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Abstract: The K63-linkage specific deubiquitinase BRCC36 forms the core of two multi-subunit
deubiquitination complexes: BRCA1-A and BRISC. BRCA1-A is recruited to DNA repair foci,
edits ubiquitin signals on chromatin, and sequesters BRCA1 away from the site of damage,
suppressing homologous recombination by limiting resection. BRISC forms a complex with metabolic
enzyme SHMT2 and regulates the immune response, mitosis, and hematopoiesis. Almost two
decades of research have revealed how BRCA1-A and BRISC use the same core of subunits to perform
very distinct biological tasks.
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1. Introduction

1.1. K63-Linked Ubiquitination

A fundamental mechanism underlying cellular signalling is the specific, covalent modification
of proteins. Sophisticated machinery has evolved to specifically form or break isopeptide bonds
between the ε-amino group of lysines and the carboxyl terminus of the small, highly conserved protein
ubiquitin [1]. Ubiquitin signaling is extensive and essential for eukaryotic life and similar systems are
even present in prokaryotes [2,3]. Ubiquitination sites have been identified on thousands of proteins
and the patterns change dynamically in response to physiological changes [4].

Ubiquitin molecules carry seven lysines on their surface, at positions K6, K11, K27, K29, K33, K48,
and K63. The ε-amino group of each lysine as well as the amino terminus of the protein can engage in an
isopeptide bond with the carboxyl terminus of another ubiquitin, forming a ubiquitin chain [1]. In this
fashion, eight different types of unbranched ubiquitin chains can be formed. Ubiquitin chains differ
structurally depending on linkage, from the open, accessible linear or K63-linked chains, to the closed
and clustered K48-linked chains, and they are processed by specialized, linkage-sensing machinery
that uses them in independent signaling pathways [5–8].

K48-linked ubiquitin chains are most common and target proteins for degradation via the
ubiquitin proteasome pathway [9]. K63-linked ubiquitination, the second most common ubiquitin
chain type, carries signals essential for DNA repair, the stress and immune response, and membrane
protein homeostasis [10,11].

1.2. Deubiquitination Complexes

The enzyme inventory of human cells contains ∼100 de-ubiquitinases (DUBs), enzymes that
specifically cleave the isopeptide bond between the carboxy-terminus of ubiquitin and either the
N-terminus or the ε-amino group of a lysine of another protein. DUBs show a wide spectrum of activity
and linkage specificity. While many DUBs are apparently monomeric, unregulated, and functionally
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rather promiscuous, some DUBs show high substrate specificity and some degree of regulation [12,13].
DUBs incorporated into large molecular machines, such as the proteasome lid, can acquire additional
specificity and regulation from other subunits in the complex [14].

1.3. Discovery of BRCA1-A and BRISC

Interaction between DNA repair associated ubiquitin E3 ligase BRCA1 and protease BRCC36
was first reported in 2003 [15]. In the same report, BRE was already identified as member of the
complex. Four years later, in 2007, three groups reported simultaneously that BRCA1 forms a complex
with RAP80, a DNA-repair associated protein, and that this complex targets BRCA1 specifically to
DNA repair foci [16–18]. Interaction between RAP80 and BRCA1 was found to be mediated by a new
protein subunit of the complex, named ABRAXAS, that binds to BRCA1 when phosphorylated [18].
ABRAXAS was found to have a homolog, which was named ABRO1 [18]. In 2009, a complex of
BRCC36, BRE, a subunit initially called HSPC142, and ABRO1 was purified from HeLa cells and
found to have high K63-specific DUB activity [19]. At the same time, HSPC142 was identified as
essential component of the BRCA1-binding complex and renamed MERIT40 (or, less frequently
used, NBA1) [20–22]. In 2011 it became clear that BRCC36 is the catalytically active subunit of two
distinct DUB complexes, BRCA1-A and BRISC, that share three subunits, but are targeted to different
compartments and carry out different physiological tasks [23]. Structure determination of the ancestral
insect subcomplex KIAA0157-BRCC36 [24], mouse BRCA1-A complex [25] and human BRISC-SHMT2
complex [25,26] finally allowed to rationalize almost two decades of biochemical and cellular data and
laid the foundation for understanding BRCA1-A and BRISC function on the molecular level.

1.4. Evolution of BRCA1-A and BRISC

Homologs of BRCC36 have been identified in plants and are involved in DNA repair [27].
A complex containing BRCC36, scaffold protein KIAA0157, BRE, and MERIT40 is present in insects and
efficiently degrades K63-linked chains [24]. The subfunctionalization of ancestral scaffold KIAA0157
into ABRAXAS and ABRO1 after a whole genome duplication prior to the development of cyclostomes
established BRCA1-A and BRISC as separate complexes with diverging function; they are found in
all vertebrates (diagram in figure S1C of [25]). All human tissues express subunits of BRCA1-A and
BRISC [28,29].

2. Subunits and Complex Assembly

2.1. Nomenclature

This section provides an overview of the protein subunits in BRCA1-A and BRISC and describes
how they assemble to form the functional complexes. Nomenclature and definition of the complexes
has evolved since the initial discovery of an association between BRCC36 and BRCA1. While a new
and more consistent nomenclature has been employed recently [26], this review uses the legacy
nomenclature and complex definition used in the majority of the literature. The BRCA1-A complex
consists of ABRAXAS, BRCC36, BRE, MERIT40, and RAP80. BRCA1-A binds BRCA1 to form the
BRCA1-A-BRCA1 complex (Figure 1A). BRISC consists of ABRO1, BRCC36, BRE, and MERIT40 and it
binds SHMT2 to form the BRISC-SHMT2 complex (Figure 1A). All residue numbers are given for the
human proteins unless stated otherwise (Table 1).
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Figure 1. (A) Architecture of BRCA1-A and BRISC-SHMT2α complex. Schematic representation of
protein subunits and binding partners (BRCA1-A and BRISC-SHMT2α structure: [25]). (B) Detailed
view of the active site of BRCC36. The side chains of catalytic residues E33, D88, H122, H124, and D135
are shown. The zinc atom at the active center is shown in silver. A catalytic water molecule is shown as
a blue sphere (BRCA1-A structure: [25]). (C) The BRCA1 BRCT dimer binds to the phosphorylated
C-terminus of ABRAXAS. The flexible C-terminus of ABRAXAS is depicted schematically and the
conserved BRCT binding sequence of ABRAXAS is shown. The phosphorylation sites at S404 and S406
are indicated with red dots. The BRCA1 BRCT domain dimer bound to the phosphorylated ABRAXAS
C-terminus is shown in surface representation with the BRCA1 shown in pink and the ABRAXAS
C-terminal tail in white with phosphorylation sites shown in red (BRCA1 BRCT structure: [30],
BRCA1-A structure: [25]).

Table 1. Subunits of BRCA1-A and BRISC complex, and binding partners.

Name Gene Names Size (aa) Size (kDa) Domains Associated with Constitutive

ABRAXAS
ABRAXAS1, ABRA1,

409 36.7 JAMM/MPN−, BRCA1-A subunitCCDC98, FAM175A, BRCA1 bindingUNQ496/PRO1013

ABRO1 ABRAXAS2, FAM175B, 415 46.9 JAMM/MPN−, BRISC subunitKIAA0157 SHMT2α and LNK bdg.

BRCC36 BRCC3, C6.1A, CXorf53 316 36.0 JAMM/MPN+ BRCA1-A, BRISC subunit

BRE BABAM2, BRCC45 383 43.6 UEV BRCA1-A, BRISC subunit

MERIT40 BABAM1, C19orf62, 329 36.6 VWA BRCA1-A, BRISC subunitNBA1, HSPC142

RAP80 UIMC1, RXRIP110 719 79.7 SIM, twin UIM, AIR BRCA1-A subunit

BRCA1 RNF53 1863 207.7 RING, BRCT BRCA1-A regulated binding

SHMT2α GLYM 483 53.5 SHMT BRISC regulated binding
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2.2. BRCC36

BRCC36 contains an N-terminal JAMM/MPN+ domain, followed by a coiled-coil domain [17,31].
The JAMM/MPN+ metalloprotease domain in BRCC36 specifically cleaves isopeptide bonds between
the lysine ε-amino group and the C-terminal carboxyl group of ubiquitin with a specificity for
K63-linked ubiquitin chains [32]. A zinc atom forms the active center of BRCC36, coordinated by two
histidines (H122 and H124), an aspartate (D135), and one molecule of water [24–26] (Figure 1B).
A nucleophilic attack on the isopeptide bond by the zinc-activated water molecule results in a
tetrahedral intermediate followed by isopeptide bond cleavage and simultaneous release of the reaction
products, followed by enzyme regeneration [33]. In BRCA1-A and BRISC complex, only BRCC36 is
enzymatically active, the other subunits serve structural and regulatory purposes.

2.3. ABRAXAS

ABRAXAS contains an N-terminal JAMM/MPN− domain, which is homologous to the
JAMM/MPN+ domain, but enzymatically inactive due to loss of the zinc binding site [18,31].
Inactive as a DUB, the JAMM/MPN− domain of ABRAXAS binds to the JAMM/MPN+ domain
of BRCC36 and activates it [24]. A similar arrangement of an active JAMM/MPN+ isopeptidase that
is activated by the JAMM/MPN− domain of a scaffold protein is found in the proteasome lid and
the COP9 signalosome [34,35]. The JAMM/MPN− domain of ABRAXAS is followed by a coiled-coil
domain and a long, unstructured C-terminus, which terminates in a twin phosphorylation site (S404,
S406) that is recognized by the BRCT domain of BRCA1 [18,30] (Figure 1A). ABRAXAS carries a nuclear
import signal that is essential for the nuclear localization of the entire BRCA1-A-BRCA1 complex [36].

2.4. ABRO1

Like ABRAXAS, ABRO1 contains an N-terminal JAMM/MPN− domain that is not enzymatically
active and serves as activator and scaffold [23]. The JAMM/MPN− domain is followed by a long
C-terminal unstructured tail that contains a phosphorylation site at Y377, which is bound by the SH2
domain of LNK [23,37].

2.5. BRE

BRE contains three domains: an N-terminal (UEV-N) and a C-terminal UEV domain (UEV-C),
and between them a central RWD domain [25,26]. UEV and RWD domains are structurally
related to E2 enzymes and mediate interactions between proteins, often including ubiquitin [38,39].
The UEV-N domain of BRE binds ABRAXAS/ABRO1, while the UEV-C domain binds MERIT40 [25].
The interaction surface between the UEV-N and the RWD domain is considerably larger than the
interaction between the RWD and the UEV-N domains, leaving a channel that in BRCA1-A complex is
filled by the AIR domain of RAP80 [25] (Figure 2A). In absence of RAP80, this channel functions as a
flexible hinge, allowing considerable movement between the UEV-N/RWD and the UEV-C domain of
BRE, as evident in the structures of BRISC-SHMT2 complex [25,26]. When not occupied by RAP80,
the cleft in BRE mediates dimerization of two complexes to form a dimer of dimers [25,26,40].

BRE binds ubiquitin: a soluble complex of BRE and MERIT40 (BRE requires MERIT40 for
solubility) binds ubiquitin with low micromolar affinity (Kd ∼ 20 µM), substantially tighter than
the affinitiy measured for MERIT40 alone [25].
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Figure 2. (A) Integration of RAP80 into the BRCA1-A complex. RAP80 and BRCC36 are shown as
surface representation, ABRAXAS, BRE and MERIT40 are shown as cartoon. Integration of RAP80
into BRCA1-A induces a substantial conformation change in BRE, which results in a rotation of ∼56◦

towards the coiled coils at the base of the complex (BRCA1-A and BRISC-SHMT2α structure: [25]).
(B) Schematic representation of BRCA1-A binding to chromatin marks. The SIM and twin UIM domains
at the N-terminus of RAP80 are tethered by a long flexible linker to BRCA1-A. BRCA1 binds to the
C-terminus of ABRAXAS (BRCA1-A structure: [25], BRCA1 BRCT domain with bound ABRAXAS
phosphopeptide structure: [30], RAP80 SIM-bound ubiquitin structure: [41], RAP80 UIM-bound
K63-linked ubiquitin structure: [42]).

2.6. MERIT40

MERIT40 consists of an unstructured N-terminus and a C-terminal VWA domain [22,25].
VWA domains are similar in function to UEV domains: they mediate protein-protein interactions,
including interactions with ubiquitin [43]. The unstructured N-terminus contains a tankyrase binding
site and is weakly parsylated in vivo [44]. MERIT40 is the only subunit of BRCA1-A or BRISC that
can be expressed in full-length and purified in isolation and binds ubiquitin with high micromolar
affinity [25,45].

2.7. RAP80

RAP80 is an extended, largely unstructured protein. The N-terminus contains a SIM domain
(residues 40–43) that binds SUMO with micromolar affinity (Kd ∼ 200 µM) [46–48]. Binding affinity of the
SIM domain is regulated by phosphorylation of two adjacent serines (S44 and S46), which substantially
increases SUMO binding affinity (Kd ∼ 9 µM) [41].

Two UIM domains (UIM1: residues 80–96, UIM2: residues 104–120) are located close to the SIM
domain. Both UIMs are helical and they are connected by a rigid helix so that simultaneous binding
by two ubiquitin moieties is only possible when they are K63-linked [42]. RAP80 binds K63-linked
di-ubiquitin with low micromolar affinity (Kd ∼ 17 µM) [47], but the SIM and UIM domains of RAP80
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bind mixed chains of SUMO and K-63-linked ubiquitin non-cooperatively with nanomolar affinity
(Kd ∼ 200 nM) [47,48] (Figure 2B).

The central AIR domain of RAP80 (residues 272–330) mediates integration into the BRCA1-A
complex. RAP80 AIR binds MERIT40, fills the channel between the RWD and UEV-C domains of BRE,
and is embedded into BRCA1-A by a short domain of the ABRAXAS C-terminus [25].

2.8. Assembly of BRCA1-A and BRISC Complex

BRCA1-A complex is a dimer of pentamers with C2 symmetry [25] (Figure 1A). Each pentamer
contains one copy of ABRAXAS, BRCC36, BRE, MERIT40, and RAP80. ABRAXAS and BRCC36
form an MPN dimer that is structurally different from the MPN dimers found in the proteasome lid
and COP9 signalosome complex [24,25]. Unlike RPN8 and RPN11 in the proteasome lid or CSN5
and CSN6 in the COP9 signalosome, the interaction between ABRAXAS and BRCC36 is mediated
by β-sheets [24,25]. The UEV-N domain of BRE binds to ABRAXAS and the UEV-C domain binds
MERIT40 [25] (Figure 2A). The AIR domain of RAP80 binds in the channel between the RWD and
UEV-C domains of BRE, and contacts MERIT40 [25] (Figure 2A). The unstructured C-terminus of
ABRAXAS binds on top of RAP80 and embeds RAP80 into the BRCA1-A complex [25] (Figure 2A).
Two pentamers dimerize to form a complete, arc-shaped BRCA1-A complex [24,25,40] (Figure 1A).
The dimerization is mediated by the coiled coil domains of BRCC36 and ABRAXAS, which form a
helical bundle, similar to the assembly principle of the COP9 signalosome [24,25,34]. Cross-bracing by
the linkers between the JAMM/MPN− domains and the coiled-coil domain of ABRAXAS renders
non-destructive, reversible separation of the dimers unlikely [25] and loss of RAP80 in vivo leads to
loss of the functional BRCA1-A complex [49,50]. Fully assembled BRCA1-A complex does not form
the “super-tetrameric” complex observed when BRCA1-A is expressed in absence of RAP80 since the
interaction surface on BRE is saturated [25,40].

BRISC complex forms a dimer of tetramers with C2 symmetry [25,26] (Figure 1A). Each tetramer
contains one subunit of ABRO1, BRCC36, BRE, and MERIT40 [25,26]. The JAMM/MPN domains
of ABRO1 and BRCC36 are found in an identical arrangement to BRCA1-A and the connections
mediating the dimerization are identical to what is observed in BRCA1-A [25]. ABRO1 is bound by the
UEV-N domain of BRE, which binds MERIT40 with the UEV-C domain [25]. Due to the absence of
RAP80, BRE is not structurally locked in by the AIR domain bridging between the RWD and UEV-C
domain (Figure 2A), leaving BRE flexible and the “super-tetramerization surface” exposed [25,26].
BRISC arcs form interlocking dimers driven by a weak interaction between BRE and BRCC36, but this
“super-tetramerization” is easily disrupted by ubiquitin substrate or SHMT2 binding [25].

3. BRCA1-A Suppresses Homologous Recombination

3.1. Ubiquitin Marks Recruit BRCA1-A

What is the function of BRCA1-A in DNA repair? DNA double-strand breaks are highly toxic
lesions that are immediately recognized by sophisticated cellular repair machinery. If a cell experiences
DNA damage during the S or G2 phase, the available sister chromatid will serve as template for a
loss-free repair via the homologous recombination (HR) pathway. Outside of S and G2 phase, the cell
uses non-homologous end joining (NHEJ), where it removes the overhangs and re-ligates the DNA
ends [51]. As DNA repair has the potential to induce genomic instability, pathway choice is tightly
controlled [52].

Ubiquitin and SUMO signals define the DNA repair focus, govern the recruitment of DNA repair
enzymes, and control their activitiy [53,54]. DNA damage activates ATM, which phosphorylates
histone H2AX [55] (Figure 3A). The γH2AX signal is in turn recognized by MDC1, which recruits
ubiquitin E3 ligases RNF8 and RNF168 [56]. RNF168 primes ubiquitin chain generation by
monoubiquitination of K13 and K15 of histone H2A/H2AX and deposits K63-linked ubiquitin chains
on histone H1 [57–59]. Primed by RNF168 monoubiquitination of H2A/H2AX, RNF8 extends the
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monoubiquitin marks with K63-linked chains [59]. At the same time, SUMO ligases PIAS1 and
PIAS4 synthesize SUMO chains on various enzymes at DNA repair foci and these chains activate the
SUMO-targeted ubiquitin ligase RNF4, which extends them as mixed SUMO-K63-linked ubiquitin
chains [57,60,61] (Figure 3B). As a result of these processes, micron sized zones containing kilobases
of chromatin around the site of damage accumulate marks that include K63-linked ubiquitin chains
mixed with SUMO [60]. The N-terminus of BRCA1-A subunit RAP80 carries a SIM-UIM domain that
binds SUMO and ubiquitin with high affinity [47,48]. With SUMO and ubiquitin chains accumulating
at DNA repair foci, the BRCA1-A complex with bound BRCA1 is recruited to the modified chromatin
region [16–18] (Figure 2B).

3.2. BRCA1 Sequestration by BRCA1-A

Initially recruited both to the site of damage as well as to the surrounding chromatin,
BRCA1 promotes in a POH1-dependent process the redistribution of 53BP1, RAP80 and ubiquitin
chains towards the periphery of the DNA repair foci, leaving the area immediately at the site of
damage depleted [62]. BRCA1-A binds BRCA1 with high affinity and withdraws it from the site
of damage to the periphery where it remains sequestered [63] (Figure 3C). The patterns that recruit
RAP80 are reinforced by recruitment of E3 ubiquitin ligases RNF8 and RNF168 to the periphery [62,63].
Sequestration of BRCA1 in the periphery, away from the DNA damage site suppresses HR and steers
the cell toward repair by NHEJ, while loss of RAP80 leads to concentration of BRCA1 at the site of
damage, excessive resection, hyperactive HR and finally genomic instability [64].

Figure 3. Schematic representation of DNA double-strand break repair associated signaling events
(A–C) and interferon and Tat degradation control by BRISC (D). (A) A DNA double-strand break
(red, center) has been detected, ARM/ATR marks chromatin surrounding the site of damage (blue).
(B) Signaling by ubiquitin ligases, sumo ligases, and SUMO-targeted ubiquitin ligases marks chromatin
surrounding the site of damage (blue) while BRCA1 is recruited to the site of damage where it engages
in resection-promoting complexes. (C) DUBs including BRCC36 edit the chromatin marks (blue) and
limit their spread. BRCA1 is sequestered to the periphery of the DNA repair focus and withdrawn
from the site of damage. (D) BRISC degrades K63-linked chains that serve as lysosomal degradation
signals from membrane receptor IFNAR1 and soluble viral protein Tat, increasing their stability
and concentration.
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3.3. Ubiquitin Processing at DNA Repair Foci

BRCC36, when incorporated into the BRCA1-A complex, is an active K63-linkage specific
DUB that is targeted by RAP80 to K63-linked ubiquitin chains in DNA repair foci [17,25,42,47,48].
With recruitment relying on RAP80 recognition of K63-linked ubiquitin chains, accumulation of
BRCA1-A at DNA repair foci would be expected to contribute to their degradation. An active-site-dead
mutant of BRCC36 that still forms the entire BRCA1-A complex including RAP80 and BRCA1 does
result in increased ubiquitination at histone γH2AX after irradiation [65]. Yet, deubiquitination by
BRCC36 apparently serves roles beyond simply removing DNA damage signals from chromatin:
supplanting BRCC36 with an active-site-dead mutant in human cells disrupts IRIF formation of
RAP80 and ABRAXAS and promotes increased resection. Degradation of K63-linked chains by
BRCC36 reinforces recruitment of BRCA1-A [66], suggesting that BRCC36 edits rather than degrades
chromatin signals.

4. BRISC Functions in Immune Response, Mitosis and Hematopoiesis

4.1. Interferon Response Control by BRISC-SHMT2α

Sharing the same DUB subunit with BRCA1-A, BRISC functions in starkly different pathways.
Membrane proteins are degraded via the endosomal-lysosomal pathway: Targets for degradation are
marked with K63-linked ubiquitin chains, which are recognized by the endosomal sorting complexes,
which in turn deliver the target to the lysosome where it is degraded. The abundance of membrane
receptors is regulated by a tug-of-war between E3 ligases that deposit degradation signals and DUBs
that remove the degradation signals and thereby rescue the membrane proteins from degradation [11].
Similar to other DUBs that counteract degradation of specific membrane proteins (e.g., AMSH rescuing
EGFR [11]) BRISC counteracts ubiquitination of IFNAR1 and the HIV-1 Tat protein [67,68].

In response to viral challenges, interferons are released [69]. These small signaling proteins belong
to the class of cytokines and cannot cross the cell membrane, but instead bind specific receptors on the
cellular surface that transmit the signal by a signal cascade until it ultimately reaches the nucleus and
activates transcription [69]. While interferon signaling protects against challenges from viral infection,
prolonged response leads to inflammation-induced tissue damage, necessitating a mechanism that
tunes how receptive the cell is to interferon stimulation [70].

Type 1 interferon IFN-β binds receptor IFNAR1 in a nanomolar affinity complex that induces gene
expression by complex formation with IFNAR2 and subsequent activation of Jak-STAT as well as via
an IFNAR2-independent mechanism [71]. Cellular response to IFN-β is regulated by modulation of the
abundance of the IFNAR1 receptor on the cell surface: Casein kinase CK1α phosphorylates serine S535
of IFNAR1, which promotes ubiquitination of three lysines by E3 ubiquitin ligase SCFβ−Trcp [72,73].
Polyubiquitination with both K48- and K63-linked chains exposes a linear endocytic motif, promotes
binding to adaptin which in turn leads to endocytosis and lysosomal degradation of the receptor [74].
Ubiquitination of IFNAR1 codependently recruits SHMT2 and BRISC [68]. BRISC deconjugates the
ubiquitin chains off IFNAR1, reducing the extent to which the receptor is removed from the cell surface
by endocytosis [68] (Figure 3D). The activity of BRISC counteracts the ubiquitination and degradation
of IFNAR1 and promotes the cellular response to interferon 1: Specific disruption of BRISC scaffold
subunit ABRO1 in serveral systems reduced the scale of the interferon response and limited tissue
damage caused by septic shock [68].

4.2. BRISC Counteracts Degradation of HIV-1 Tat

HIV-1 virus encodes Tat, a soluble protein capable of penetrating the cell wall, which, activated by
ubiquitination, promotes transcription of viral genes and interferes with the human immune
response [75]. BRISC in concert with SHMT2 binds to Tat and deconjugates the K63-linked ubiquitin
chains, increasing the lifetime of the protein, but deactivating it [67] (Figure 3D).
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4.3. BRISC Functions in Mitosis

BRISC binds to microtubules and regulates the assembly of mitotic spindle components by
controlling the K63-linked ubiquitination of NuMA [76]. Nuclear enzyme tankyrase is recruited to
telomeres, stabilized by K63-linked ubiquitin chains synthesized by RNF8, and controls resolution
of telomere cohesion [77]. Dissolution of the nuclear envelope during mitosis allows BRISC complex
access to and degradation of tankyrase bound K63-linked ubiquitin chains, which results in dissociation
from telomeres and signals that telomere cohesion is resolved [77].

4.4. BRISC Controls JAK2 in Hematopoiesis

Hematopoietic stem cell expansion is regulated by K63-linked ubiquitin signaling [37].
Stimulation by thrombopoietin induces K63-linked ubiquitination of JAK2. BRISC is recruited to
JAK2 by LNK, binding the SH2 domain with a phosphorylated tyrosine (Y377) on the C-terminal tail
of ABRO1 [37]. BRISC deubiquitinates JAK2, counteracting JAK2 signaling by rendering it prone to
degradation [37].

5. Specificity and Regulation of BRCC36

5.1. Activation by Assembly

BRCC36, the shared active subunit, is at the center of BRCA1-A and BRISC activity. How is
BRCC36 regulated? Are there differences in regulation between the complexes? Purified BRCC36 is
inactive, but gains robust DUB activity when integrated into BRCA1-A or BRISC complex [15,24,78].
BRCC36 in isolation shows substantial disorder in the E-loop region, which moves the catalytic
glutamate (E33) away from the active site and renders the enzyme inactive [24]. ABRAXAS and ABRO1,
which activate BRCC36 when forming a complex, contain MPN domains, but lack active site residues
and are not enzymatically active [18,78]. BRCC36 is activated by the same mechanism in the ancestral
KIAA0157-BRCC36 complex, in mammalian BRCA1-A, and mammalian BRISC complexes: assembly
of the BRCC36 heterodimer with the scaffold domain positions an arginine of the scaffold domain (N177
in Camponotus floridanus KIAA0157, N164 in ABRO1, and N170 ABRAXAS) near a glutamate (E30),
structuring the E-loop [24,25]. Structuring of the E-loop moves the catalytic glutamate towards the zinc
atom and activates BRCC36 [24,25]. While inactivity of the isolated MPN+ subunit and activation upon
dimerization with a MPN- scaffold subunit was observed with other MPN+ isopeptidases, such as
RPN11 and CSN5, the mechanism described above is unique to BRCC36 [24,25,34,35,79].

5.2. Linkage Specificity

BRCC36 is strictly specific for K63-linked ubiquitin chains [13,24,32]. How JAMM/MPN+ DUBs
cleave ubiquitin chains with K63-linkage specificity has been explained by the crystal structure of
AMSH-LP bound to K63-linked di-ubiquitin: Two insertion loops orient the distal and proximal
ubiquitin in order to place the isopeptide bond at lysine 63 in direct proximity to the active site [80].
While insertion 2 of AMSH-LP does not have a structural counterpart in BRCC36, insertion 1 contacts
both the distal and proximal ubiquitin, explaining the observed linkage specificity [24].

5.3. Length Selectivity

Fully assembled BRCA1-A and BRISC complexes show substantial acceleration of degradation
when ubiquitin chains are four or more ubiquitin moieties long [25]. Length selectivity is most likely
conferred by ubiquitin binding domains on BRE and, possibly, MERIT40 [25,40].
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5.4. Mixed Chains

RAP80 binds mixed SUMO-K63-linked ubiquitin chains with high affinity [47,48]. BRCA1-A
complex preferentially degrades mixed SUMO-ubiquitin chains and this activity depends on RAP80,
which selectively increases the local concentration of mixed chains [25].

5.5. SHMT2 Inhibits BRISC

Control of IFNAR1 and HIV-1 Tat protein degradation by BRISC relies on the presence of
SHMT2 [67,68]. SHMT2, the serine hydroxy methyltransferase, is a metabolic enzyme (504 aa, 56 kDa)
that converts serine to glycine and a tetrahydrofolate-bound one carbon unit [81]. SHMT2 is expressed
in two isoforms: the long, mitochondrial form which carries an N-terminal mitochondrial import
signal and is imported into mitochondria, and the isoform SHMT2α (483 aa, 54 kDa), which lacks the
mitochondrial import signal and localizes to the cytosol and nucleus [82]. SHMT2 requires cofactor
PLP for enzymatic activity. While apo-SHMT2 forms dimers in an open conformation and with an
unstructured active site region, upon binding of PLP the active site becomes structured, the angle
between the subunits changes to a closed conformation, and the dimers dimerize to form tetrameric,
enzymatically active SHMT2 [81].

Purified BRISC and apo-SHMT2α spontaneously form a complex with low nanomolar affinity
upon mixing [25,26]. In the BRISC-SHMT2 complex, two subunits of SHMT2α are bound in the
center of the BRISC arc, directly on top of the JAMM/MPN superdimer of subunits ABRO1 and
BRCC36 [25,26] (Figures 1A and 4A). The main interaction between BRISC and SHMT2α is mediated
by ABRO1, which binds two hydrophobic residues, L190 and L194, of SHMT2α, but SHMT2α contacts
BRCC36 and BRE as well [25,26].

SHMT2 binds BRISC in the open conformation with the active site of SHMT2 unstructured [25,26].
As BRISC binds the interaction surface that mediates the tetramerization of PLP-bound SHMT2,
SHMT2 tetramerization and BRISC binding are mutually exclusive, explaining why BRISC-bound
SHMT2 shows no enzymatic activity [25,26,68]. PLP-bound SHMT2 shows lower affinity for BRISC,
which can be further reduced by supplementation of free PLP [26].

Due to the position of SHMT2 inside the BRISC arc, proximal to the active site of BRCC36,
bound SHMT2 sterically excludes ubiquitin chains from the active site of BRISC and renders the complex
inactive as a DUB [25,26]. The DUB activity of BRISC can be controlled by addition of PLP, which drives the
equilibrium from BRISC-bound apo-SHMT2 to PLP-bound SHMT2 tetramer and free, active BRISC [26].

The region of ABRAXAS corresponding to the SHMT2α binding region of ABRO1 is conserved,
but the insertion of a proline at position P144 flips the position of the side chain of the isoleucin
corresponding to I133 in ABRO1 away from the surface, obviating hydrophobic interaction with
L194 of SHMT2α [25] (Figure 4A). As a result, despite being otherwise structurally very similar,
BRCA1-A does not bind SHMT2α, which is present in the nucleus [25,82].
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Figure 4. (A) Inactivation of BRISC by SHMT2α binding. A cryo-EM map of BRISC-SHMT2α complex
is shown with a di-ubiquitin fit into the active site using the structure of AMSH-LP with bound
di-ubiquitin [80]. The clash between SHMT2 and the proximal ubiquitin is shown in a zoom-out.
BRCA1-A complex does not bind SHMT2, because residue I133 of Abro1, which is essential for the
interaction, is conserved, but flipped by 180◦ due to a proline insertion at position P137. The cryo-EM
map of BRISC-SHMT2α is shown in white while the side chains of SHMT2 and ABRO1 are shown
in green and light orange, respectively. The structure of ABRAXAS that corresponds to the part of
ABRO1 shown is depicted below in orange (BRCA1-A and BRISC-SHMT2α structure: [25]). (B) ACC1,
ATRIP, BAAT, CtIP, and FANCJ compete with the phosphorylated C-terminus of ABRAXAS for
the same binding site on BRCA1. Binding affinities measured for the phosphorylated peptide only
are in the micromolar range. The entire BRCA1-A complex however binds with nanomolar affinity
(ABRAXAS-BRCA1 complex structure: [30], ACC1-BRCA1 complex structure: [83], ATRIP-BRCA1
complex structure: [84], BAAT-BRCA1 complex structure: [84], CtIP-BRCA1 complex structure: [85],
FANCJ-BRCA1 complex structure: [86]). (C) Crosslinking data suggests that the BRCA1 BRCT domain
is localized at the edge of the arc, distal from the active sites of the complex. This model explains why
sequestration of BRCA1 by BRCA1-A does not affect the DUB activity of the complex. BRCA1-A can
be considered to be divided into a ubiquitin signaling zone (green) and a BRCA1 sequestration zone
that are functionally independent (BRCA1-A structure: [25], AMSH-LP-substrate complex structure
used for modelling ubiquitin at the active site of BRCA1-A: [80], structure of BRCA1 BRCT dimer with
bound ABRAXAS C-terminal phosphorylated peptide: [30]).
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6. High-Affinity Binding of BRCA1

6.1. ABRAXAS-BRCA1 Complex Formation

BRCA1 sequestration by BRCA1-A complex is essential to successful DNA repair regulation.
How does BRCA1-A bind BRCA1 with affinity high enough to withdraw it from the site of
damage? Two domains located near the C-terminus of BRCA1, BRCT1 (residues 1642–1736) and
BRCT2 (residues 1756–1855), together form the BRCT domain, an important hub in BRCA1
signaling [87]. BRCA1 BRCT is a phosphopeptide binding domain that mediates complex formation
with phosphorylated proteins [88]. The C-terminus of ABRAXAS contains two phosphorylation
sites: S406 is constitutively phosphorylated and DNA damage induces phosphorylation of S404 [18,30].
The C-terminal carboxyl group, F409, and phosphorylated S406 of ABRAXAS are specifically
recognized by BRCA1 BRCT and mediate binding [30]. Additional phosphorylation of ABRAXAS
S404 enables a salt bridge to a second BRCA1 BRCT molecule and induces dimerization [30].

The BRCA1 BRCT domain binds several other phosphorylated proteins besides ABRAXAS,
including ACC1, ATRIP, BAAT, BACH1, and CtIP [83–86,89]. Binding affinities of synthetic
phosphopeptides for the BRCA1 BRCT domain have been determined by isothermal titration
calorimetry and range from Kd ∼ 0.7 µM (BACH1) to Kd ∼ 28.2 µM (ATRIP), with ABRAXAS
found among the tighter binders at Kd ∼ 1.2 µM [84,85,90]. Since BRCA1 BRCT contains only one
phosphopeptide binding site, complexes with BRCA1 form in a mutually exclusive manner and
ABRAXAS must compete with resection promoting complexes for the same binding site (Figure 4B).
If the binding affinities of phosphorylated peptides to BRCA1 BRCT all range in the low micromolar
range, what enables ABRAXAS to withdraw BRCA1 from the site of damage and sequester it away
from resection promoting complexes? This discrepancy was resolved when the affinity of BRCA1 BRCT
for the entire BRCA1-A complex with phosphorylated ABRAXAS was measured. Instead of an affinity
of Kd ∼ 1.2 µM measured for the phosphopeptide, ABRAXAS integrated into the entire BRCA1-A
complex binds BRCA1 BRCT with nanomolar affinity at Kd ∼ 80 nM [25]. Remarkably, the affinity of
BRCA1-A complex for BRCA1 BRCT not only exceeds the affinity measured for all phosphopeptides
derived from natural proteins, but also surpasses the affinity measured for a phosphopeptide that had
been in vitro evolved in order to maximize binding strength (Kd ∼ 400 nM) [91].

A combination of several factors is thought to cause the exceptional affinity between BRCA1-A
and BRCA1: BRCA1-A forms a single arc, which consists of a dimer of hetero-pentamers (ABRAXAS,
BRCC36, BRE, MERIT40, and RAP80) [25]. The two tethered ABRAXAS C-termini function as bivalent
ligands, doubling the association rate constant [92]. In addition, the BRCA1 BRCT dimerization effected
by ABRAXAS pSer404/406 leads to forced proximity that additionally decreases the dissociation
constant [92]. Together, these structural properties of BRCA1-A and BRCA1 BRCT qualitatively explain
the observed increase of avidity when compared to the phosphopeptide. In addition, there is evidence
that BRCA1 BRCT interacts with other subunits of BRCA1-A besides the ABRAXAS C-terminus,
such as BRE or MERIT40 [25,45]. Interaction with MERIT40 and BRE would place BRCA1 BRCT
at the periphery of the BRCA1-A arc, distal from the active DUB site. Functional independence of
DUB function from BRCA1 sequestration was indeed confirmed: BRCA1 BRCT binding to BRCA1-A
did not reduce the DUB activity against RNF4-generated long mixed SUMO-ubiquitin chains [25].
This means that BRCA1-A remains a fully active DUB while sequestering BRCA1 in DNA repair foci,
actively shaping their extent in the process (Figure 4C).

6.2. BRCA1 Complexes

BRCA1 binding to protein complexes has profound biological impact, from regulation of fatty
acid synthesis to the promotion of DNA resection [93,94]. Due to sterical constraints, binding of
phosphorylated proteins ABRAXAS, ACC1, ATRIP, BAAT, BACH1, or CtIP to the BRCT domain of
BRCA1 is mutually exclusive [95] (Figure 4B). With DNA damage induced or cell-cycle controlled
phosphorylation of the BRCA1 binding sites controlling the association of BRCA1 complexes,
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there likely is competition between them for BRCA1. The nanomolar affinity measured between
BRCA1-A and BRCA1 cannot be compared to the substantially lower affinities that were measured for
interactions with the other proteins when the only data available for them are affinity measurements
employing peptides rather than entire assembled complexes [25,90]. Precise measurements of the
binding affinity of BRCA1 to fully assembled DNA-repair complexes and investigation of their
competition for BRCA1 will advance our understanding of the DNA repair process.

7. BRCA1-A and BRISC in Human Health

With important roles in DNA repair, immune regulation, mitosis, and hematopoiesis,
BRCA1-A and BRISC substantially impact human health. Targeted disruption experiments found
neither complex to be essential for survival or reproduction in mice, but implicated BRCA1-A in cancer
suppression [68,96–99]. Point mutations that disrupt BRCA1 sequestration by BRCA1-A have been
identified in human cancer patients: A mutation in the nuclear localization sequence of ABRAXAS
(R361Q) results in a completely assembled, functional BRCA1-A complex that is excluded from the
nucleus [36]. A deletion in the linker between the UIM domains of RAP80 (∆E81) found in cancer
patients disrupts ubiquitin binding, preventing BRCA1 sequestration to DNA repair foci [46,100,101].
A missense mutation of the C-terminal residue of ABRAXAS (F409C), which was discovered in
an endometrial tumor, removes the terminal phenylalanine essential for high-affinity binding to
BRCA1 [30,96].

BRCA1-A mutations that disrupt BRCA1 sequestration have been identified in breast cancer
patients, suggesting a tissue tropism similar to BRCA1 mutations [36,101]. BRCA1 mutations are always
heterozygous, because BRCA1 is essential for embryonic development [102]. Loss of heterozygosity
eliminates the wild-type allele in proliferative female tissues, which preferentially use the homologous
recombination pathway, giving rise to the striking tissue tropism seen in BRCA1 breast cancer [103].
Although BRCA1-A complex is not essential for embryonic development [104], all subunits of
BRCA1-A with the exception of BRCC36 are located on autosomes and mutations are likely to be
heterozygous. From a biochemical perspective, the two best-characterized mutations found in breast
cancer, if heterozygous, would not be expected to disrupt the working, wild-type BRCA1-A, similar to
many known BRCA1 mutations [36,101,102]. Loss of heterozygosity in breast tissue would disrupt
BRCA1-A function and cause genomic instability. As cancer-associated mutations in BRCA1-A subunits
have been identified in a wide variety of tumors, further research is needed to fully characterize each
mutation and assess the cancer risk [105].

Expression levels of BRCA1-A subunits influence carcinogenesis: Breast cancer cells show
reduced expression of RAP80 [106], while overexpression of MERIT40 has been found in epithelial
ovarian cancer [107]. Any mutation disrupting BRCA1-A assembly, targeting, enzymatic function,
or BRCA1-A-BRCA1 complex formation is expected to increases cancer risk. Structural data will
facilitate the functional evaluation of cancer-associated somatic mutations, which have been identified
in all subunits of BRCA1-A [105].

The response to cancer treatments is affected by the DNA repair capabilities of the tumor cells and
expression level of BRCA1-A subunits can be used to anticipate therapy outcome. Higher expression of
BRE predicts a favourable treatment outcome in acute myeloid leukemia and breast cancer [108–111].

Human patients with a congenital deletion of BRCC36—expected to disrupt the assembly and
function of both BRCA1-A and BRISC complex—are affected by severe symptoms including moyamoya
angiopathy, short stature, facial dysmorphism and infertility [104]. Symptoms such as cataracts and
early hair graying point to an impairment of DNA repair processes in line with a disrupted BRCA1-A
complex. The mechanism behind the reported developmental defects, angiopathy, and infertility,
however, is currently not fully understood and points to additional functions of BRCA1-A and BRISC
in human physiology.

The discovery of interferon response regulation by BRISC promises a new approach to the
treatment of human immune disorders, especially if BRISC DUB inhibtion by SHMT2 can be regulated
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by small molecules such as PLP in a clinical setting [26,68]. As tumor-specific T-cells infiltrate the
hypoxic areas inside tumors, they lose the IFNAR1 receptors essential for their function [112]. SHMT2 is
a hypoxia-inducible factor and frequently overexpressed in tumor cells, at concentrations that could
inactivate BRISC and affect IFNAR1 [25,113,114]. Further research is needed to elucidate how SHMT2,
BRISC, and IFNAR1 interact in health and disease.

8. Summary and Outlook

Nearly two decades of research have revealed BRCA1-A and BRISC to be sophisticated molecular
machines for ubiquitin signaling. Sharing the same core and enzymatic subunit, their physiological
functions are strikingly distinct.

Understanding the function of BRCA1-A in DNA repair promises better treatment of cancer
and congenital diseases. Pharmacological compounds that disrupt BRCA1 complex formation are
developed for use in cancer therapy: Chemosensitivity of cancer cells in response to cisplatin therapy
is attenuated by DNA repair. Bractoppin is an inhibitor for phosphopeptide binding to BRCA1 BRCT
that prevents association with BACH1 and ABRAXAS phosphopeptide in vitro, and sensitizes cells to
radiation damage [115,116].

Disruption of BRCA1 sequestration by BRCA1-A hyperactivates HR. Most mammalian cells repair
DNA damage with the NHEJ pathway, fundamentally limiting the use of recombination during gene
therapy by CRISPR/Cas9 [117]. Up-regulation of HR by specific disruption of BRCA1-A mediated
BRCA1 sequestration could supplement methods that rely on chemical inhibition of DNA repair
proteins, cell cycle arrest, or sophisticated genetic approaches [118] to enable CRISPR/Cas9-based
therapies for human congenital diseases.

The discovery that BRISC regulates the interferon response promises the development of
pharmacological compounds to attenuate inflammation. IFNAR1 is an essential mediator of the human
interferon response and a promising drug target [119]. The study of BRISC-SHMT2 has revealed how
the abundance of IFNAR1 on the cell surface is controlled. The exciting discovery that association with
SHMT2 is controlled by PLP promises pharmaceutical compounds able to modify the abundance of
IFNAR1, allowing new therapies for cancer and autoimmune disorders.

In addition to the aforementioned medical and biotechnological promises, understanding
BRCA1-A and BRISC also opens the gate to a new appraisal of the capabilities of DUBs in general.
When BRCC36 is observed in isolation, e.g., in an in vitro high-throughput assessment of recombinantly
expressed protein, it appears to be an unregulated DUB with strict linkage specificity and average
activity [13]. Yet, in vivo BRCC36 is capable of performing two distinct, essential biological functions
with high precision. Activity, specificity, targeting, and regulation of BRCC36 differ starkly in BRCA1-A
and BRISC, and these specialized functions become only apparent in context of the assembled molecular
machines. BRCC36 is one of just ∼100 DUBs found in human cells that counter the activity of
∼600 highly specific and tightly regulated E3 ligases that ubiquitinate ∼20,000 individual sites on
the human proteome [12]. BRCC36 is the first example of an active DUB that is functionalized for
different purposes by embedding into different molecular machines, where other subunits convey
targeting, specificity and regulation. This theme could have more general validity beyond BRCC36:
Many human DUBs are incorporated into larger assemblies [120]. Functionalization of the same DUB
for different tasks by incorporation into different complexes would allow countering the complexities
of ubiquitin E3 ligation with a limited repertoire of DUBs.
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Abbreviations

DUB Deubiquitinating enzyme
HR Homologous Recombination
JAMM/MPN+ JAB1/MPN/MOV34 metalloenzyme domain
NHEJ Non-Homologous End Joining
PLP pyridoxal 5’ -phosphate
RWD RING finger and WD repeat containing proteins and DEXDc helicases
SIM SUMO-Interacting Motif
UEV Ubiquitin E2 Variant domain
UIM Ubiquitin-Interacting Motif
VWA Von Willebrand factor (vWF) type A domain
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