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Abstract

Genome-wide association studies have identified numerous disease-susceptibility genes. As knowledge of gene–
disease associations accumulates, it is becoming increasingly important to translate this knowledge into clinical
practice. This challenge involves finding effective drug targets and estimating their potential side effects, which
often results in failure of promising clinical trials. Here, we review recent advances and future perspectives in
genetics-led drug discovery, with a focus on drug repurposing, Mendelian randomization, and the use of
multifaceted omics data.

Background
Since the first completion of human genome sequencing
in 2003 [1], many more attempts have been made to elu-
cidate the relationships between human genotypes and
phenotypes. One of the approaches that has been widely
adopted for this purpose is the genome-wide association
study (GWAS) [2, 3]. GWAS is an observational study
that is designed to statistically assess associations be-
tween traits and tens of millions of genome-wide genetic
variants from population samples. Due to the advance-
ment of genotyping technology using single-nucleotide
polymorphisms (SNP) microarray, more than 4000
GWASs have been reported globally at the time of this
writing [4]. With the increase in the number of studies,
the number of samples in each study has also increased,
reaching hundreds of thousands of samples in recent
years [5–9]. Although these GWASs have identified nu-
merous trait-associated genomic loci, it is still challen-
ging to translate these findings into clinical practice. In
this review, we summarize recent advances in disease-
susceptibility genes for drug discovery applications.

Main text
Significance of the genetic evidence for drug discovery
Despite the tremendous effort and substantial resources
dedicated to biomedical research, only a handful of
promising academic discoveries have led to new treat-
ments [10]. Such a gap between basic research and clin-
ical practice is a challenge for the entire field of
biomedical research and is often referred to as the “val-
ley of death.” One of the causes of this gap is the bio-
logical differences between human and other model
organisms [11–13]. Validation in other organisms, such
as mice, does not necessarily mean that the results will
be replicated in humans. In addition, although validation
using human samples is preferable, experiments using
cell lines do not reflect systemic effects [14], and inter-
ventional clinical trials are at times ethically unfeasible.
Investigating the impact of human genetic variation on
phenotypes can provide insight into pathophysiology in
the human body, which will lead to the discovery of true
drug targets. Actually, it is known that drug targets with
genetic evidence are more likely to be passed into the
Phase III trial or market [15].
One effective approach for enhancing clinical practice

is drug repurposing. Drug repurposing is a strategy for
finding novel indications for existing approved drugs or
drugs in clinical trials [16]. If the safety of the drug has
already been confirmed in early-stage clinical trials for
its original purpose, repurposing existing drugs requires
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less cost for testing the safety than developing and
implementing novel drugs. The information on disease-
susceptibility genes for drug repurposing has been suc-
cessfully exploited. By utilizing databases of existing ap-
proved drug-target genes and protein–protein
interactions (PPIs), Okada et al. demonstrated that
GWAS-identified rheumatoid arthritis (RA)-susceptibil-
ity genes were significantly correlated with the targets of
known RA drugs, such as TNF-inhibitors [17] and JAK
inhibitors [18], via the PPI networks [19]. This study fur-
ther revealed that CDK4 and CDK6, which are targets of
approved cancer drugs, are potential therapeutic targets
for RA. The efficacy of CDK4/6 inhibitors was experi-
mentally validated in animal models of RA [20, 21]. In
another example, Imamura et al. demonstrated a signifi-
cant association in the connectivity of existing drug-
target genes and biological type 2 diabetes (T2D) risk
genes in PPI networks [22]. They identified KIF11 in-
hibitor (originally indicated for several types of cancers),
GSK3B inhibitor (originally indicated for several types of
cancers), and AP-1 inhibitor (originally indicated for
RA) as potential candidates for a repurposed treatment
of T2D.
The studies that have been described so far mainly fo-

cused on the association of genes and drugs for a single
disease. The use of existing drug classification systems is
a promising approach to systematically assess gene–drug
associations for a wide variety of diseases. Malik et al.
utilized the Anatomical Therapeutic Chemical Classifica-
tion System (ATC) to extract multiple drug–disease as-
sociations [23]. ATC is a drug classification system in
which drugs are classified according to the organ or sys-
tem on which the active substances act and their thera-
peutic, pharmacological, and chemical properties. Malik
et al. evaluated overlapping between GWAS-identified
stroke-susceptibility genes and known drug targets, find-
ing that stroke-risk genes are significantly targeted by
drugs that are classified into ATC B: “Blood and blood
forming organs,” specifically a subcategory, ATC B01:
“Antithrombotic agents.” To perform the analysis as de-
scribed above for a gene set, the freely available software
GREP (Genome for REPositioning drugs) by Sakaue
et al., is useful [24]. GREP quantifies the association of
user-defined gene sets with the categories of existing
drugs, such as the ATC or International Classification of
Diseases diagnostic code. It further suggests drugs that
have potential in repurposing to target the given gene
set.
Given the need for novel drug development, prioritiz-

ing genes as therapeutic targets is a decisive step. Feng
et al. devised a pipeline for this prioritization, named
“priority index” (Pi), by integrating genome-scale data,
disease ontologies, and PPIs [25]. To identify the genes
responsible for the GWAS signals, they utilized not only

disease-associated GWAS signals but also chromatin
marks and expression quantitative trait locus (eQTL)
signals. eQTLs are genomic loci that are associated with
mRNA expression levels. Then, the list of candidate risk
genes was extended to the genes that interact with the
directly observed disease-susceptible genes via the PPI
networks. Feng et al. applied a Pi pipeline to 16 im-
munologic traits, finding that 15 of these analytic results
were significantly enriched in the targets of approved
medications for the corresponding traits. These pioneer-
ing studies demonstrate that insight into disease-
susceptibility genes are a powerful resource for more ef-
ficient drug discovery, and that integration of other bio-
logical data is also a key to drug discovery.

Mendelian randomization for identifying drug targets
Suitable targets for therapeutic medications are not lim-
ited to genes. Other substances, such as modified pro-
teins or metabolites, are also related to disease states
[26], and such substances are called biomarkers. How-
ever, biomarkers do not necessarily play a causal role in
the disease pathology, as they can be influenced by the
disease states or other causes that induce disease states.
One approach to solving such a causality problem with
the help of genetics is Mendelian randomization (MR)
[27, 28]. MR is a genetic epidemiological framework for
causal inference between an exposure (i.e., biomarker)
and an outcome (i.e., disease state), as if a randomized
controlled trial (RCT) had been conducted [29]. Since
genotypes are assigned almost independently of environ-
ment when they are inherited from parents, those who
have genotypes that increase exposure are, in effect,
assigned a high dosage of the exposure, independent of
other confounding factors. This situation is analogous to
that of an RCT. MR provides virtual RCT opportunities
without actual intervention (Fig. 1).
Sjaarda et al. conducted a systematic MR analysis of

237 biomarkers to identify the causal mediators of cor-
onary artery disease (CAD) [30]. They found six bio-
markers that are suspected to increase the risk of CAD
(lipoprotein[a], apolipoprotein E, interleukin-6 receptor,
stromal cell−derived factor 1 [CXCL12], apolipoprotein
C3, and macrophage colony-stimulating factor 1
[CSF1]). Of these, CXCL12 and CSF1 were novel find-
ings, and higher levels of both biomarkers were linked to
an increased risk of CAD. They further utilized MR to
estimate whether these candidate causal mediators affect
other biomarkers of CAD risk factors, revealing an in-
creasing effect of CSF1 on C-reactive protein levels.
They inspected a causal effect of interleukin-1 beta (IL-
1β) on CXCL12 and CSF1, indicating that IL-1β is caus-
ally related to CSF1 levels. As this study shows, MR ana-
lysis facilitates identification of causal relationships
among various biomarkers as well as genetic variation.
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Chong et al. performed a systematic MR analysis of
the human proteome to identify novel causal mediators
of stroke [31]. They screened 653 circulating proteins,
identifying 7 potentially causal biomarkers (histo-blood
group ABO system transferase, coagulation factor XI,
scavenger receptor class A5 [SCARA5], tumor necrosis
factor–like weak inducer of apoptosis [TNFSF12], cluster
of differentiation 40, apolipoprotein[a], and matrix
metalloproteinase-12). SCARA5 and TNFSF12 had an
especially protective effect on cardioembolic stroke. To
assess whether these two potential drug targets for
stroke adversely affect other traits, Chong et al. further
performed a phenome-wide MR analysis of 679 disease
traits. TNFSF12 was revealed to be deleterious for four
circulatory system phenotypes, three digestive pheno-
types, and one injuries and poisonings phenotype, which
suggests that TNFSF12-targeted treatment may cause
such diseases. In contrast, SCARA5 had no significant
associations with those phenotypes other than having a
protective effect on subarachnoid hemorrhage. They re-
ported SCARA5 as a promising target for the treatment
of cardioembolic stroke. This study demonstrates the
capability of MR to reveal novel therapeutic targets and
also elucidate probable side effects.

Future perspectives
As discussed, insight into disease-susceptibility genes are
translated into clinical practice more effectively when
combined with other biological resources, such as the
PPI network, transcriptome, and proteome. This is be-
cause genetic information provides clues about the
causal relationships among multiple traits, which can re-
sult in distinct correlations discovered from simple ob-
servational studies [32]. Hence, enhancement of
multifaceted biological resources will lead to further ad-
vances in genetics-led drug discovery. For example, ex-
pansion of metabolome studies may reveal disease-

causal metabolites through MR analysis, which could ex-
pand the range of candidate therapeutic targets [33]. An-
other potential therapeutic target is microbiota [34, 35].
The interaction between human organs and their micro-
bial composition has received increasing attention [36].
Linking human microbial knowledge to GWAS insight is
opening up new perspectives [37–39]. As previous stud-
ies show, investigating tissue-specific gene functions is
an essential approach for the development of therapeutic
targets [40, 41]. Integration of insight into disease-
susceptibility genes and tissue-specific biological features
will lead to precise strategies for treatment [42–46]. Re-
cent advances in single-cell analysis will further reveal
cell type-specific effects of genetic variation [47–49] and
provide precise descriptions of relationships between ge-
notypes and phenotypes.
Another influential factor that will provide advance-

ments in this field is the decreasing cost of whole-
genome sequencing. Nowadays, we can sequence an in-
dividual’s whole genome for less than 1000 U.S. dollars
[50], which enables us to investigate the effect of rare
variants on phenotypes, whereas most GWASs focus
mainly on common variants. Because functional variants
are subject to purifying selection, such variants tend to
be rare in most populations. In other words, rare vari-
ants are more likely to be functional than common vari-
ants [51, 52]. By collecting such functional rare
variants and phenotypes of carriers of those variants,
we can more clearly grasp the functional effect of ge-
notypes on phenotypes [53]. A prominent example is
“human knockouts” [54, 55]. If individuals who have
a homozygous loss-of-function variant within a gene
are found in a population, inspecting their phenotypes
closely will reveal how an individual is affected by the
inhibited gene. Such observations will lead to the dis-
covery of novel drug targets and provide an estima-
tion of its side effects [56–58].

Fig. 1 Schematic comparison between the randomized controlled trial and Mendelian randomization. Two schematic diagrams are shown for
Mendelian randomization separately for the effect direction of the non-reference allele, i.e. protective or causal (risk allele). For simplicity, a single
genomic locus is depicted in the diagrams of Mendelian randomization. Note that multiple loci are considered for statistical evaluation in
practical settings. In RCT, random assignment of a treatment minimizes the effects of confounders. In MR, random segregation of alleles during
gamete formation plays a similar role
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Conclusions
Advances in genotyping technologies, including SNP
microarray and next-generation sequencing, have yielded
numerous studies concerning the relationships between
the genome and a wide range of traits. The next goal for
genetics is translating these insights into clinical prac-
tice. The increasing number of attempts to achieve this
goal includes drug repurposing, prioritization of candi-
date target genes, and MR-based causal inference. Future
discoveries through these efforts will lead to solutions to
the present problems that challenge drug development.
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