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Abstract

Background: Probes on a microarray represent a frozen view of a genome and are quickly outdated when new
sequencing studies extend our knowledge, resulting in significant measurement error when analyzing any
microarray experiment. There are several bioinformatics approaches to improve probe assignments, but without in-
house programming expertise, standardizing these custom array specifications as a usable file (e.g. as Affymetrix
CDFs) is difficult, owing mostly to the complexity of the specification file format. However, without correctly
standardized files there is a significant barrier for testing competing analysis approaches since this file is one of the
required inputs for many commonly used algorithms. The need to test combinations of probe assignments and
analysis algorithms led us to develop ArrayInitiative, a tool for creating and managing custom array specifications.

Results: ArrayInitiative is a standalone, cross-platform, rich client desktop application for creating correctly
formatted, custom versions of manufacturer-provided (default) array specifications, requiring only minimal
knowledge of the array specification rules and file formats. Users can import default array specifications, import
probe sequences for a default array specification, design and import a custom array specification, export any array
specification to multiple output formats, export the probe sequences for any array specification and browse high-
level information about the microarray, such as version and number of probes. The initial release of ArrayInitiative
supports the Affymetrix 3’ IVT expression arrays we currently analyze, but as an open source application, we hope
that others will contribute modules for other platforms.

Conclusions: ArrayInitiative allows researchers to create new array specifications, in a standard format, based upon
their own requirements. This makes it easier to test competing design and analysis strategies that depend on
probe definitions. Since the custom array specifications are easily exported to the manufacturer’s standard format,
researchers can analyze these customized microarray experiments using established software tools, such as those
available in Bioconductor.

Background
DNA microarrays are a ubiquitous platform, the original
form of highly multiplexed assays for conducting gen-
ome-wide experiments. The arrays are designed as two-
dimensional grids of oligonucleotides (’probes’), affixed
to a solid support at a specific location (’feature’) via
spotting or direct synthesis. When a solution of some
labeled, purified cellular fraction (’targets’) — most often
polynucleotides — is applied to the array, a stable inter-
action forms between those subsets of probes and tar-
gets sharing sufficiently complementary regions. After

the required reaction time, unbound target is washed
from the array and then a scanner captures the induced
signal emitted by the bound molecules. The resulting
image file is ultimately used as the baseline measure-
ment for a multitude of sophisticated standardization,
normalization and statistical techniques whose goal is to
infer the amount of bound target as a function of a fea-
ture’s intensity.
Although DNA microarrays offer a powerful method

for high-throughput molecular profiling, it is difficult to
reproduce experimental measurements between plat-
forms, to determine the magnitude of target abundance
and to detect low-abundance target molecules [1]. Sev-
eral sources of systematic error contribute to this pro-
blem, including incorrect array design [1], batch effects
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[2] and instrument limitations or error [3,4]. Researchers
have developed a number of statistical techniques to
minimize non-biological measurement variation result-
ing from all of these types of systematic error, including
RMA (and its gcRMA variant), dChip and MAS 5.0
[5-8]. However, these statistical techniques tend to be
general rather than specific in identifying or modelling
processes that affect hybridization. Since the sensitivity
and specificity of a probe’s hybridization affinity to a tar-
get dramatically changes its scanned intensity, and since
the probe sequences on the array cannot be changed
[9-13] after it is manufactured, it is of utmost impor-
tance to use the most current information when inter-
preting intensity values for each feature on the array.
Naturally, our understanding of what probes have been
influenced changes as the annotations for an organism’s
genome evolve. Researchers have identified probes on
various arrays whose sequences show different types of
hybridization problems, such as interfering secondary
structure in either component, probe misassignment,
and several categories of cross-hybridization [9-16].
Once identified, some researchers modify the array’s
specification file so that their removal or reassignment
can be easily propagated to new analyses, but most sim-
ply explain how to identify them. Because different
microarray platforms have unique design and construc-
tion features, as well as custom software for communi-
cating how a probe is to be interpreted with respect to
the target genome, the strategy for modifying the speci-
fication file for a given type of DNA microarray requires
platform-specific strategies.
The most complex and high-density DNA microarray

designs come from the Affymetrix platform products.
Their complexity results from the promiscuous place-
ment of probes with respect to target elements and the
multiplicity of probes per biological target. Their high
density means that there are hundreds of thousands to
millions of simultaneous measurements to be consid-
ered. There are other unique design features of these
arrays: the probes are relatively short oligonucleotides
(25-33 nt) synthesized directly onto the array; for several
generations of the 3’ expression arrays, the basic mea-
surement ‘unit’ was determined by a probe pair, consist-
ing of a perfect match (PM) and a mismatch (MM)
probe, although on some of the latest designs this has
changed; finally, there is the conceptual grouping of
probes into a probe set whose members interrogate a
specific, and longer, target molecule. A probe set might
discriminate among known variants of a transcript,
exon, or SNP location; depending on the platform the
number of probes in a probe set varies. The specifica-
tion file for Affymetrix arrays is called a Chip Definition
File (CDF) and delineates which, and how, probes are
grouped into probe sets. There is a great deal of public

data and software available for these arrays, so solutions
to the problems they present have the potential for
broad impact.
The advantage to such a design is the redundancy of

the measurements: probe or target characteristics that
confound measurements are easily remedied by remov-
ing or reassigning problematic probes from a probe set
while leaving probes that faithfully report on the original
target of interest. In fact, shortly after Affymetrix
released the sequence information for their arrays into
the public domain, several researchers analyzed the
probe set definitions [15,17-22], identifying a number of
potential problems with the original definitions that
could produce measurement error within a probe set.
They then proposed several bioinformatics methods for
re-defining the probe sets to solve these problems (e.g.
creating a custom array specification), intending to
reduce the measurement error and to make the aggre-
gated measurements more biologically relevant. In many
cases, these groups validated their re-definition strategy
by showing that their custom probe set definitions,
when compared to the Affymetrix default, significantly
changed the differential expression results. In some
cases, subsequent studies showed that the re-definition
strategy significantly improved the correlation between
microarray measurements and experimental results. The
custom probe set definitions of Dai et al. [18], and two
later studies using them [23,24], illustrate how custom
array specifications can significantly improve microarray
measurements and the conclusions drawn from them.
For several Affymetrix expression arrays, Dai et al.

[18] re-defined the original probe sets into gene-, tran-
script- and exon-specific probe sets. They used the most
up-to-date versions of several public genome databases,
such as UniGene [25] and Refseq [25], in this process,
and then created custom CDFs for each source. In one
case, they used an updated version of UniGene to define
a gene-specific CDF for the Affymetrix HG-U133A chip
and then reanalyzed data from a cardiac tissue study
(GSE974) [26]; comparing the updated CDF and the ori-
ginal CDF, they found between 30-40% differences in
those genes predicted to be significantly differentially
expressed between the two. When performing a similar
analysis with other custom CDFs, they found between
30-50% differences in predicted differential expression.
Subsequently, Sandberg et al. [24] showed that Dai’s
custom probe set definitions, when compared to the ori-
ginal definitions, improved the accuracy and precision of
transcript estimates for a set of cross-lab replicate arrays
[27]. In particular, their accuracy metrics showed that
the microarray measurements became more similar to
those measured by RT-PCR. Later, Mieczkowski et al.
[23] showed that Dai’s custom CDFs significantly
improved the correlation between microarray expression
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profiles and RT-PCR expression profiles. Thus, re-defin-
ing array specifications can potentially improve the
down-stream analysis of Affymetrix microarrays. How-
ever, biological researchers who want to test, or simply
adopt, new probeset definitions, are likely to be hin-
dered by the way the methods are communicated.
These researchers communicated their re-definition

strategies in a variety of ways. Some of them only pub-
lished their general strategies for re-defining the probe
sets, without providing custom specifications for indivi-
dual microarrays; others published custom array specifi-
cations for a limited subset of microarrays, although in a
file format different from the standard CDF format; still
others provided custom CDFs, but again, for a limited
subset of microarrays. For those research groups who can
simply use a provided custom CDF, this bewildering vari-
ety of formats does not pose a problem. However, it is a
problem for those groups who are not in this fortunate
situation: those who want to use a published re-definition
strategy, but don’t have access to a custom array specifi-
cation file (non-standard or standard); those who want to
modify an existing method; those who want to combine
multiple re-definition strategies; and those who want to
develop and implement their own re-definition methods.
For example, one of our research interests is to test dif-
ferent gene models by assigning probes to transcript-spe-
cific sets and then creating model-specific CDFs. What
are the options for these researchers?
One option is to create custom versions of the algo-

rithms for summarizing probe set intensities, such as
RMA. However, writing these custom algorithms is likely
to be daunting, error-prone, and hard to test. A better
option is to create a custom CDF. Researchers can then
generate summarized probe set intensities using any of
the well-accepted and tested analysis packages provided
by Affymetrix or Bioconductor [28]. Though easier,
creating a custom CDF still presents challenges. In the
worst case, creating a custom CDF from scratch,
researchers need to thoroughly understand the file for-
mats (ASCII, XDA) and platform-specific logical rules for
defining probe sets (3’ expression arrays vs. exon arrays
vs. SNP arrays) necessary to parse and write CDFs. Using
an existing application programming interface (API) or
software development kit (SDK), such as Affymetrix’s
Fusion SDK [29] or affxparser [30] (an R wrapper of the
Fusion SDK), is an easier and more efficient solution
than writing in-house methods for reading and writing
CDFs. However, this still requires a degree of proficiency
in a specific programming language (C or Java for the
Fusion SDK, R for affxparser), knowledge of the CDF file
formats and probe set construction rules, and knowledge
of the language-specific data structures for representing a
CDF. A lab with in-house programming resources may
opt for either of these viable approaches, but it is not

ideal for labs with minimal programming expertise or
those not wanting to immerse themselves in CDF minu-
tiae. They need a new set of tools that makes creating a
custom array specification easy and unambiguous.
It is for this group of biological researchers that we

developed ArrayInitiative: a standalone, cross-platform
desktop application for creating and managing custom
versions of manufacturer-provided (default) microarray
specification files, such as a CDF, and for generating easily
understandable, non-standard CDF representations. It
requires only minimal knowledge of array specification
standards (file formats and logical rules) and zero pro-
gramming expertise. The manufacturer’s array specifica-
tion file format is completely hidden from ArrayInitiative
users, and they need only understand the most abstract
notion of array organization for an array type. As such,
ArrayInitiative users only have to understand and create a
simple file (delimited or XML) to define their own custom
array specifications. For example, when creating a custom
Affymetrix 3’ IVT expression array, users only need to
understand that a probe set contains pairs of perfect
match and mismatch probes and be able to create a mini-
mal text-based representation of probe set membership.
ArrayInitiative greatly simplifies the task of creating cus-
tom array specifications, allowing labs with less computa-
tional expertise to test, use, tweak and invent alternative
methods for re-defining microarray specifications.

Implementation
We developed ArrayInitiative as a standalone, rich client
desktop application with an integrated backend data-
base. The user interface was implemented with PyQt
[31], a Python [32] binding of QT from Riverbank Com-
puting. We used SQLite [33] as the backend database,
as implemented in Python’s sqlite3 module [34], because
it requires minimal installation/setup, administration
and maintenance tasks for the user and is a standard
library module in Python 2.5+. Each of the main compo-
nents is cross-platform and freely available. ArrayInitia-
tive can be downloaded from the “Downloads” section
at http://wellerlab.uncc.edu/ArrayInitiative/index.html
and as Additional file 1 in this publication.

Results
Application overview
ArrayInitiative is a rich client application for creating
custom array specifications built upon a default array
specification. The default array specification is typically
the one provided by the manufacturer and the custom
array specification is a user-modified version of that
default. Users can: (1) import default array specifica-
tions, (2) import probe sequences for the default array
specification, (3) import a custom array specification, (4)
export any array specification to multiple output formats
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(5) export the probe sequences for any array specifica-
tion and (6) browse high-level information about the
array, such as version and number of probes. This
release of ArrayInitiative supports Affymetrix 3’ IVT
expression arrays, and all of the subsequent sections will
assume this type of array.
ArrayInitiative’s default main window, shown in Figure

1, consists of an array specification browser, a dashboard
and a main menu. The array specification browser dis-
plays a list of a user’s array specifications, organized as a
hierarchical tree, while the dashboard displays summary
information about the currently selected browser item.
For example, when the “Affymetrix ® Expression”
browser item is selected, ArrayInitiative shows how
many default and custom Affymetrix 3’ expression array
specifications there are; when a user clicks on an array
specification in the browser, summary information for
that specification is displayed in the dashboard. All of
ArrayInitiative’s tools, such as the one for importing a
default array specification, can be opened from either
the main menu or from context-sensitive (right-click)
menus available in the specification browser. Each of the
tools in ArrayInitiative open as modal dialog windows.

Context-sensitive (right-click) menus
The array specification browser gives right-click access
to the main menu items; the resulting form values are
pre-populated based on the current browser selection.
Renaming and deleting array specifications can only be
done using the context menu.

Creating and managing multiple ArrayInitiative databases
When first using ArrayInitiative, users will need to create
at least one database before they can access any of the
array-specific functionality of ArrayInitiative. Multiple

ArrayInitiative databases can be created to logically sepa-
rate distinct sets of arrays, if desired. In addition, users can
update the information for an existing database and switch
between databases by setting the active database.

Importing a default array specification
Users can import the array specification (probe set defi-
nitions) for an array from a CDF file (ASCII, versions 3-
5 and XDA, versions 1-3). Usually, users will import a
default array specification from a CDF provided by Affy-
metrix, but they can also import a default array specifi-
cation from a custom CDF instead. Users must import
at least one default array specification before importing
custom array specifications and writing custom CDFs.

Importing probe sequences for the default array
specification
After importing a default array specification, users can
import the probe sequences for a default array specifica-
tion, using the FASTA or tab-delimited probe sequence
file provided by Affymetrix for that array. ArrayInitiative
will automatically generate the missing mismatch probe
sequences. See the “File Formats” section of the manual
— available online in the supplementary site — for
details about the supported formats for a probe
sequences file.

Creating a custom array specification file
After importing a default array specification, users can
create a custom array specification for any imported
default array specification. When creating a custom
array specification file to import, users can instruct
ArrayInitiative to copy an existing probe set, re-define
an existing probe set or define an entirely new probe
set. When defining, or re-defining, a probe set, users
can use any of the probe pairs from the default array
specification. ArrayInitiative treats probe pairs as atomic
units, and as such, users can’t add just the PM or MM
probes to a probe set definition. Currently, ArrayInitia-
tive accepts a full specification file type (delimited or
XML), requiring that users explicitly define every probe
set. See the “File Formats” section of the manual —
available online in the supplementary site — for details
about the supported formats of a custom array
specification.

Importing a custom array specification
After creating a full specification file, users can import
them into ArrayInitiative. Users can define multiple cus-
tom versions for any default array specification.

Exporting an array specification
Users can export default and custom array specifications
as a CDF (ASCII or XDA), an XML file or a delimited

Figure 1 ArrayInitiative main screen. The ArrayInitiative main
screen, consisting of an array specification browser, a dashboard
and a main menu.
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file. See the “File Formats” section of the manual —
available online in the supplementary site — for details
about the output types.

Exporting probe sequences for an array specification
Users can export the probe sequences for a default or
custom array specification as a FASTA, XML or delim-
ited file. See the File Formats page for details about the
output types. When exporting a custom array specifica-
tion as a CDF, the type — ASCII or XDA — will be the
same as the parent default array specification.

Discussion
In this section, we illustrate why ArrayInitiative is useful
to microarray researchers by presenting a case study in
which we create custom CDFs based upon two different,
published probe-filtering techniques and then use Bio-
conductor algorithms to investigate the effect of the
probe set re-definitions on the summarized expression
values. The complete case study code, data and results
are available under the “Downloads” section at http://
wellerlab.uncc.edu/ArrayInitiative/index.html. We then
discuss the limitations and future directions of
ArrayInitiative.

Case Study
Introduction
Imagine that you, as a researcher who is reasonably
proficient with programming, discover two different
probe-filtering techniques for Affymetrix arrays while
reading the literature. Both of them seem reasonable
and you think that, by incorporating such QC steps,
you could improve the results you get when analyzing
your expression arrays with Bioconductor tools. Since
your favorite Bioconductor packages require a well-
formed CDF, you search the web to see if someone has
created a custom CDF based upon both filters. Unfortu-
nately, you can’t find one and must generate the custom
CDF yourself or rewrite and test several complicated
algorithms. Convinced that the filters will improve your
results, you decide to create a custom CDF from
scratch. The developers of technique A conveniently
provide a comma-delimited text file with the new probe
set definitions for the array type that you’re interested
in, while the developers of technique B provide a cus-
tom CDF with their filter, also for your array type. You
then need to compare the two different probe set defi-
nitions to make sure they don’t conflict and then merge
their individual probe set definitions into a single cus-
tom CDF. Examining the delimited files is relatively
straightforward, so filter A’s probe set definitions are
already usable; however, to get the probe set definitions
for filter B, you need to parse the rather complex CDF
file. After some time and effort, you manage to learn

the CDF format and successfully retrieve the probe set
definitions for filter B. With some coding magic, you
create a joint probe set definition that is the intersection
of the two filters. Confident in your knowledge of the
CDF format, you write some code to create the custom
CDF, which eventually is accepted by the analysis
packages after much trial-and-error. Upon analyzing
your arrays, it appears that, indeed, the two filtering
techniques, in tandem, significantly improve your
results. Excited by your success, you want to apply the
same probe-level filters to an expanded set of arrays,
some of which were done on a later version of the
array. As you acquire the necessary files you realize that
the later version of the array is described by a different
kind of CDF, in the XDA format, which is entirely dif-
ferent from the CDF format that you learned. Dispirit-
edly, you set out to learn another format and start the
process over again.
Not only is the above scenario likely, it is also fairly

optimistic. Many research labs do not have the in-house
computational expertise to create custom CDFs easily,
nor should every lab be required to learn about the
CDF formats to reap the benefits of research into
probe-level filters on Affymetrix microarrays. This is
exactly why a custom CDF creator like ArrayInitiative is
useful.
The case study presented here illustrates the merging

of two real sets of probe filters, that we term ‘BaFL’ and
‘Upton’ (described more fully below). We created cus-
tom HG-U95Av2 CDFs for each of them and then used
three different Bioconductor packages — RMA, dChip
and MAS 5.0 — to determine the independent and joint
effect of each filter. Lest the reader be unconvinced that
such filters would alter the outcome, for a given custom
CDF and summarization method, we compared the
probe set intensities calculated using the custom CDF to
those calculated using the default CDF.

HG-U95Av2 Microarray and the Bhattacharjee Data Set
The ‘Bhattacharjee’ data set, which contains data for
arrays reporting on 139 distinct macro-dissected human
lung adenocarcinoma samples, was assayed using 190
HG-U95Av2 arrays [35]. Of these, 47 samples had 2-4
replicate arrays (most have only two). The HG-U95Av2
array has 12,625 probe sets and 201,800 probe pairs
(403,600 probes), with most probe sets having 16 probe
pairs (32 probes). The full distribution of probe pairs
per probe set is presented in Table S1.
For this case study, we analyzed twenty randomly

selected arrays (RAND) from 190 Bhattacharjee adeno-
carcinoma arrays, shown in Table S2. When selecting
the arrays, we excluded any arrays that exhibited array-
wide technical problems, as identified by Thompson et
al. [36], from the sample pool.
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Probe-filtering Techniques
BaFL
Thompson et al. [36] developed a “white box” pipeline -
Biologically applied Filter Levels (BaFL) - to identify and
filter microarray probes that are likely to report incor-
rect or misleading intensities based upon certain biologi-
cal properties, such as the presence of SNPs in the
probe sequence (e.g. as identified by AffyMapsDetector
[10]), probe cross-hybridization, internal structure in
either the probe or target sequence that reduces binding
affinity, and probe intensities that fall outside the linear
range of the scanning device [3,4]. Thompson et al. pro-
vided comma-delimited files of filtered (deprecated
probes removed) probe set definitions for the HG-
U95Av2 and HG-U133 array types.
Upton
Upton et al. [14,15] reported that probes with certain
sequence motifs have intensities that are uncorrelated
with the other probes in the same probe set; however,
they tend to correlate well with any probes having the
same sequence motif, regardless of probe set member-
ship. In this case study, we will focus on the two major
types of problematic sequence motifs identified by
Upton et al. [15]: G-runs and primer spacers. Probes
with the G-run motif, ≥ 4 Gs in a row, tend to produce
consistently high intensities, with some position depen-
dence. The primer spacer motif, CCTCC, is related to
the incorporation of a T7-binding site when a mRNA is
amplified during target preparation. When the target is
amplified in this manner, the probe intensities tend to
be higher than most, introducing a spurious correlation
similar to that seen with G-runs. Since both of these
sequence motifs introduce a systematic bias when sum-
marizing probe set intensities, any probes including
them should be removed from a CDF prior to calculat-
ing expression values. This is always true for the G-run
motif and is true for the primer spacer motif when the
target is amplified by incorporating a T7-binding site.
The reports by Upton et al. provided good insights
about identifying problematic probes, but they did not
provide a modified CDF, a flat-file of probe set defini-
tions nor a list of deprecated probes for a given array
version.

Are the Probe-Filtering Techniques Independent?
When different groups develop QC filters independently
there may be overlap or conflicts of which they are una-
ware. Therefore, before proceeding with creating custom
CDFs and downstream analysis, we first assessed the
overlap between the BaFL and Upton filter sets to deter-
mine if they are truly independent filters.
Figure 2a shows how many probe pairs were removed

independently and jointly by each of the filter sets and
Figure 2b shows how many probe sets were modified or

removed independently and jointly by each of the filter
sets. Most analyses are performed on probe set data, but
the affected probe pairs are not necessarily homoge-
neously distributed, so we examined both aspects. Based
upon these results, we see that the two filters generally
operate on different sets of probe pairs, with minor
overlap (4.1%). The BaFL filter set removes a signifi-
cantly larger number of probe pairs than the Upton fil-
ter set. We also see that the two filter sets jointly affect
a large fraction of the probe sets (31.1%), although a sig-
nificant portion of them are independently affected by
each filter. The greater overlap between the two filters
in the latter case is expected since each probe set con-
sists of multiple probe pairs.

Creating the Custom CDFs
We created three custom CDFs using ArrayInitiative: a
BaFL-only custom CDF, an Upton-only custom CDF
and a BaFL plus Upton joint CDF. Each filter set
required a unique approach for generating the probe set
definitions due to the different ways that they were
communicated; however, after we defined the probe sets
for each filter set, the steps for creating the custom
CDFs were identical. Figure 3 shows a graphical sum-
mary of the CDF creation workflow.
The first actions were common steps. We created a

new ArrayInitiative database and imported the default
HG-U95Av2 CDF from the file provided by Affymetrix.
Next, we imported the PM probe sequences using the
tab-delimited file provided by Affymetrix and instructed
ArrayInitiative to automatically generate the correspond-
ing MM probe sequences. Finally, we exported the
default CDF probe set definitions (with probe

Figure 2 Independent and joint effects of the BaFL and Upton
filter sets. (a): The total number of probe pairs removed by either
the BaFL or Upton filter sets was 56,994/201,800 (28.2%). The Venn
diagram shows the number of probe pairs removed only by the
BaFL filter set (blue), the number of probe pairs removed by the
Upton filter set (yellow), and the number of probe pairs removed
by both filter sets. (b): The total number of probe sets removed or
modified by either the BaFL or Upton filter sets was 9,799/12,625
(77.6%). The Venn diagram shows the number of probe sets
affected only by the BaFL filter set (blue), the number of probe sets
affected only by the Upton filter set (yellow), and the number of
probe sets affected by both filter sets.
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sequences) as a comma-delimited text file. When gener-
ating the custom probe set definitions in the subsequent
steps, we queried the ArrayInitiative database directly
for information about the default probe set definitions
as querying databases tends to be more efficient and
straightforward than searching for information in flat
files. The end-point of the custom probe set definition
stage was to have in hand a comma-delimited file (CSV)
with the following columns per line: (1) probe set ID,
(2) PM probe ID, (3) x-coordinate of the PM probe, (4)
y-coordinate of the PM probe, (5) MM probe ID, (6) x-
coordinate of the MM probe and (7) y-coordinate of the
MM probe. In order to keep the method comparison
fair we required that each probe set have at least 4
probe pairs remaining; if it did not, we removed it
before creating the custom CDFs.
When creating the BaFL probe set definitions, we

started with the comma-delimited filtered probe set
definitions for the HG-U95Av2 array provided by
Thompson et al. Since that probe set definition file
included only the PM probes, we first queried the
ArrayInitiative database to get the full probe set defini-
tions of the default CDF. When creating the standar-
dized probe set definition file, we included only those
probe pairs whose PM probe was in the author’s probe
set definitions. We then uploaded the standardized
probe set definitions into the ArrayInitiative database.
Creating the Upton probe set definitions was some-

what trickier because we needed first to identify the G-

run probes on the HG-U95Av2 array. Again, we first
queried the ArrayInitiative database to get the full probe
set definitions of the default CDF, including the PM and
MM probe sequences. When creating the standardized
probe set definition file for this filter, we identified
probe pairs — using regular expressions — that had at
least one G-run or primer spacer in either the PM or
MM probe sequence and then excluded that probe pair
from the final probe set definition. We then uploaded
the standardized probe set definitions into the ArrayIni-
tiative database.
Since the BaFL + Upton CDF is the intersection of the

probe pairs that survived the BaFL and Upton filters, we
retrieved the joint probe set definitions from the ArrayI-
nitiative database by intersecting (standard ‘INTER-
SECT’ SQL statement) the BaFL probe set definition
table and the G-run probe set definition table (created
in the previous steps). Now having a list of the surviving
probe pairs, we created a standardized probe set defini-
tion file and uploaded this data into the ArrayInitiative
database.
Having standardized probe set definition files for each

of the probe filters, the final steps for creating a custom
CDF for each are identical. We first created ArrayInitia-
tive specification files for each of the filters using the
standardized probe set definition files and then imported
the custom CDF specifications into ArrayInitiative.
Finally, we created a standard ASCII CDF file for each
of the custom probe set definitions in ArrayInitiative.
Table 1 shows how the custom CDFs were changed

relative to the original and Figure 4 compares the fre-
quency with which the indicated number of probe pairs
are removed from probe sets for each of the three cus-
tom CDFs (e.g. the number of probe sets with zero
probe pairs removed, one probe pair removed, two
probe pairs removed, etc.)

Creating and Validating Bioconductor CDF Packages
Many of the Bioconductor packages aimed at analyzing
Affymetrix arrays use a specialized R package represen-
tation of a CDF instead of the actual CDF; there are
pre-generated packages for many of the default CDFs.
Since we are using custom CDFs for downstream analy-
sis, we first created and installed our own R packages
for the three custom CDFs generated by ArrayInitiative,
as follows:

1. Made the packages using the make.cdf.package
function in the makecdfenv package [37].
2. Installed the custom CDF packages using R CMD
INSTALL.

With the custom CDF packages successfully installed,
we compared, for each filter, the probe set definitions in

Figure 3 Workflow: creating the custom CDFs. Workflow for
creating the custom BaFL, Upton and BaFL + Upton custom CDFs.
The boxes in blue are common steps while the boxes in orange are
steps unique to a particular filter set.
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the existing R packages with the probe set definitions in
ArrayInitiative, as follows:

1. Exported Bioconductor’s internal probe set defini-
tions for the custom CDFs - using the ls and get R
functions - to a set of delimited files and then
uploaded the data to the ArrayInitiative database
(three tables total).
2. Verified that the number of Bioconductor probe
pairs equaled the number of ArrayInitiative probe
pairs (SQL ‘COUNT’).
3. Verified that the member probe pairs in Biocon-
ductor were the same as the member probe pairs in
ArrayInitiative (SQL ‘INTERSECT’).

Using the above procedure, we verified that the probe
set definitions for each filter were consistent between
Bioconductor and ArrayInitiative, showing that ArrayI-
nitiative-generated CDFs are compatible with one of the
most widely used microarray analysis packages. Since
the probe set definitions were consistent, we can reason-
ably assume that any differences in downstream analysis

will be the result of the custom probe set definitions,
not from misinterpreting set membership.

Differences in Summarized Probe Set Intensities
How do the BaFL and Upton filter sets independently,
and jointly, affect summarized probe set expression
values? For the three summarization methods chosen
(MAS 5.0, dChip, and RMA), we determined how, on
average, the custom expression values changed with
respect to the default expression values as we removed
probe pairs.
We only analyzed the 12,387 probe sets with 16 probe

pairs in the default CDF (henceforth called standard
probe sets) and only removed from 0 to 12 probe pairs,
so that at least 4 remained to a set. We did this for sev-
eral reasons: (1) standard probe sets represent the vast
majority of those on the array and most are designed to
interrogate transcripts, (2) the majority of non-standard
probe sets represent the minority of those on the array
and most are designed for diagnostic or quality control
purposes and (3) we wanted to use a consistent probe
set size to eliminate that as a factor when analyzing the
downstream effect on expression values.
For each unique combination of summarization

method and RAND array, we calculated the expression
values of the standard probe sets using the default and
custom probe set definitions. Then for each probe set,
we calculated the percent change between the expres-
sion values, as follows:

� =
Ec − Ed

Ed
∗ 100

where Ec is the custom expression value and Ed is the
default expression value. For each distinct combination
of summarization method and custom CDF, we calcu-
lated the average delta, across all of the RAND arrays,
as we removed probe pairs. The workflow is depicted in
Figure S1.
Before running the analysis, we postulated that the

Upton filter set would decrease probe set intensities as
we removed probe sets, since probes with G-runs and
primer spacers tend to have a much higher intensity
than other probes in the probe set; we expected that the
BaFL filter set would increase the probe set expression
values as we removed probe sets because its filters tend
to remove low intensity PM probes; we expected that

Table 1 Filter set modifications to the HG-U95Av2 specification

CDF name Removed probe sets Modified probe sets Unmodified probe sets

Upton filter set 1 4,083 8,303

BaFL filter set 1,406 7,125 3,856

BaFL + Upton filter set 1,460 8,570 2,357

Modifications to the default HG-U95Av2 specification made by each set of filters.

Figure 4 Number of probe pairs removed by individual filter
sets. Summary of number of probe pairs removed from standard
probe sets – those having 16 probe pairs – by each of the three
filter sets. Presented for each custom CDF are the total number of
probe sets that survived the cleansing process. Default CDF =
12,387 standard probe sets, Upton CDF = 12,386 standard probe
sets, BaFL CDF = 10,981 standard probe sets, BaFL + Upton =
10,927 standard probe sets.
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the joint filter probe set expression values would fall
between those produced by the two independent filter
sets, but heavily weighted towards the BaFL probe set
expression values, since it removed many more probe
pairs.

MAS 5.0
Figure 5a shows the average expression changes seen
when we used MAS 5.0 to summarize the probe sets.
The Upton filter set influenced the probe set expression
values in two distinct ways: when we removed 1-5 probe
pairs, the expression values stayed relatively constant
compared to the default CDF; when we removed 6-9
probe pairs, the expression values increased (except at
7); when we removed 10-12 probe pairs, the expression
values decreased. This result was surprising since we
expected the probe set expression values to consistently
decrease. The BaFL filter set consistently resulted in
increased probe set expression values as we removed
probe pairs, while the joint filter set was a blend of the
two independent filter sets, although heavily weighted
towards the BaFL filter set.

dChip
Figure 5b shows the average expression changes seen
when we used dChip to summarize the probe sets. The
Upton filter set decreased the probe set expression
values, but exhibited somewhat erratic behavior. The
BaFL filter set, in general, decreased the probe set
expression values, reaching a maximum positive change
at 6-7 probe pairs removed. The expression values
decreased when we removed 12 probe pairs. The joint
filter set was a blend of the two independent filter sets,
only somewhat weighted towards the BaFL filter set.

RMA
Figure 5c shows the average expression changes seen
when we used RMA to summarize the probe sets. The
Upton filter set consistently decreased the probe set
expression values while the BaFL filter set consistently
increased the expression values. The joint filter set was
a blend of the two independent filter sets: the values
were slightly weighted towards the BaFL filter set when
we removed 1-6 probe pairs and heavily weighted
towards the BaFL filter set when we removed 7-12
probe pairs.

Case Study Discussion
The Upton filter set decreased the probe set expression
values when they were summarized by dChip and RMA,
a trend not observed when we summarized the probe
sets with MAS 5.0. The MAS 5.0 expression values were
unresponsive to the Upton filters when we removed 1-5
probe pairs, while its effect was fairly erratic in the 6-12
range. The BaFL filter set consistently increased the
probe set expression values for all of the summarization
methods, with MAS 5.0 and RMA being particularly
responsive. The joint filter set produced intermediate
expression values that were a blend of the two indepen-
dent filter sets when summarized with either dChip and
RMA; the effect was generally additive. The BaFL filters
had a stronger influence on the expression values, but
this is not surprising, given that the BaFL filter set
removed significantly more probe pairs than the Upton
filter set. When summarizing with MAS 5.0, changes in
the expression values were largely driven by the BaFL
filters, with the Upton filters having little effect.
In considering the joint filter set, RMA exhibited trends

in expression value changes that best fit our prior expec-
tations. Considering the magnitude of expression value
changes, the joint filter changed the MAS 5.0 expression
values the most, followed by RMA and then dChip.
While the expression values for MAS 5.0 and RMA chan-
ged by factors of 20-100% for many of the data points,
the changes seen with dChip were much lower, in the 2-
15% range, suggesting that dChip is the least responsive
to changes in the probe set definitions.

Figure 5 Difference between summarized probe set intensities
using the custom CDFs versus the default CDF. Probe set
intensities were summarized by MAS 5.0, dChip and RMA for each
of the three custom CDFs and for the default CDF. The graphed
lines show the average percent change in custom CDF probe set
expression values with respect to the default CDF expression values
as we removed probe pairs. (a) Probe set intensities were
summarized by MAS 5.0. (b) Probe set intensities were summarized
by dChip. (c) Probe set intensities were summarized by RMA.
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From these results, we may conclude that the filter
sets significantly alter the value of the estimated target
concentration when using any of the summarization
methods, although we can’t speculate if it drives the
values towards or away from the true value. Also, we
note that ArrayInitiative has finally allowed our lab to
apply MAS 5.0, dChip and RMA to a BaFL-filtered data
set, which has been one our research goals for a while.

Future Development
In the long term, we intend to develop an open API that
will support module development by external program-
mers for a large number of array types and manufac-
turers. For example, the research community might
create modules that implement a specific strategy for re-
defining probe sets (e.g. gene-specific, transcript-specific,
exon-specific, tissue-specific, 3’-end specific) or modules
that pre-process and remove probes that contain unde-
sirable sequence motifs, such as runs of Gs. Our
immediate research goals dictate adding support for
Affymetrix SNP and exon arrays, adding support for
Agilent human 4 × 44 k arrays, development of a tool
to report just the differences between two CDFs, devel-
opment of a tool to convert between the Affymetrix
ASCII and XDA formats and development of a tool to
merge two or more different probe set definitions
(union, intersection, difference) for the same array type.
We also need a variant of the merging tool that can
define consensus probe sets among different, but
related, platforms. In particular, we have pooled data
from adenocarcinoma studies assayed on four versions
of the Affymetrix human genome arrays: HG-U95, HG-
U133, HG-U133A and HG-U133 Plus 2.0. These arrays
share many same-sequence probe pairs, but the names
of their parent probe sets and their location on the
arrays are different. A consensus merging tool will iden-
tify the common probe pairs by their sequence and then
group them into biologically relevant probe sets. The
probe set identifiers and probe sequences will then be
consistent across arrays, differing only in probe coordi-
nates. This would require a custom CDF for each array
version, but all of them would consistently measure the
same subsequences in each transcript. Finally, we intend
to add support for a difference specification type, which
will allow users to specify a custom CDF as an exact
copy of the baseline CDF, except for any explicitly sta-
ted differences, most likely useful for those studying
only a few genes in great detail.

Conclusions
ArrayInitiative is for those biological researchers who
want to create custom microarray specifications, such as
a CDF, without the additional burden of learning the
manufacturer’s specification file format or learning an

API. It provides graphical tools for importing a manu-
factuer’s microarray specification, defining custom ver-
sions of a manufacturer’s specification, writing array
specifications in their standard format or in an easily
understandable, non-standard representation. Creating a
custom array specification requires only minimal knowl-
edge of a manufacturer’s specification standards (file for-
mats and logical rules) and the ability to create a simple
delimited or XML file.
The case study illustrated two concepts: the simplicity

of using ArrayInitiative to create custom array specifica-
tions and how those modified specifications can signifi-
cantly change summarized expression values. By not
being constrained to a specific strategy for re-defining
an array specification, ArrayInitiative enables researchers
to create new specifications based upon their own
requirements. These array specifications might be the
result of a new probe-filtering technique or may help to
answer a specific biological question. Since it is unclear
which re-definition strategies are the best, ArrayInitia-
tive will make it easy to test competing approaches and
compare them to the manufacturer’s array specification,
using established, tested software.

Availability and requirements
Project name: ArrayInitiative
Project home page: http://wellerlab.uncc.edu/ArrayI-

nitiative/index.html
Operating system(s): Windows, Linux and Mac OS X
Programming language: Python 2.5 - 2.8
Other requirements: SQLite, PyQt4
License: LGPL
Restrictions for non-academic use: None

Additional material

Additional file 1: ArrayInitiative 1.0. The first release of ArrayInitiative.

List of abbreviations
API: application programming interface; ASCII: text-based version of
Affymetrix CDFs; BaFL: biogically applied filters; CDF: chip definition file;
MM: mismatch; PM: perfect match; RAND: set of randomly selected arrays;
SDK: software development kit; SNP: single nucleotide polymorphism; XDA:
binary version of Affymetrix CDF.
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