Together, these data
show that distance can function as a low-pass filter to allow cells
to selectively respond to prolonged environmental fluctuations.
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Above a critical input frequency where cellular noise dominates,
spatial separation can modify a trade-off between the reliability of
information transmission and the magnitude of the output
response.

Feedback loops impact oscillatory dynamics across distance.
The intracellular networks mediating microbial interactions can
comprise interlinked feedback loops and bidirectional commu-
nication. We sought to understand the effects of spatial separa-
tion on the dynamics of a distributed gene circuit oscillator
consisting of an E. coli activator strain that produces C4-
homoserine lactone (C4-HSL), which induces the enzymatic
synthesis of 3-OHC14-HSL in an E. coli repressor strain (positive
inter-strain interaction)43. The activator displays a positive
feedback loop by autoregulating the circuit controlling C4-HSL
production (Fig. 4a). The signal 3-OHC14-HSL produced by the
repressor strain induces the expression of a quorum-quenching
lactonase aiiA in the activator and repressor strains, which
degrades both signals and thus inhibits circuit activity in the
repressor (negative feedback loop) and activator (negative inter-

strain interaction). Identical promoters driving the synthetases in
the activator and repressor strains also regulated the expression of
cyan fluorescent protein (CFP) and yellow fluorescent protein
(YFP), respectively, to monitor circuit activity in real time.

The reporters CFP and YFP displayed oscillations across the
majority of conditions in the MISTiC device (Fig. 4b, Supple-
mentary Fig. 8, and Supplementary Movie 2) (Experiment 5,
Table 1). Paired growth chambers exhibited synchronized
oscillations whereas unpaired growth chambers were not
synchronized, indicating that signal diffusion through the
interaction channels was critical to the temporal coordination
of gene expression. The CFP amplitude increased with distance
whereas the YFP amplitude displayed the reverse trend (Fig. 4c),
signifying reduced synchronization of gene expression with
distance. The number of activator peaks moderately increased
and number of repressor peaks substantially decreased with
distance (Fig. 4d), indicating that the oscillatory behavior of the
repressor was highly sensitive to variations in the interaction
range. Our data showed that the activator amplitudes varied non-
monotonically with distance: the amplitudes were diminished by
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Fig. 4 Feedback loops dictate the role of distance on a distributed gene circuit oscillator. a Network schematic of activator and repressor strains in the
MISTiC device. The activator and repressor exhibit bidirectional communication and dual-feedback loops mediated by the signaling molecules C4-HSL and
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(Supplementary Fig. 16). d The number of peaks as a function of distance for activator and repressor strains. Horizontal lines denote a statistically
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represent linear regression fits to the data. Source data are provided as a Source Data file.
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stronger repression at short distances, increased at intermediate
distances, and disappeared at long distances as the activator
expression approached a constitutive ON state (Supplementary
Fig. 8). Conversely, the repressor amplitudes decreased with
distance and displayed an abrupt loss of oscillatory behavior at a
spatial separation of 100–250 μm from the activator strain.

The maximum cross-correlation between CFP and YFP
decreased (Fig. 4e), and the time lag increased (Supplementary
Fig. 9a) with the length of the interaction channel, showing that
distance diminished the coordination of gene expression
dynamics. The distribution of inter-peak distances quantifies the
variability in oscillatory behaviors and is an indicator of phase
drift44. The coefficient of variation of the inter-peak distance
distribution increased by more than threefold for the repressor
strain but did not change significantly for the activator strain
(Fig. 4f and Supplementary Fig. 9b, c). In sum, the activa-
tor’s positive feedback loop enhanced oscillatory robustness
whereas the repressor’s negative feedback loop resulted in greater
sensitivity to spatial separation.

Spatial and temporal modes of metabolic interactions. Micro-
bial community functions are driven by metabolite-mediated
interactions including competition over limiting resources, toxin
release and cross-feeding3,7,9,22,24,45. To investigate how spatial
separation influences metabolic interactions in microbial com-
munities, we studied a synthetic E. coli consortium composed of a
phenylalanine (ΔpheA) and methionine (ΔmetA) auxotroph
strain. Phenylalanine (F) and methionine (M) auxotrophies are
predicted to be prevalent in microbial communities and are two
of the most energetically costly amino acids to synthesize in E.
coli46.

We characterized the community dynamics in batch culture by
inoculating the strains at three initial ratios (50% ΔmetA, 50%
ΔpheA or 90% ΔmetA, 10% ΔpheA, or the reciprocal), in minimal
media lacking M and F, and performed periodic transfers of the
community to fresh media (Methods). Irrespective of the initial
strain proportion, the co-culture converged to a ΔpheA
dominated steady-state (Supplementary Fig. 10a). For a sustained
24 h transfer time, the community exhibited a decreasing trend in
OD600 and eventually collapsed after the third passage
(Supplementary Fig. 10b, top). However, community growth
was maintained over three passages by switching the final passage
to a 48 h incubation time, suggesting that a critical cell density
was required to achieve ecological stability (Supplementary
Fig. 10b, bottom). Therefore, in a batch culture environment
that preserves a critical population size, the community exhibited
growth and stable coexistence over multiple passages with ΔpheA
dominating the community.

In MISTiC, the population-level growth rate can be inferred by
the rate of dilution of an inducible and stable fluorescent reporter
due to cell growth37,47. We used this method to determine each
strain’s maximum growth rate in a spatially structured and
continuous culture environment by labeling ΔmetA and ΔpheA
with inducible GFP and RFP, respectively (Fig. 5a) (Methods). An
interaction was quantified as the fold change of each strain’s
maximum growth rate in the 25 to 250 μm condition. Microbial
interactions are frequently deciphered by evaluating the differ-
ence of a strain’s growth parameters in monoculture and co-
culture conditions22,48. In MISTiC, the sign and strength of the
interaction could be deduced as a function of spatial separation.
In the presence of all amino acids, ΔmetA and ΔpheA exhibited
similar average doubling times of 80 and 86 min (Experiment 6,
Table 1), respectively, across all interaction channel lengths
(Fig. 5b, c and Supplementary Fig. 11), indicating a neutral
interaction network (Fig. 5h).

In the absence of M and F, ΔmetA grew very slowly (1128 min
doubling time) across all distances (Experiment 7, Table 1,
Fig. 5b, and Supplementary Fig. 12a, c). By contrast, the doubling
time for ΔpheA substantially increased with distance (Fig. 5c and
Supplementary Fig. 12b, d). Therefore, the growth rate of ΔpheA
was highly sensitive to distance from the ΔmetA strain and not
the reciprocal, highlighting a major difference in the strength and
operating regime of the interactions (Fig. 5h, center). The
maximum growth rate of ΔpheA was delayed by 43 min in the 25
to 250 μm condition (Fig. 5c, inset), demonstrating that the
timing of the transition from lag phase to growth was also
distance-dependent.

We next investigated the growth of ΔpheA and ΔmetA in
mixed conditions for comparison to the spatially separated
context. Equal proportions of ΔmetA and ΔpheA were introduced
into the growth chambers and cultured in the absence of M and F
(Experiment 8, Table 1). Single-cell segmentation and tracking
were performed to distinguish the strains within mixed commu-
nities and quantify single-cell growth rates (Methods) (Supple-
mentary Fig. 13a). The interaction channel length did not
contribute to the variation in the growth rates of ΔmetA and
ΔpheA (Supplementary Fig. 13b, c). The average ΔmetA and
ΔpheA growth rates within a chamber decreased over time but
remained non-zero for the majority of the experiment (Fig. 5d).
In addition, the percentage of growing cells across all growth
chambers in the mixed condition was larger than 40% for both
strains for the majority of the experiment (Fig. 5d, inset). To
evaluate the difference in each strain’s growth rate in the co-
culture compared to monoculture, similar MISTiC experiments
were performed for ΔmetA (Experiment 9, Table 1) and ΔpheA
(Experiment 10, Table 1). The co-culture growth rates were
significantly higher than their respective monoculture conditions,
demonstrating a mutual growth benefit in mixed conditions
within MISTiC.

The Spearman’s correlation between the growth rate of each
strain and the fraction of the growth chamber occupied by the
partner strain was used to quantify the effect of the partner
strain’s abundance on growth rate (Fig. 5e, inset). Both strains
exhibited statistically significant and non-zero Spearman correla-
tions for the majority of the experiment, indicating a mutualism.
The Spearman’s correlation was consistently higher for ΔpheA,
indicating a stronger dependence of the growth rate of ΔpheA on
the abundance of ΔmetA than the reciprocal, consistent with the
physically separated experiment (Fig. 5b, c). In spite of the growth
rate difference, the average ratio of the two strains approached a
stable steady-state (Supplementary Fig. 13d). As the percentage of
dividing cells (Supplementary Fig. 13e) was significantly lower
than the percentage of growing cells (Fig. 5d, inset) for both
strains, cell elongation was the dominant mode of growth in these
conditions. In addition, growth rates did not vary as a function of
the position of single cells within the growth chambers
(Supplementary Fig. 13f). These findings illustrate the ability of
MISTiC to resolve subpopulation growth heterogeneities based
on single-cell data.

To determine how rescuing the growth of ΔmetA impacted the
interaction network, we examined the growth rates of the spatially
separated strains in the presence of all amino acids except F
(Experiment 11, Table 1). The doubling time of ΔmetA was
similar to its doubling time in the presence of M and F
(Experiment 6, Table 1) across all distances (Fig. 5f and
Supplementary Fig. 14a, d). The rate of change of RFP
fluorescence was biphasic, indicating that ΔpheA had two growth
modes in this condition (Methods and Supplementary Fig. 14b,
c). The ΔpheA doubling times in the first growth phase did not
change across distance, yielding a neutral interaction network
(Fig. 5h and Supplementary Fig. 14e). The second ΔpheA growth
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phase displayed a moderately competitive growth trend across a
tenfold change in distance (Fig. 5f, h and Supplementary Fig. 14f).
The positive interaction from ΔmetA to ΔpheA was abolished by
rescuing ΔmetA growth, suggesting that rapid growth of ΔmetA
resulted in a substantial decrease in the release rate of F.

To further study the inverse relationship between the growth
rate of ΔmetA and the strength of its outgoing positive interaction

on ΔpheA, we measured M and F in each producer strain’s
supernatant across different concentrations of the rescuing amino
acids (Methods). The F concentration per unit biomass in the
ΔmetA supernatant was inversely proportional to the supple-
mented M concentration and thus its growth rate, consistent with
the significant growth enhancement of ΔpheA when ΔmetA was
slowly growing and metabolically active but not when it was
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rescued (Fig. 5c, f, g). Notably, the reverse trend was observed for
ΔpheA, wherein M was detected only in the highest supplemented
F condition. In sum, the differential release profiles of M and F as
a function of each producer strain’s growth rate provides insight
into the topologies of the inferred interaction networks (Fig. 5h).

Our results demonstrated that ΔmetA and ΔpheA auxotroph
strains have differential and context-dependent release rates of M
and F, highlighting the environmental sensitivity of the system. To
integrate our findings into a quantitative framework, we developed
a computational model to represent M and F biosynthesis, uptake,
diffusion, and amino acid dependent growth rates of ΔmetA and
ΔpheA (Supplementary Methods). Consistent with our data, we
assume that (1) growth is limited by the concentration of the amino
acid that the auxotroph is deficient in producing, (2) release of F by
ΔmetA is inversely proportional to its growth rate, (3) release of M
by ΔpheA is proportional to its growth rate, and (4) the basal
growth rate ΔpheA is larger than ΔmetA which is attributed to
differences in the metabolic consequences of each mutation
(Fig. 5d). The model was fit to the population-level growth rates
in the physically separated experiments using a genetic algorithm
(Methods) and was able to recapitulate the trends across a range of
conditions (Fig. 5b, c, f), demonstrating that the model’s core
assumptions were congruous with the data.

We next explored how different amino acid concentration
influenced the inferred interaction network within MISTiC
(Experiments 12–14, Table 1). The distance-dependent growth
change of ΔpheA decreased with amino acid availability
(Supplementary Fig. 15b, d, f, h), whereas this pattern was not
evident for ΔmetA (Supplementary Fig. 15a, c, e, g). In sum, these
data demonstrated that the growth benefit provided by ΔmetA
was eliminated in the presence of trace amino acids.

In sum, the stability of the amino-acid auxotroph consortium
was shaped by key variables including spatial arrangements,
population size, amino acid availability, and growth rate-
dependent amino acid release rates. The variation in each
strain’s growth across defined distances indicates whether metabo-
lites mediating microbial interactions are in a saturated (e.g., below
a concentration threshold to impact growth or not limiting for
growth) or linear regime (e.g., limiting to growth). In addition,
MISTiC enabled characterization of dynamic features of growth
responses including biphasic growth (Supplementary Fig. 14b, c)
and delays in the timing of maximum growth (Fig. 5c, inset).

Discussion
We developed a microfluidic platform that integrates
micrometer-level spatial patterning, temporal control of

environmental stimuli, and single-cell quantification of growth
and gene expression within microbial consortia. In MISTiC, the
distance between strains impacts local concentrations of diffusible
molecules, which in turn dictate biological responses including
growth rate, metabolic activity or cell state decision-making.
Controlling the spatial arrangements of members of a consortium
provides a quantitative mapping of the net environmental impact
of a given strain on the dynamics of growth and gene expression
in a partner strain. The dynamic phenotypic response of each
strain illuminates the degree of sensitivity (linear regime) or
decoupling (saturated regime) of the interaction, which would not
be possible to study in real-time using standard culturing tech-
niques. These quantitative features of microbial interactions are
critical to understanding and engineering multi-species commu-
nity stability and diversity49,50.

We showed that distance can improve the reliability of infor-
mation transmission in response to rapidly fluctuating signals.
Consistent with this result, theoretical work has shown that
spatial averaging by diffusion can improve the precision of gene
expression by reducing noise stemming from transcriptional
bursting51. In addition, stochastic modeling predicts that diffu-
sion of a quorum-sensing chemical signal could reduce gene
expression noise39. Our results suggest that spatial positioning
can tune the trade-off between the fidelity of information trans-
mission and the magnitude of the output response without
imposing additional energetic costs to the cell52. Thus, distance
between populations could be exploited as a design feature in
microbial community engineering.

Changing the degree of spatial separation between the activator
and repressor strains in the distributed gene circuit oscillator
consortium yielded different outcomes in the oscillatory beha-
viors of each strain. The repressor oscillations abruptly vanished
in the 250 μm interaction channel length, whereas the oscillations
persisted in the activator strain in this condition. These data
suggest that positive feedback enhanced the robustness of the
oscillations across spatial separation, consistent with the critical
role of positive feedback in expanding the spatial range of tem-
porally synchronized gene expression patterns53. However, the
negative feedback loop destabilized the temporal coordination of
gene expression dynamics with distance, contrary to the stabi-
lizing role of negative feedback observed in other systems54.

In environments lacking M and F, the strength of the inter-
strain auxotroph interactions depends on the rates of amino acid
uptake, release and diffusion for constant population sizes. The
opposing trend in the release profiles of M and F with increasing
growth rate of ΔpheA and ΔmetA (Fig. 5g), respectively, could

Fig. 5 Spatial and temporal modes of amino acid cross-feeding in a synthetic E. coli consortium. a Schematic of the experimental design. ΔmetA and
ΔpheA are labeled with IPTG-inducible fluorescent reporters. The strains are initially cultured in the presence IPTG. At the denoted time, IPTG is removed
and the media condition is altered. The maximum growth rate is inferred based on the rate of decay of the fluorescence signal. Relationship between
distance and population-level doubling times of (b) ΔmetA or (c) ΔpheA. The dashed and solid lines represent presence and absence of methionine (M) and
phenylalanine (F), respectively. Diamonds represent the model fits. Inset in c: the time of maximum ΔpheA growth rate in media lacking M and F. Horizontal
lines denote a statistically significant difference (P < 0.05) based on one-tailed bootstrap hypothesis testing (Methods). *P < 0.05, **P < 0.01, and ***P <
0.001 (Supplementary Fig. 17). d Relationship between time and the average single-cell growth rates of ΔmetA and ΔpheA in a mixed community (solid
line) or monoculture (dashed line) in media lacking M and F. Inset: fraction of cells with non-zero growth rates as a function of time. e Spearman’s
correlation coefficient as a function of time between the fraction of the growth chamber occupied by the partner strain and the growth rate for individual
cells (inset). The X symbol denotes correlations corresponding to P > 0.05. f Relationship between distance and the minimum doubling time in the
presence of M and absence of F. ΔpheA exhibited two growth phases following the media switch (GP1 and GP2). Diamonds indicate model fits to the
maximum growth rates in GP1. g Concentration of M or F divided by absorbance at 600 nm (OD600) in ΔpheA or ΔmetA conditioned media. Stars indicate
the limit of detection for each measurement. 1× Amino acid fraction refers to 0.2 mMM and 0.4mM F, respectively. The horizontal lines denote a
statistically significant difference (P < 0.05) based on a two-sided t-test. *P < 0.05, **P < 0.01, and ***P < 0.001 (Supplementary Fig. 17). h Inferred
interaction networks based on population-level maximum growth rates in spatially separated MISTiC experiments. The size of the node represents the
maximum growth rate in the 25 μm (D25) condition and is computed as (10 ln D25

−1)2. The edge widths represent the interaction strength defined as
Dd ¼ 1� D25D

�1
250 where D250 denotes the maximum growth rate in the 250 μm condition. Source data are provided as a Source Data file.
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lead to feedback loops that destabilize the community under
certain conditions. In E. coli, F is used for either protein synthesis
or transported between the periplasm and cytosol55, whereas M
acts as a central hub methyl donor intersecting many pathways55,
potentially contributing to differences in release rates. Auxo-
trophic cross-feeding has been proposed as a strategy to enhance
coexistence and stability among members of a consortium46,56,57.
Our results suggest that strain co-existence and community sta-
bility depends on a critical population size, amino acid avail-
ability, and spatial structure1,2,7, which limits the generalizability
of amino-acid cross-feeding in real-world contexts.

MISTiC enables quantification of the effect of micrometer-level
spatial separation on diffusion-mediated microbial interactions,
in the absence of convection, transport, or cell-to-cell physical
contact, by monitoring growth, gene expression, cell size, mor-
phology, or emergence of cellular states as outputs. Although
stable coexistence of community members can be difficult to
achieve in batch or continuous culture58, spatial separation of
growth chambers within MISTiC maintains both strains for
extended periods of time to study microbial interactions and
community properties. In addition, the temporal variation of key
diffusible compounds in microenvironments within MISTiC
could be monitored via biosensors59. The media flow rate could
be manipulated to study how the rate of diffusional loss shapes
microbial interactions. To determine whether interactions stem
from physical contact or diffusible compounds, future versions of
MISTiC will contain a chamber to study the mixed community in
addition to the spatially separated conditions.

There are limited techniques to investigate small bacterial
populations (~102 cells), which are prevalent in natural envir-
onments and can play important roles in human disease60. The
uniform dimensions of the growth chambers dictate each strain’s
environmental impact and thus community functions. To inter-
rogate the contribution of population size to microbial interac-
tions and community stability, the growth chamber dimensions
could be varied. To investigate multi-member consortia and
higher-order interactions, the device could be modified for three
or more interacting populations. In sum, this experimental plat-
form could be adapted to study a diverse repertoire of organisms
and mechanisms of diffusion-mediated interactions over multiple
length-scales and increasingly complex spatial landscapes. A
detailed understanding of how defined spatial arrangements
influences community behaviors and interaction networks will
advance our understanding of the role of spatial organization of
microbiomes inhabiting diverse natural environments.

Methods
Microfluidic device fabrication. A three-layer device was designed in AutoCAD
that consisted of interaction channels, growth chambers, and main channels. The
microfluidic master was pattered in three stages of photolithography using a
micropattern generator (Heidelberg Instruments μPG 101). Unlike centrifuges, the
spin coater protocol used for microfabrication is specified by an rpm. For the first
layer, the silicon wafer was baked for 10 min at 200 °C and spin-coated at 4000 r.p.
m. using SU-8 2000.5 (MicroChem) to generate 0.5 μm height. This layer was
exposed to the interaction channels at 58 mW with a 47% dwell time using a 4 mm
writehead, followed by a post-exposure bake for 30 min at 95 °C. The second layer
was spin-coated at 3000 r.p.m. using a 26 : 1 mixture of SU-8 2000.5 to SU-8 3005,
to produce 1.5 μm height. After aligning to the first layer, the wafer was exposed to
the second patterning layer (growth chambers). Following an additional post-
exposure bake, a third layer of SU-8 3025 photoresist was spin-coated at 3000 r.p.
m. to generate 25 μm height. The wafer was exposed to the final layer consisting of
the main channels, resistors, and inlets. Following a final post-exposure bake, the
features were developed using SU-8 developer (MicroChem). The master was
treated overnight with vapor phase (tridecafluoro-1,1,2,2-tetrahydrooctyl) tri-
chlorosilane (Gelest) at room temperature. To fabricate each device, a 7 : 1 mixture
of polydimethylsiloxane (Sylgard 184) to curing agent (Sylgard 184) was used to
coat the master. After curing overnight at 100 °C, inlet and outlet holes were
punched using a biopsy corer (WellTech). The surfaces were exposed to air plasma
(Harrick Plasma PCD-32G) for 23 s to ionize the surface of the device to bond to
the glass coverslips (ThermoFisher). Finally, the surfaces were bonded and baked

for 1 hr at 100 °C to seal the device channels. For each experiment, the microfluidic
device was flushed with 0.5% Tween 20 (Sigma-Aldrich) to prevent cells from
adhering to the device. To load the cells into the growth chambers, a vacuum
pressure of 330 mmHg was applied.

Dye gradient experiment. The chemical gradients in the interaction channels
were analyzed by administering 10 μM fluorescein (Sigma-Aldrich) and water at a
flow rate of 200 μL/h into individual main channels. Paired growth chambers (n=
3) connected by each interaction channel length were continuously imaged using a
600 ms exposure time. Fluorescence and phase-contrast Images were collected
using a Ti-E Eclipse inverted microscope (Nikon) using the GFP filter (Chroma)
470 nm/40 nm (ex), 525/50 nm (em). To analyze the images, the fluorescence
of each growth chamber and 1 μm increments along the length of each interaction
channel at steady state were determined.

Sender–receiver quorum-sensing experiments. Sender and receiver plasmids
(Supplementary Fig. 2) were constructed using standard Gibson assembly protocols
using primers synthesized by Integrated DNA Technologies and verified by Sanger
Sequencing (Functional Biosciences). The sender (A6c_LuxI_GFP48) and receiver
(E2c_LuxR_RFP or pJH9-35) plasmids were transformed into E. coli strains
BW2778361 and MG1655Z162 (Table 2), respectively. An initial set of cultures were
inoculated into LB media (Lennox, Sigma-Aldrich) containing 25 μg/mL chlor-
amphenicol (Sigma-Aldrich) and cultured overnight at 37 °C with shaking. After
∼16 h, 1 μL of the cultures were diluted into 3 mL LB media containing 25 μg/mL
chloramphenicol and incubated at 37 °C with shaking to early stationary phase
(OD600 0.7–1.1). Next, we measured the OD600 of these cultures and centrifuged
1 mL at 3500 × g. The supernatant was removed and the pellet was resuspended to
a final OD600 of ∼20. Cells were loaded into the device such that each growth
chamber had two to three cells at the beginning of the experiment. In each
experiment, the device was connected to three syringes (5 mL) containing LB
media supplemented with 25 μg/mL chloramphenicol, 0.1% Tween 20 (Sigma-
Aldrich), and 62.5 ng/mL anhydrotetracycline hydrochloride (Cayman Chemicals),
as well as a fourth syringe (5 mL) containing the same media supplemented with
0.1% arabinose (Sigma-Aldrich). During the microscopy experiment, the micro-
fluidic device was incubated at 37 °C in a custom-designed temperature incubation
chamber. The main channels were flushed at a rate of 300 μL/h to wash away excess
cells from the growth chamber. The flow rate of the inlet containing arabinose (I22,
Fig. 1) and the corresponding inlet on the opposite side (I11) were set to 10 μL/h to
prevent cell growth and clogging within the inlet and resistor and to reduce
pressure differences across the device. Fluorescence and phase-contrast images
were collected using a Ti-E Eclipse inverted microscope (Nikon) every 7 min at 21
different positions. Fluorescence was imaged using the following filters (Chroma):
GFP: 470 nm/40 nm (ex), 525/50 nm (em) or RFP: 560 nm/40 nm (ex), 630/70 nm
(em). The device was incubated for a period of time to allow cells to grow and
divide. After the growth chambers had filled with cells, the media was switched to
test conditions described in Table 1. For Experiment 1 (Table 1), the arabinose inlet
(I22, Fig. 1) and the corresponding inlet on the opposite side (I11, Fig. 1) were
switched to 200 μL/h and the flow rate through the remaining inlets (I12, I21) were
set to 0 μL/h. The forced oscillation experiments (Experiments 3 and 4, Table 1)
used 10 mL syringes to extend the duration of the experiment. Flow rates of the
0.1% arabinose (inlet I22) and 0% arabinose (inlet I21) were alternated out of phase
between 200 and 0 μL/h for a period of time. One of the receiver inlets (I11) flowed
continuously at a rate of 200 μL/h and the other inlet (I12) was set to 0 μL/h for the
duration of the experiment.

Dual-feedback oscillator experiments. The E. coli strain CY027 was transformed
separately with plasmids pC220 and pC239 or pC236 and pC239 to construct the
activator and repressor43, respectively using a standard chemical transformation
protocol (Table 2). Overnight cultures were inoculated into LB media (Lennox)
containing 50 μg/mL kanamycin and 100 μg/mL spectinomycin and incubated
overnight at 37 °C with shaking. After ∼16 h, 1 μL of the overnight cultures were
diluted into 3 mL LB media and incubated at 37 °C with shaking to early stationary
phase (OD600 0.7–1.1).

Cells were loaded into the device following the procedure specified above.
Following cell loading, the microfluidic chip was placed in the custom-designed
temperature incubation chamber at 37 °C. All four inlets were connected to
syringes (10 mL) containing LB media with kanamycin (50 μg/mL), spectinomycin
(100 μg/mL), and 0.1% Tween 20. Syringes connected to inlets I22 and I11 also
contained 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) (Sigma).

The cells were initially grown in the device at 37 °C with inlets I12 and I21
flowing at 200 μL/h, and inlets I22 and I11 flowing at 10 μL/h to prevent cell growth
and clogging. Phase-contrast and fluorescence images were collected every 7 min at
21 different positions. Once the growth chambers were filled with cells (Table 1),
the inlets (I12 and I21) containing the pre-culture media were set to 0 μL/h and the
inlets (I11 and I22) containing the test media were set to 200 μL/h.

Amino acid auxotroph experiments. E. coli strains ΔmetA63 and ΔpheA63

(Table 2) were transformed with plasmids A6c_GFP64 and A6c_RFP64, respec-
tively, using a standard chemical transformation protocol. The plasmids harbored
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an IPTG-inducible fluorescent reporter. An initial set of cultures were inoculated
into LB media (Lennox) containing chloramphenicol (25 μg/mL) and incubated
overnight at 37 °C with shaking. After ∼16 h, 1 μL of the overnight cultures were
diluted into 3 mL of LB containing 25 μg/mL chloramphenicol and 1 mM IPTG
(Sigma-Aldrich) and incubated at 37 °C with shaking until early stationary phase
(OD600 0.7–1.1).

The cells were loaded into the device following the procedure outlined above.
Following cell loading, the microfluidic chip was placed in the custom-designed
temperature incubation chamber at 37 °C. The media always contained 1× MOPS
Buffer (Teknova), 1× ACGU mix (Teknova), chloramphenicol, 0.1% Tween 20,
1.32 mM potassium phosphate dibasic (Teknova), and 0.2% glucose (Teknova),
whereas the amino acid composition varied across experiments (Table 1). The
amino acid solutions consisted of either EZ Amino Acids (AA, Teknova) or a
modified amino acid solution (AA*) (Table 1). The AA* solution consisted of 0.4
mM L-asparagine (VWR), 0.01 mM calcium pantothenate (VWR), 0.2 mM L-
histidine (VWR), 10 mM L-serine (VWR), 0.8 mM L-alanine (Fisher Scientific), 0.4
mM L-lysine (Fisher Scientific), 0.1 mM L-tryptophan (Fisher Scientific), 0.4 mM L-
aspartic acid (Dot Scientific), 0.1 mM L-cysteine (Dot Scientific), 0.8 mM L-glycine
(Dot Scientific), 0.4 mM L-isoleucine (Dot Scientific), 0.8 mM L-leucine (Dot
Scientific), 0.01 mM para-amino benzoic acid (Dot Scientific), 0.4 mM L-proline
(Dot Scientific), 0.4 mM L-threonine (Dot Scientific), 0.6 mM L-valine (Dot
Scientific), 5.2 mM L-arginine (Sigma), 0.01 mM di-hydroxy benzoic acid (Sigma),
0.6 mM L-glutamic acid (Sigma), 0.01 mM para-hydroxy benzoic acid (Sigma),
0.01 mM thiamine (Sigma), 0.2 mM L-tyrosine (Sigma), and 0.6 mM L-glutamine
(Acros Organics). In minimal media supplemented with AA*, varying
concentrations of methionine (Dot Scientific) and/or phenylalanine (Dot Scientific)
were added. The AA amino acid solution consisted of all components in AA* plus
0.2 mM methionine and 0.4 mM phenylalanine.

The cells were grown for a period of time at 37 °C with 1 mM IPTG prior to the
media switch as described in Table 1 to fill the growth chambers. Phase-contrast

and fluorescence images were collected every 10 min at 21 different positions. After
the growth chambers were filled with cells, the inlets (I12 and I21) containing the
pre-culture media were set to 0 μL/h and the inlets (I11 and I22) containing the test
media were set to 200 μL/h.

Amino-acid measurements. The ΔmetA and ΔpheA strains were inoculated into
LB (Lennox) containing chloramphenicol (25 μg/mL) and grown overnight at 37 °C
with shaking. After 16 h, 10 μL of the cultures were transferred into 3 mL of fresh
LB containing chloramphenicol (25 μg/mL) and incubated at 37 °C with shaking
until early stationary phase (OD600 0.7–1.1). Immediately following, the cultures
were centrifuged at 3500 × g for 5 min, supernatant was removed, and the cells were
inoculated into MOPS EZ Rich Defined Medium lacking M and F at an initial
OD600 of 0.05. For the ΔmetA strain, 0, 2, 5, 10, or 200 μMM was added to the
media. For ΔpheA strain, 0, 4, 10, 20, or 400 μMF was added to the media. The
cultures were incubated at 37 °C with shaking for 3 h. After recording the OD600 of
each culture, the cells were centrifuged at 3500 × g for 10 min, the supernatant was
filtered by a 0.2 μm filter (GE Healthcare) and the concentrations of M or F were
measured with a fluorometric assay kit (BioVision) or by liquid chromatography-
mass spectrometry (LC-MS), respectively. Concentrations of M in the filtered
conditioned media of ΔpheA cultures were measured with a fluorometric
methionine assay kit (BioVision) with a 0.5 μM limit of detection. Raw fluorescence
measurements were converted to methionine concentrations using a
standard curve.

The analysis of F concentrations in the filtered conditioned media of ΔmetA was
performed on a Shimadzu LC-MS2020. All solvents and reagents used for analysis
were HPLC grade or higher quality. Methanol and formic acid were sourced from
Fisher Scientific and Acros Organics, respectively. Water was prepared in house
with a Millipore Milli-Q water purification system. Separations were performed at
40 °C on a Discovery BIO wide pore C5-5 column (15 cm × 2.1 mm × 5 µm) from

Table 2 Strains used in study.

Strain identifier Strain background Plasmid(s) Reference

Sender BW27783 A6c_LuxI_GFPa 61

Receiver MG1655z1 E2c_LuxR_RFPa 62

Activator CY027 (E. coli ΔlacI ΔaraC ΔsdiA Ptrca-cinR Ptrca-rhlR)
Addgene #72402

pC220 (Addgene #65877) and pC239 (Addgene
#65953)

43

Repressor CY027 (E. coli ΔlacI ΔaraC ΔsdiA Ptrca-cinR Ptrca-rhlR)
Addgene #72402

pC236 (Addgene #65951) and pC239 (Addgene
#65953)

43

ΔmetA BW25113 A6c_GFPa 63

ΔpheA BW25113 A6c_RFPa 63

aThe symbol indicates plasmids that were constructed for this study.
All other constructs were derived from the indicated references.

Table 1 MISTiC experimental conditions.

Experiment Descriptor Media switch (min) Pre-culture condition Test condition Outliers

1 Q.S. (step response) 105 aTc aTc+ ara 1;1;0;0
2 Q.S. (step response, inverted) 240 aTc aTc+ ara 4;0;1;2
3 Q.S. (forced oscillator, 2 hr) 140 aTc aTc ± ara 1;1;1;5
4 Q.S. (forced oscillator, 1 hr) 184 aTc aTc ± ara 0;0;1;3
5 Distributed gene circuit

oscillator
217 NA IPTG 0;0;3;1

6 Auxotroph control 218 0.25× AA+ IPTG 0.25× AA 0;0;1;2
7 Auxotroph (−F, −M) 420 1× AA*+ 0.1× F/M+ IPTG 1× AA* 3;2;0;1
8 Auxotroph (mixed) 60 1× AA*+ 0.1× F/M+ IPTG 1× AA*+ IPTG 5;2;2;1+

9 Auxotroph (ΔmetA control) 110 1× AA*+ 0.1× F/M+ IPTG 1× AA*+ IPTG 1;2;3;8+

10 Auxotroph (ΔpheA control) 90 1× AA*+ 0.1× F/M+ IPTG 1× AA*+ IPTG 3;2;2;7+

11 Auxotroph (ΔmetA rescue) 24 0.5× AA*+ 1× M+ 0.05× F+
IPTG

0.5× AA*+ 1× M 0;0;0;1

12 Auxotroph (All AA) 710 0.1× AA+ IPTG 0.003× AA 1;0;0;0
13 Auxotroph (All AA) 148 0.1× AA+ IPTG 0.005× AA 1;0;0;3
14 Auxotroph (All AA) 285 0.2× AA+ IPTG 0.02× AA 1;2;0;0

Pre-culture conditions refer to the environment within the microfluidic device from the beginning of the experiment to the time of the first media switch. Test culture conditions refer to the media
conditions following the first media switch. Quorum-sensing experiments were performed in Luria Broth (LB), whereas remaining experiments used MOPS EZ Rich Defined Medium, with the
modifications specified above. AA refers to EZ amino acid solutions containing all amino acids and AA* refers to an amino acid solution lacking methionine (M) or phenylalanine (F). In experiments
where F and M were added separately, 1× F and M refers to 0.4 mM and 0.2 mM, respectively. The pre-culture amino acid fraction was varied to control cell growth and fluorescent reporter expression.
Outliers refer to the number of paired growth chambers that were excluded from the analysis out of n= 10 biological replicates for each interaction channel length (25 μm;50 μm;100 μm;250 μm) based
on a set of specific criteria (Methods). +For these experiments, the numbers represent single outlier growth chambers that were excluded from the analysis out of n= 20 total biological replicates for
25 μm, 50 μm, 100 μm, and 250 μm interaction channels (Methods).
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Millipore-Sigma with a paired Supelguard (2 cm × 4mm× 5 µm) guard column.
The running buffer was a binary gradient of water with 0.1% v/v formic acid
(Buffer A) and methanol (Buffer B) according to the following protocol: 4 min at
5% B, a linear gradient from 5% to 20% for 4 min, a linear gradient from 20% B to
95% B for 2 min, 2 min at 95% B, a linear gradient from 95% B to 5% B for 2 min,
equilibration at 5% B for 6 min. The total flow rate was 0.2 ml min-1. Under these
conditions, methionine and phenylalanine eluted at 3.8 and 5.8 min, respectively.
The ion source was operated in electrospray ionization mode with a cone voltage of
4.5 kV, the interface was held at 400 °C, and the desolvation line at 250 °C. The dry
nitrogen was supplied to the nebulizer at 1.5 L/min and drying gas at 15 L/min. The
mass spectrometer was run in selective ion monitoring mode for monitoring m/z
150 for methionine and m/z 166 for phenylalanine with a scan time of 1 s.
Standards were prepared for each run by adding known concentrations of
methionine and phenylalanine to fresh media. The standard curve was run before
and after the sample batch and each sample was run twice for technical replicates.

Auxotroph community batch culture experiment. Separate culture tubes con-
taining LB with chloramphenicol (25 µg/mL) were inoculated with ΔmetA or
ΔpheA and incubated overnight at 37 °C with shaking. After 16 h, the cultures were
diluted into 5 mL of EZ Rich Medium (Teknova) containing chloramphenicol (25
µg/mL) and 1 mM IPTG and lacking M and F at a final OD600 of 0.05. The
initial ratio of ΔmetA to ΔpheA was 10 : 1, 1 : 1, or 1 : 10 (n= 3, for each starting
ratio). The cultures were incubated at 37 °C with shaking for at least 24 h before
transferring the community to fresh media using a 1 : 100 dilution. At this transfer
time, the OD600 of each culture was measured and a 2 µL sample was spotted onto
a glass slide for cell counting with microscopy (20× magnification) on a Nikon
Eclipse Ti. Four images comprising four distinct fields of view were taken of each
sample and each image was a composition of phase contrast, GFP and RFP
channels. Subsequently, ImageJ was used to extract the number of ΔmetA cells
from the GFP channel and ΔpheA cells from the RFP channel for each image.

Population-level image analysis. For Experiments 1, 3, 6, 7, and 11–14 (Table 1),
individual growth chambers were segmented in DeepCell65. Five neural networks
were trained on 21 randomly selected images and binary masks (made using FIJI
image analysis software66), which specified the growth chamber positions. The
trained model was used to analyze the remaining microscopy images. The results of
the trained networks (two to five depending on segmentation accuracy) were
averaged to improve segmentation accuracy.

For Experiments 2, 4, and 5 (Table 1), growth chambers were segmented using
custom code in Python that aligned each growth chamber across all time points. A
binary mask denoting the growth chambers was applied to all time points. The DeepCell
and alignment methods generated nearly identical fluoresence time-series data.

In each analyzed image, custom code (Python) was used to label the binary
mask with the growth chamber positions and total areas and compute the average
fluorescence intensity of each growth chamber. Segmented regions less than or
greater than 1000 and 3500 pixel area were eliminated from the data set. Specific
criteria were used to eliminate outliers from the datasets including (1) infrequent
pressure fluctuations leading to loss of cells from the growth chambers, (2) device
bonding issues leading to collapsed interaction channels or cells that enter the
interaction channels, (3) growth chambers with unoccupied regions, (4) abnormal
cell growth that significantly altered the total number of cells in the growth
chamber, or (5) cell growth in the main channels that may have generated
different media diffusion rates into the growth chambers. In all physically separated
experiments (Experiments 1–7 and 11–14, Table 1), the connected chamber was
excluded from the data set if a growth chamber was identified as an outlier based
on these criteria (Table 1).

Population-level fluorescence time-series analysis. Fluorescent time-series
measurements for each growth chamber in Experiments 6, 7, and 11–14 (Table 1)
were analyzed by bootstrapping. Using this method, the biological replicate curves
for a given interaction channel length were randomly sampled 10,000 times with
replacement. In Experiment 1 (Table 1), background fluorescence was subtracted
from the data by subtracting the minimum RFP fluorescence intensity across all
growth chambers for model fitting (Fig. 1c, d).

The P-values for all bootstrapped datasets were computed by bootstrap
hypothesis testing. Here, the null hypothesis H0 assumes that a sample of size n
with mean x*obs and a sample of size m with mean y*obs are derived from the same
population. This test is performed as follows:

Calculate the sample mean difference, t*obs, as t*obs= x*obs− y*obs
Merge two samples into one set of n+m observations.
Draw a bootstrap sample of n+m observations with replacement from the

merged set.
Calculate the mean of the first n observations, x* and compute the mean y* for

the remaining m observations in the bootstrap sample. The test statistic t* is
evaluated as t*= x*− y*.

Repeat steps 3 and 4 B times where B ≥ 1000.
Evaluate the P-value as: P-value= number of times where t* > t*obs divided by

B.
Reject H0 if P-value ≥ α, where α= 0.05.

In the forced oscillation experiments (Experiments 3 and 4, Table 1), a peak
finding algorithm (Python) was applied to the time-series gene expression data at
steady state with minimum inter-peak threshold of 21 min. The amplitude was
computed by subtracting the minimum and maximum of each oscillation and
dividing this value by two. To calculate the SNR, a moving mean computed over 20
time points was subtracted from the data. The power spectra for each replicate was
calculated using Welch’s method (Python) with a Hamming window applied across
the length of the time-series. The power spectra were filtered to exclude frequencies
lower than the signal bandwidth. The signal was defined as the total power of the
signal bandwidth. The noise was computed as the total power of frequencies larger
than the signal bandwidth. The power spectra for all the replicates for a given
interaction channel length were randomly sampled with replacement 10,000 times.
For each iteration, the SNR ratio was computed by dividing the signal by the noise.
Bootstrap hypothesis testing, as described above, was used to compute P-values.

For the distributed gene circuit oscillator experiment (Experiment 5, Table 1),
the fluorescence intensity of each fluorescent reporter was normalized by
subtracting the global minimum of the reporter across all replicates, dividing by the
global maximum of fluorescence across all replicates, and applying a moving mean
of 20 time points to the data. A peak finding algorithm (Python) was applied to
detect peaks with a minimum inter-peak distance of 70 min and a minimum peak
height of 0.015 by analyzing the data after the media switch. The number of peaks
detected, the amplitude of expression at each peak, and the distance between
subsequent peaks were computed for each replicate.

In the spatially separated auxotroph experiments (Experiments 6, 7, 11–14,
Table 1), the fluorescence background for each reporter was subtracted from the
data and then the time-series was normalized by dividing by the maximum value.
The change in fluorescence per unit time (ΔF Δt−1) was computed by determining
the slope of a line fit to a 10 time point moving window and then multiplying by
negative one. The global maximum of ΔF Δt−1 corresponded to the maximum
growth rate. The doubling time was calculated using times the following equation:

Doubling time ¼ ln 2ð Þ
max ΔFΔt�1ð Þ :

In Experiment 11 (Table 1), the ΔF Δt−1 curves displayed a biphasic trend. To
characterize the growth rate at each peak, the ΔF Δt−1 time-series was analyzed
between the time point of the media switch and the time point corresponding to
25% of the maximum fluorescence. The local maxima within this time window
were identified using the findpeaks algorithm (Python). The bootstrapped ΔF Δt−1

time-series were aligned by the first peak and the doubling times at the global
maximum were calculated as described above. For the second growth phase, the
doubling time was calculated at the maximum ΔF Δt−1 for the period of time
between the global maximum and the time point corresponding to 25% of the
maximum fluorescence.

Single-cell image analysis. Single-cell metrics were obtained with a custom
machine learning approach implemented in Python with the Keras API running on
top of TensorFlow67. We used two convolutional neural networks with U-Net
architecture. First, we performed segmentation of individual cells in each image
and then tracked each of the segmented cell instances over time. The segmentation
network takes as an input the phase contrast images of cells grown in MISTiC and
for each image and yields a binary mask segmenting the cells from the background.
Training data were obtained from a separate experiment imaging fluorescently
labeled E. coli at 60× magnification with phase-contrast and fluorescence images
collected every 10 min. We used the fluorescence images to generate binary seg-
mentation masks of the cells, which then served as the ground truth for the phase
contrast images used for network training. A total of 1066 images were curated this
way. The network was trained for 100 epochs using a stochastic gradient descent
optimizer and a pixelwise weighted loss function to enforce the learning of narrow
borders between adjacent cells. To minimize overfitting of the network to the
training data, random affine transformations and elastic deformations were applied
in real-time during the training process.

Cell tracking was performed with a separate U-Net similar to a method reported
previously68. The input for this network is a set of consecutive binary segmentation
masks. For each cell in the current segmentation, the network predicts the cell in
the previous segmentation image from which the current cell was derived. This
backwards tracking approach eliminates the need for the network to learn
occurrences of cells leaving the chamber and reduces the number of classes to two
(the tracked cell and the background). Using segmentations from the mixed
auxotroph experiment, we curated 2656 sets of training images with a custom
script in MATLAB. Training occurred for 200 epochs using an Adam optimizer
and a class-weighted categorical cross-entropy loss function. Similarly, data
augmentation was performed to reduce overfitting of the data.

Following segmentation and tracking, the raw output was processed with
custom code in Python to reconstruct cell lineage and obtain single-cell metrics.
The instantaneous growth rate of each cell was computed from the cross-sectional
area recorded during the 100 min window (10 data points) immediately following
that instant. Growth rate was computed by fitting a line to each 100 min window
and then dividing the slope of the line by the average cell area during that time
interval. For all analyses, a minimum tracking duration of 100 min was imposed to
enforce consistent computation of growth rate. For all analyses involving growth
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rate, statistical outliers were identified using a modified z-score computed on the
chamber averaged growth rates at each time point

Mi ¼
0:6745 xi � ~xð Þ

Md
;

where ~x represents the median growth rate and Md denotes the median absolute
deviation69. Statistical outliers were detected using a threshold of Mi > 3.5. Growth
chambers with more than one time point registering as an outlier were excluded
from the analysis (Table 1). Experimental outliers occurred primarily due to
segmentation and tracking errors caused by loss of focus or empty chambers at
specific positions. Outliers were considered separately for each strain.

Model fitting. Custom code (MATLAB) was used for computational modeling. An
ordinary differential equation model was developed to study inter-strain com-
munication via chemical signal diffusion (quorum-sensing). Detailed descriptions
of the diffusion and gene expression models are in the Supplementary Methods.
The general mathematical form of the equations describing the concentration of
AHL or fluorescein in each discretized spatial region is

_xi ¼ D xi�1 þ xiþ1 � 2xi
� �� γxi;

where xi and xi+1 represent concentrations in adjacent regions of the device. The
parameters D and γ denote the diffusion and degradation rates of the diffusible
molecule, respectively. For the gene expression model, the general mathematical
form for modeling transcription is

_Bm ¼/B
An

Kn þ An
� γBm;

where A and Bm represent a transcription factor and its regulated transcript, respec-
tively. The parameters /B; n;K , and γ denote the maximum transcription rate, Hill
coefficient, half-maximum concentration or binding affinity and mRNA degradation
rate, respectively. The general mathematical form for representing time delays due to
sequential protein assembly, fluorescent protein maturation or media switching is

yj ¼ a yj�1 � yj

� �
for j ¼ 1 : N :

The species yN represents the time-delayed species y1 and the delay time is
computed by N � a�1

:

The model was simulated using ode23s (MATLAB). A model with a variable
number of delay equations was fit to the data using a genetic algorithm. The algorithm
identified a best estimate for the parameter values and an optimal model structure by
adjusting the number of delay equations to minimize the L2-norm between the model
and the data. First, 100 parameter sets were randomly sampled using an upper and
lower bound for each parameter. For each parameter set, the model was simulated and
the L2-norm between the model and the data was computed. The parameters were
ranked from lowest to highest L2-norm. The first parameter set (lowest L2-norm) was
averaged with parameter sets 2-10, generating 9 new parameter sets. These parameter
sets were combined with 81 randomly sampled parameter sets using an upper and
lower bound for each parameter. This procedure was repeated until the L2-norm did
not change significantly with additional iterations. The best estimates for the
parameters are listed in Supplementary Table 3.

The parameters of the amino-acid cross-feeding model (Supplementary
Methods) were fit using a genetic algorithm. The genetic algorithm can be most
efficient with high-order systems and many unknowns. One of the challenges with
the genetic algorithm is there is no proof of convergence and the rate of
convergence can be slow if the initial guesses on the parameters are far from the
minimizing set and the bounds on the parameters are too broad. In order to
overcome these challenges, careful consideration was taken to determine the lower
and upper bounds for each parameter. Initially, bounds were determined based on
biologically relevant and feasible values. In addition, experimental observations
were used to infer necessary relationships between parameters. The bounds on the
parameters were adjusted accordingly. After this, the genetic algorithm was
executed until the error became invariant for a sequence of 10 generations. As the
genetic algorithm is not optimal, it is possible to arrive at slightly different values if
we were to run the genetic algorithm longer or reinitiate at new random initial
conditions. However, the qualitative fits remain fairly close, as do the parameter
values. Nevertheless, given experimental error, it is not in our benefit to achieve an
optimal fit, since such a fit does not imply better prediction of quantitative values of
parameters.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
The code used for computational modeling is available at 10.5281/zenodo.3748013.

Data availability
The source data for Figs. 1–5 are available as Source Data files. The raw data files are
available at 10.5281/zenodo.3748013. All other relevant data are available from the
authors upon reasonable request.
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