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Automated 3D cytoplasm segmentation
in soft X-ray tomography

Ayse Erozan,1,2,3,* Philipp D. Lösel,2,3,4 Vincent Heuveline,2,3 and Venera Weinhardt1,5,6,*
SUMMARY

Cells’ structure is key to understanding cellular function, diagnostics, and therapy development. Soft X-ray
tomography (SXT) is a unique tool to image cellular structure without fixation or labeling at high spatial
resolution and throughput. Fast acquisition times increasedemand for accelerated imageanalysis, like seg-
mentation. Currently, segmenting cellular structures is donemanually and is amajor bottleneck in the SXT
data analysis. This paper introduces ACSeg, an automated 3D cytoplasm segmentation model. ACSeg is
generated using semi-automated labels and 3D U-Net and is trained on 43 SXT tomograms of immune
T cells, rapidly converging to high-accuracy segmentation, therefore reducing time and labor. Further-
more, addingonly6SXTtomogramsofother cell typesdiversifies themodel, showingpotential foroptimal
experimental design. ACSeg successfully segmented unseen tomograms and is published on Biomedisa,
enabling high-throughput analysis of cell volume and structure of cytoplasm in diverse cell types.

INTRODUCTION

The analysis of structure is a fundamental task in cell biology, as the size, shape, and internal anatomy of cells alter to enable new functions and

adapt to changing environments, including pathological conditions.1,2 Various disorders such as cancer, malaria, anemia,1 and sickle cell dis-

ease3 result in abnormal cell shape. With this in mind, determining the three-dimensional shape of cells is one of the most important aspects

of cell biology.4

Thus, many microscopy techniques have been focused on imaging and analysis of the cell structure.5–7 Among existing imaging tech-

niques, soft X-ray tomography (SXT) enables imaging of whole mammalian cells with a spatial resolution of a few tens of nanometers, without

labeling or chemical fixation, and at high throughput of 5 min for whole 3D volume.8 While segmentation pipelines for light and electron mi-

croscopy are firmly established, automatic analysis of SXT data is limited.9

Most of the SXT-based structural cell analysis is based on manual segmentation.8,10–12 Thresholding-based segmentation methods which

require no prior labeled data have been proposed to extract mitochondria and cytoplasmic vesicles in the study by Nahas et al.13,14 Cossa

et al.15 applied random forest segmentation to extract nucleoids from Escherichia coli. To extract mitochondria, Polo et al.16 implemented a

trainableWeka segmentationmachine learning tool,17 accessible in Fiji. Furthermore, neural network-based algorithms, such as convolutional

neural networks or U-Net, have been used to extract membranous organelles in the study by Dyhr et al.,9 Francis et al.,18 and Egebjerg et al.19

A segmentation method based on the combination of 2D U-Nets was used to automatically segment whole b-cells anatomy.20 Most of these

methods are designed for a very specialized organelle type or pathological condition, and automatic segmentation of whole-cell anatomy

requires complex pre- and post-processing steps.

Here, we propose an easy plug-and-playmodel (ACSeg) based on 3DU-Net to extract the cell cytoplasm structure in various cell types.We

exploit the semi-automatic segmentation based on 3D random walk implemented in the open platform Biomedisa.21 Apart fromminimizing

the time for manual segmentation,22 our results show that the high quality of segmented labels enables us to train the 3D U-Net on only 20

tomograms to achieve a Dice coefficient of 95.43%. Moreover, even though ACSeg was trained exclusively on tomograms containing human

T cells, ACSeg was able to segment the cell cytoplasm of 4 unseen cell types with a Dice coefficient of about 87.62%. This accuracy could be

significantly improved with only an additional 6 tomograms, diversifying ACSeg for automatic segmentation of various cell types. Interest-

ingly, our data show that the success of ACSeg diversification depends on the type of cells and/or data quality, suggesting that optimal exper-

imental design should be in focus for the training of 3D U-Nets. Considering the worldwide availability of SXT stations at the synchrotron

sources7 and an increase in the development of table-top instruments,23 the application of SXT to the understanding of human diseases

and development of novel drugs at the cellular level will continue to increase. Providing fast and accurate cell cytoplasm segmentation of
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Table 1. The effect of alteration of the number of tomograms for training on the Dice coefficient (%) of the model

No. of cells for training Biomedisa labels Manual labels

5 90.03 G 15.61 86.81 G 30.90

10 94.22 G 15.33 87.69 G 17.48

20 95.43 G 11.94 90.93 G 12.72

30 96.17 G 11.00 92.61 G 10.37

43 97.78 G 2.13 93.87 G 7.37
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diverse cells imaged with SXT, ACSeg responds to the upcoming needs in automatic analysis of cell structure, which will be expanded to

automatic segmentation of all cellular structures.

RESULTS

Automatic segmentation workflow for cell cytoplasm

To train our U-Net model for cytoplasm segmentation in SXT data, it is first necessary to generate 3D labels. To reducemanual work, we used

Biomedisa for semi-automatic 3D segmentation.22 Wemanually labeled every 20th slice in tomograms and submitted labels to Biomedisa for

generating 3D labels by using smart interpolation, see Table 1. By use of semi-automatic labeling, we reduced the amount of manual work

required to train the model by 94.6% compared to fully manual segmentation. The generated 3D labels along with 3D tomograms were used

to train our U-Net model, implemented within Biomedisa for the automatic segmentation of cell cytoplasm. The segmentation workflow is

summarized in Figure 1, where the trained network is depicted as ACSeg for the automatic cytoplasm segmentation.

Evaluation of ACSeg

Previous work on U-Net segmentation showed that the number and quality of training datasets are crucial to achieving high accuracy of seg-

mentation.24,25 Therefore, we havemeasured the accuracy of the ACSeg by computing Dice coefficients26,27 for U-Net trained on various SXT

tomograms. We trained the ACSeg on 5, 10, 20, 30, and 43 datasets, see Figure 2. With only 20 training datasets, our ACSeg achieved a Dice

coefficient above 95%.We have investigated whether such fast convergence of Dice coefficient is due to the higher quality of semi-automatic

segmentation in the prediction of labels which was mentioned in insect studies.25 We have compared the ACSeg trained on manually

segmented labels in comparison to semi-automatically with Biomedisa. The ACSeg trained on the manual labels showed a lower Dice

coefficient for 5 training datasets with 87% accuracy compared to 90% with ACSeg trained on 3D labels from Biomedisa, see Figure 2. Inter-

estingly, this relatively low difference of 3% in accuracy is not compensated by the increased number of tomograms. ACSeg trained on 43

datasets resulted in 94% for manually labeled data and 98% for Biomedisa-labeled data. We have fitted the so-called 1st order delay function,

that is 1�b$exp(�ax), to find the number of manually labeled tomograms required to achieve 98% accuracy. This approximation shows that

about 52 additional manually segmented tomograms (95 in total) would be required to achieve the same accuracy as ACSeg trained on 43

semi-automatically segmented datasets.

For ACSeg trained on Biomedisa results, adding 10 datasets increases the accuracy at first steeply but then only gradually with more than

20 datasets, suggesting that the addition of more datasets is unnecessary. It has been shown that choosing the Dice coefficient as a perfor-

mance metric is often not an adequate measure for training models.27 To assess the performance of the ACSeg from the biological perspec-

tive, we calculated two major parameters used in cell biology to normalize for cell variability and change of structure, that is volume and

surface-to-volume ratio of cells.10 We found no significant difference in volume (Figure 3A) compared between ground truth (generated

with Biomedisa) by producing Biomedisa and ACSeg predictions. On the contrary, the probability for the surface-to-volume ratio is only

0.001478 (Figure 3B). Consistent with this, we found differences in the cytoplasmic morphology that are noticeable in 3D renderings

(Figures 3C3 and 3C4). Many cells have cytoplasmic projections with fine ultrastructure which is hard to detect automatically. Noticeably,

the ACSeg segmentation did not predict the ultrastructure of some filopodia in comparison to the ground truth. We have considered that

the reason behind the low surface-to-volume ratio is that there is a considerable loss in surface resolution due to dataset scaling. Therefore,

similar to the electronmicroscopy approach of local regional segmentation,28 we have trained a second-level ACSegmodel whichwouldwork

on the volumes of interest of 643 643 64 voxels along the cell surface.While this second-level refinement of filopodia should increase in Dice

score by 1% compared to ACSeg, the surface area to volume ratiomeasurements were still significantly different in comparison to the ground

truth. To compensate for the lack of precision in cell topology segmentation, the ACSeg model could be potentially combined with other

approaches, for example, conditional random fields, graph search, and active contour.29–31

In conclusion, the ACSeg trained on 43 datasets is sufficient to successfully predict the gross cell volume and most of the filopodia, which

are sufficient for morphological analysis where cell volume is used for normalization and visual structural representation used in cell biology.

Comparison of ACSeg to other approaches

Intuitively, one could think that cytoplasm segmentations in the SXT data should be easy to capture by conventional approaches, such as

thresholding. It is worth mentioning that the content of SXT tomograms varies a lot. For SXT imaging, cells are suspended in thin-wall glass
2 iScience 27, 109856, June 21, 2024



Figure 1. Automated cytoplasm segmentation workflow with semi-automated labeling
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capillary inside the microscope.32 Many cells are touching the capillary wall. Additionally, polystyrene beads are added for SXT normalization

in the imaging of large cells. Their distribution is random and not consistent between tomograms. The biology of cells starts to play a role as

well. Some cells are apoptotic with fragments of their cytoplasm visible in SXT tomograms. All these effects are stochastic and cannot be

controlled in the SXT experiments. To demonstrate this effect, we show 4 cases in Figure 4: an isolated cell with debris from other cells, a

cell touching the glass capillary, cells tightly packed in the capillary, and a cell between two polystyrene beads. We have used thresholding

methods, such as the adaptive and Otsu thresholding, which do not perform well in segmentation in most cases, see Figure 4. While these

methods can be optimized with pre- and post-processing to increase segmentation quality, such an optimization pipeline would need to be

adjusted to individual cases. The ACSeg segmentation of these difficult cases remains accurate without any pre- and post-processing steps.

With the increase of AI-basedmodels for automatic segmentation of images from differentmicroscopy techniques,28,33 we compared AC-

Seg to the increasingly used Segment Anything Model (SAM) developed by Meta AI.34 As for classical approaches, we selected the same

different scenarios of the cells imaged with SXT, see Figure 5.34 As SAM is trained on 2D datasets, we have applied the models to the central

virtual slices of the 3D tomogram. Among four scenarios, the SAMmodel could identify individual cells in all except where multiple cells were

touching each other. In this case, the cell nucleus was found as a distinct and dominant feature. Though in other scenarios the cells have been

identified successfully, fine details such as cell filopodia were not fully captured. That is reflected in the lower Dice score coefficient of 97.53%

for SAM versus 99.57% for ACSeg as calculated for 2D slices. Applying SAMon other slices to segment 3D cell cytoplasmwould requiremodi-

fication of the model.35–37 This adaption, however, is impractical as ACSeg requires such a minimal number of datasets and shows a high

accuracy of 95% for cytoplasm segmentation. Even compared to existing models trained on SXT datasets of pancreatic beta cells,20 the

ACSeg model achieved the Dice score of 94.31% in comparison to 91.60%, even though it was not trained on this specific cell type.
ACSeg transfer to other cell types

Because the cells are so diverse in size andmorphology, it is typically difficult to apply a segmentation network trained on one type of cells to

others.We therefore first tested ourmodel on the open SXT datasets of b-cells (INS-1E – a rat insulinoma cell line). Li et al. already segmented

cytoplasm and some organelles.20 Comparing cytoplasm segmentation, we achieved 95.31% G 5.59% Dice coefficient for 3 tomograms

which is slightly better than the results from Li’s study (dice coefficient of 91.60% G 2.19%).

To test evenmoredivergent cell types,wehavetestedACSegonSXTdatasetsofhepatocyte-derivedcarcinomaHuh-7,murinemicrogliaBV-2,

and mouse embryonic fibroblast (MEF) cells, see Table 2. For MEF cells, the ACSeg showed high accuracy with 94.43% measured by the Dice

coefficient. The segmentation of Huh-7 and BV-2 cells, however, was not successful with 82.93% and 84.06% Dice coefficients, respectively. To
iScience 27, 109856, June 21, 2024 3



Figure 2. Dice coefficient according to alteration of the number of the training data
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seewhetherACSegwill havehigher accuracybygeneralizationof trainingdatasets,we includedother cell types.Wehaveadded to433D labelsof

T cells, 3D labels of 6 SXT tomograms for Huh-7 cells to our training data. Interestingly with the addition of such a small number of data, the re-

trainedACSeg showeda10% increasenotonly forHuh-7 cellsbut also forBV-2cells.WeexploredwhetherACSegcanbesuccessfully generalized

by using an equivalent number of training datasets from BV-2 cells. The ACSeg trained on 43 3D labels of T cells and 6 BV-2 cells showed lower

accuracy thangeneralizationwithHuh-7 cellswithDicecoefficientsof90.25%,87.67%,and94.58% forBV-2,Huh-7, andMEFcells correspondingly.

Similarly, we generalized ACSeg by the addition of 6 MEF cells and a mixture of Huh-7, BV-2, andMEF cells (6 tomograms each). Although both

retraining processes provided to increase in the overall Dice coefficient, they, however, have not reached the success obtained from the network

trainedbycombining43Tcellswith6Huh-7.Theexperiments revealed that thebestaccuracymeasuredbytheDicecoefficientwasACSeg trained

on 43 T cells and 6Huh-7 cells. Based on 3D labels segmentedby ACSeg andBiomedisa (Figure 6), we can say that Huh-7 cells aremore similar in

number and structure of filopodia to BV-2 than T cells. However, at themoment, we have no explanationwhy the generalization of the ACSeg on

BV-2 cells does not increase accuracy on the same scale for Huh-7 cells, andwhy the same accuracy is achieved forMEF cells independent of AC-

Seg generalization.. Possible metrics affecting the generalization of the ACSeg are under investigation.
Figure 3. ACSeg segmentation and morphological quantification of T cells

The volume (A) and surface area to volume ratio (B) of the cell were measured in the ground truth and prediction of cytoplasm segmentation with the ACSeg. ns :

p > 0.05, *: 0.01 < p<=0.05, **: 0.001 < p<=0.01, using paired t test. N = 10.

(C) 3D rendering of Biomedisa (C1) and prediction of the ACSeg (C2), respectively, visual comparison of Biomedisa and ourmodel’s prediction (C3). The box in C3

denotes the area shown up closely in C4.

4 iScience 27, 109856, June 21, 2024



Figure 4. 3D quantification of cytoplasm segmentation accuracy for classical approaches
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DISCUSSION

Our work presents a pipeline for training a 3D U-Net on semi-automatically segmented SXT datasets for robust automatic segmentation of

the cellular cytoplasm (ACSeg). Since machine learning and deep learning algorithms rely heavily on accurately labeled data that require

expert knowledge, extensive time, and effort to train, we investigated a semi-automated segmentation approach using Biomedisa to

generate increased quality of labeled training data for a 3D U-Net, generating a model that can segment the cytoplasm with high accuracy

of more than 95% within 1 min. The use of labels generated with Biomedisa provides faster convergence in training to higher Dice coefficient

compared to manual segmentation. These results illustrate that the quality of the labeling in the training dataset for the 3D cytoplasm seg-

mentation is an important factor in achieving a decent Dice coefficient with less training data.

Even though we achieved a high Dice coefficient with our model, we did not rely only on this pixel-wise metric. In biology, segmented

images are mostly used for statistical analysis of cell morphology. For this reason, we compared volume and surface-to-volume ratio as eval-

uation metrics as well. While the cell volume obtained with ACSeg is accurately measured, the surface-to-volume ratio of cells is not accurate.

We believe this is due to build in scaling of tomograms to a size of 2563 2563 256 voxels. To achieve higher accuracy for fine features of the

cell cytoplasm, alternative architectures such as Double U-Net should be considered.38 Such an approach will help to improve the segmen-

tation of fine features without a drastic increase in time for model training.

Although our model was trained on tomograms containing only one cell type, we have applied it to other cells of distinct morphology.

Without any pre-processing methods, ACSeg showed a high accuracy of more than 95% for b-cells and MEF cells.20 For cells with lower

accuracy, such as mouse microglia (BV-2) and hepatocyte-derived carcinoma cells (Huh-7) cells, we generalize ACSeg with the addition of

a very small number of datasets in the training. Interestingly, the results show that there is cell type (or dataset)-specific success of model

generalization. We expect that identifying optimal experimental design in terms of image quality and cell type should enable the develop-

ment of automatic segmentation models based on a small number of datasets.

Limitations of the study

In this paper, we described an automatic segmentation method based on a 3D U-Net and a semi-automated labeling tool—Biomedisa—to

automatically segment the cytoplasm of cells in SXT data with our ACSeg model. While ACSeg shows promising results, it is important

to acknowledge certain limitations. One notable consideration is the diverse nature of data collection methods. While our model applies

to SXT imaging of cells in capillaries, other SXT facilities utilize flat specimen holders, such as transmission electron microscopy grids. This

variation in data collection approaches leads to differences in image characteristics, potentially affecting ACSeg’s performance.
iScience 27, 109856, June 21, 2024 5



Figure 5. 2D quantification of cytoplasm segmentation accuracy in comparison to SAM

ll
OPEN ACCESS

iScience
Article
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
Tab

# o

43

43

43

43

43

6

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

B Soft-X-ray tomography

B Dataset

d METHOD DETAILS

B Semi-automated labeling

B Model training

d QUANTIFICATION AND STATISTICAL ANALYSIS
le 2. Dice coefficient results of ACSeg and its variants on divergent cell types

f tomograms for training BV-2 (12) Huh-7 (12) MEF (9)

(T) 83.19 G 30.52 85.01 G 23.98 94.43 G 7.04

(T) + 6 (BV-2) 90.25 G 13.90 87.67 G 27.89 94.58 G 6.21

(T) + 6 (Huh-7) 95.49 G 1.57 94.90 G 10.95 94.56 G 7.45

(T) + 6 (MEF) 88.95 G 17.72 86.76 G 24.51 94.80 G 7.07

(T) + 6 (Huh-7) + 6 (BV-2) + 6 (MEF) 92.82 G 12.70 90.61 G 31.29 94.74 G 6.73
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Figure 6. Prediction of the ACSeg over T, BV-2, Huh-7, and MEF cells
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

T cells heiData https://doi.org/10.11588/data/XEBZLL

Software and algorithms

Biomedisa Lösel et al.22 https://biomedisa.info/

ImageJ – Fiji 1.54 f Schindelin et al.45 https://imagej.net/ij/

Python version 3.9.7 Python Software Foundation https://www.python.org/

Slicer 5.0.3 Fedorov et al.42, Kikinis et al.43 https://www.slicer.org/

Other

ACSeg model This paper https://biomedisa.info/gallery/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, VeneraWeinhardt

(venera.weinhardt@cos.uni-heidelberg.de).

Materials availability

This study did not generate new reagents.

Data and code availability

� Data have been deposited at heiData are publicly available as of the date of publication and, ACSegmodel has been published on the

Biomedisa. The DOIs are listed in the key resources table.
� This paper does not report the original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Soft-X-ray tomography

SXT imaging was performed at the XM-2 beamline of the Advanced Light Source at the Lawrence Berkeley National Laboratory.39 We have

used a 60 nm outermost zone width Fresnel Zone plate to image cells in full rotation tomography.40 The cells were mixed with polystyrene

beads, and plunge-frozen in thin-wall glass capillaries and 92 x-ray projection images were acquired over 180� rotation with an exposure time

of 200 ms. The 3D reconstructions of cells were obtained with AREC3D.41 Further experimental details can be found elsewhere.32

Dataset

On average, the tomograms have dimensions of 4723 4723 491 voxels with slight variability due to shifting of the capillary in the x-ray beam

and thus a variable field of view.41 The 53 tomograms of T cells are randomly divided into two partitions 80% to 20%: 43 for training, and 10 for

testing of the network.

The dataset for testing the accuracy of divergent cell types consisted of a total of 39 tomograms containing four different cell types: 12

Huh-7, 12 BV-2, 9 MEF, and 3 b-cells.20 To generalize the training dataset, 6 additional tomograms containing Huh-7, BV-2, and MEF cells

individually were added to the training dataset in 3 different retraining. Briefly, a total of 54 tomograms were used for the entire generalization

process, whichmeans that another 18 tomograms were used for training, and 39 were used for testing. The experimental data for training the

base level of the ACSeg (as in Figure 2), that is 10 T cell SXT datasets are published on heiDATA https://doi.org/10.11588/data/XEBZLL.

METHOD DETAILS

Semi-automated labeling

To generate ground truth, testing datasets weremanually segmented with Slicer3D using the segment editor tool.42,43 Similarly, we have per-

formed manual segmentation of 43 tomograms used for training. For training, we decided to use Biomedisa which is an open-source online
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platform, to segment 3D volumes based on smart interpolation of sparsely segmented slices.22 To generate 3D masks semi-automatically,

labels were assigned manually to cell cytoplasm and polystyrene beads in every 20th slice. These sparsely labeled slices were submitted

to Biomedisa for smart interpolation to obtain labels of whole 3D volume. If the generated 3D labels were mislabeled or the quality to the

naked eye was insufficient, we added a few manually labeled slices. Of 43 tomograms used in this work, 95 percent were segmented with

20G3 manually labeled slices, and for 5 percent of 3D tomograms 30G3 slices were required to obtain 3D labels.
Model training

In this work, we applied 3DU-net integrated into the online platformBiomedisa. This implementation of the 3D U-net is one level deeper than

classical 3D U-net.44 Details on the network architecture and parameters used in the 3D U-net of Biomedisa can be found elsewhere.22 The

model was trained on 43 SXT tomograms containing a different number of T cells and polystyrene beads with the following parameters: 200

epochs, a batch size of 24, and a learning rate of 0.01. The training data were split (80%) and (20%) for training and self-validation of the

network as controlled by the Biomedisa parameter settings. The best network is achieved after 33 hours. The ACSeg model is published

and available online as ACSeg.h5, see "Cytoplasm" in the Biomedisa gallery https://biomedisa.info/gallery/.
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were undertaken using Python within the Visual Studio environment. Fiji45 was employed to generate sparse labels, and

subsequently, Biomedisa22 was utilized to produce fully labeled datasets. t-test analyses were performed to determine statistical significance

between the ground truth and our model files.
10 iScience 27, 109856, June 21, 2024
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