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Abstract
Purpose This study was to evaluate the occupational health risks of infection from Gram-negative bacteria and Staphylococ-
cus aureus bioaerosols to temporary entrants and staffs equipped with various grade personal protection equipment (PPE) 
related to wastewater treatment plants (WWTPs).
Methods This study determined the emission concentrations of Gram-negative bacteria and Staphylococcus aureus bio-
aerosols from two WWTPs under various aeration modes. Then, a strict quantitative microbial risk assessment (QMRA) 
was performed on several exposure scenarios associated with occupational health risks of temporary entrants (researchers, 
visitors, and inspectors) and staffs (field engineer and laboratory technician).
Results Although the bioaerosol concentrations were generally regarded as safe according to existing standards, these bio-
aerosols’ health risks were still unacceptable. The microbial bioaerosols posed considerable infection health risks in WWTPs. 
These risks were generally above the WHO and US EPA benchmarks. The health risks of females were always smaller than 
those of male of grown-up age group. Staffs that had been exposed to bioaerosols for a long time were found to have higher 
health risks compared with temporary entrants. In addition, field engineers equipped with PPE rendered low health risks, 
thus revealing that wearing PPE could effectively reduce the occupational health risks.
Conclusion This study provided novel data and enriched the knowledge of microbial bioaerosol emission’s health risks from 
various aeration modes in WWTPs. Management decisions could be executed by authorities on the basis of the results of 
QMRA for field engineers equipped with PPE to reduce the related occupational health risks.

Keywords Occupational health · Quantitative microbial risk assessment · Annual infection risks · Disease burden · Bacteria 
bioaerosol · Wastewater treatment plants

Introduction

Bioaerosols are aerosols containing particles of biological 
origin, which have a broad size spectrum (0.02–100 μm) 
(Ariya and Amyot 2004; Dowd and Maier 2000). Bioaerosol 
particles include plant or animal debris (e.g., pollen, insects, 
skin); living microorganisms, such as viruses, bacteria, and 
fungi; as well as fragments or byproducts of microorganisms 
(Grinshpun and Clark 2005; Reponen 2011). Some evidence 

shows that exposure to bioaerosols can be harmful and pose 
potential occupational health risks related to infection, tox-
icity, and allergenicity (Douwes et al. 2003; Eduard et al. 
2012; Heederik and Mutius 2012). In addition, health risks 
from bioaerosol exposure can be greatly enhanced by the 
airborne transmission of infectious agents, such as SARS in 
2003, H1N1 in 2009, and COVID-19 in 2020 (Asadi et al. 
2020; Hao et al. 2019; Xiao et al. 2004).

The number of wastewater treatment plants (WWTPs) 
is very large and has increased rapidly in China. A total 
of 87 WWTPs with a treatment capacity of 4.45 ×  109  m3/
day existed in 1991. Then, this number increased to 2209 
WWTPs with a treatment capacity of  4.65 ×  1010  m3/
day in 2017 (MOHURD, 2020). However, WWTPs have 
been recognized as a substantial source of bioaerosols 
(Brandi et al. 2000). A large number and great diversity of 
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pathogenic microorganisms in wastewater can become aero-
solized through various aeration modes (e.g., mechanical or 
blast aeration process) (Fannin et al. 1985; Moazeni et al. 
2017). Thus, the bioaerosols formed are capable of infect-
ing humans (particularly for sewage workers at WWTPs) 
through inhalation, ingestion, or dermal contact, and they 
may be a potential source of health risks for the exposure 
population (Brooks et al. 2004; Carducci et al. 2000; Hickey 
and Parker 1975). Several works have shown that the occur-
rence of certain work-related symptoms (a particular type of 
illness called “sewage worker’s syndrome”) are frequently 
present among sewage workers and temporary entrants 
(Nethercott and Holness 1988; Rylander 2002; Thorn et al. 
2002). The potential for adverse effects from bioaerosol 
emissions in WWTPs is significant (Carducci et al. 2008; 
Glassmeyer et al. 2005). Therefore, quantifiably evaluating 
the potential occupational health risks of microbial bioaero-
sols arising from WWTPs under various scenarios is critical.

Quantitative microbial risk assessment (QMRA) is a 
valuable approach to understanding and estimating the 
health risks posed by the microbial bioaerosols emitted from 
WWTPs (Abia et al. 2016; Yillia et al. 2009). The QMRA 
framework consists of four fundamental steps: hazard iden-
tification, exposure assessment, dose–response assessment, 
and risk characterization (Codex Alimentarius Commission, 
1999; U.S. EPA 2007). Two of the most authoritative and 
widely used health risk benchmarks are used to evaluate 
whether the risk calculated by the QMRA is acceptable or 
not (Blanky et al. 2017). These benchmarks are the accept-
able annual infection risk level proposed by the U.S. EPA 
[≤  10−4 infection cases per-person-per-year (pppy)] and the 
acceptable disease burden level proposed by WHO (≤  10−6 
DALYs  pppy−1) (U.S. EPA 2005; World Health Organiza-
tion 2008).

Studies have been conducted to evaluate the health 
risks of bioaerosols by determining the concentrations of 
microbial bioaerosols from WWTPs (Pascual et al. 2003; 
Pillai and Ricke 2002; Ranalli et al. 2000). Orsini et al. 
(2002) analyzed samples of bioaerosols collected from a 
turbine aeration tank in a WWTP and evaluated the bio-
aerosol risk for sewage workers. Stellacci et al. (2010) 
studied the emission of Cryptosporidium, Campylobacter, 
and Rotavirus bioaerosols from WWTPs and assessed the 
potential health effects of these particles on the neighbor-
hood. In another study, Carducci et al. (2018) estimated 
the human adenovirus health risk due to bioaerosol expo-
sure in WWTPs and calculated the exposure limits con-
sidering four different risk levels. Furthermore, Pasalari 
et al. (2019) measured the concentrations of Rotavirus 
and Norovirus bioaerosols in a WWTP equipped with a 
microporous aeration tank and found high health risks for 
workers and nearby residents. However, a number of stud-
ies have only focused on bioaerosol emissions associated 

with a single aeration mode, and information on bioaero-
sol emissions in different aeration modes is scarce (Fathi 
et al. 2017; Karra and Katsivela 2007; Niazi et al. 2015). 
Another research gap is that the health risks of microbial 
bioaerosols in various exposure scenarios remain poorly 
investigated, particularly in China. Moreover, the health 
risks of temporary entrants have often been overlooked 
and insufficiently inspected systematically. In addition, 
information about the health risks of the exposure popu-
lation equipped with masks is inadequate (Konda et al. 
2020). Consequently, a serious open question remains on 
how to conduct a comprehensive understanding of the 
effects of aeration modes on bioaerosol emissions and the 
quantifiable evaluation of the health risks of bioaerosols 
for various exposure scenarios in WWTPs.

After determining the emission concentrations of 
microbial bioaerosols (Gram-negative bacteria and 
Staphylococcus aureus bioaerosols) from two WWTPs 
under various aeration modes, this research focuses on 
the systematically quantitatively evaluates the bioaerosols’ 
occupational health risks for several exposure scenarios 
by comparing them with the benchmarks to discuss the 
implications of these risks. The health risks of exposed 
staffs field engineers equipped with a series of personal 
protection equipment (PPE) are strictly evaluated. The 
current research enriches the knowledge bases of micro-
bial bioaerosols emissions from various aeration modes in 
WWTPs and then provides an advanced understanding of 
human health risks in various exposure scenarios. These 
results can inform efforts to establish rational management 
recommendations for reducing occupational health risks.

Method and materials

Description of the wastewater treatment plants

This study was conducted at two different wastewater 
treatment plants (WWTPs) (plant A and plant B) located 
in central China, which were characterized by various 
aeration modes. They both used activated sludge to treat 
wastewater and operated continuously throughout the year. 
Plant A was equipped with parallel connected rotating disc 
aeration (phase one) and microporous aeration (phase two) 
tanks with equally assigned inflows of 100,000  m3/day. 
Plant B was equipped with parallel connected inverted 
umbrella aeration (Phase one) and microporous aeration 
(Phase two) tanks with equally assigned inflows of 200,000 
 m3/day. Figure 1 presents schematic diagrams of waste-
water treatment process of these two WWTPs. The inlet 
water quality of the plants is presented in Supplementary 
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Material Table 1. The dissolved oxygen in various aeration 
tanks is shown in Supplementary Material Table 2.

Sampling procedure

According to our previous research (Chen et  al. 2021), 
Staphylococcus aureus and gram-negative bacteria bioaero-
sols samplings were conducted 6 times from November 2019 
to January 2020 using a six-stage Andersen impactor with 

a flow rate of 28.3 L  min−1 and aerodynamic cut-size diam-
eters of 7.0, 4.7, 3.3, 2.1, 1.1, and 0.65 μm (Uhrbrand et al. 
2017). The sampling site was at a height of 1.5 m above the 
aeration tanks’ ground and located in the middle of the aera-
tion tank. The sampling points were established at rotating 
disc aeration tank and microporous aeration tank in plant A 
and inverted umbrella aeration tank and microporous aera-
tion tank in plant B (Fig. 1). Sampling date and time in each 
sampling point are listed in details in the Supplementary 

Fig. 1  Schematic diagram of wastewater treatment process in (a) plant A and (b) plant B
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Material Table 3. The sampling for Staphylococcus aureus 
and gram-negative bacteria bioaerosol was carried out for 10 
and 20 min, respectively. The plate that used in the Andersen 
impactor was an egg-yolk mannitol salt agar medium and a 
Gram-negative bacteria selective medium for Staphylococ-
cus aureus and Gram-negative bacteria bioaerosols, respec-
tively (Qingdao Hope Bio-Technology Co., Ltd., China) 
(Grzyb and Lenart-Boron 2019; Stiles 1977; Zhang et al. 
2018). Three replicates were taken consecutively from each 
aeration tank.

During the sampling campaign, the temperature 
(expressed in ℃) and the relative humidity (expressed in 
percentages) were monitored using a digital thermohy-
grometer (TASI-622, Suzhou TASI Electronics Co., Ltd., 
China). According to the manufacturer, the accuracy of 
the temperature reading were ± 2 ℃ in the 0–10 ℃ range 
and ± 0.5 ℃ in the 10–45 ℃ range. The accuracy of the 
humidity reading was ± 2.5%. When measuring, the digi-
tal thermohygrometer was placed at the same height as the 
sampler. The illuminance (expressed in LX) of solar radiation 
was determined using a light meter (Tes-1339, Tes Electri-
cal Electronic Corp., China). The light meter was placed 
on the unshaded ground at sampling sites and the data was 
recorded. Air quality index (AQI) was a unitless parameter 
to measure the overall quality of the air on a scale of 0–500. 
A low number means good air quality while higher num-
bers means worse air quality. The hourly AQI was obtained 
from weather stations closest to the sampling sites. These 
data are summarized in Supplementary Material Table 4.

Bioaerosol characterization

All collected samples were transported immediately to the 
laboratory with a cold box and were incubated at 37 ℃ for 
24 h to develop colonies (Bragoszewska and Biedron 2018; 
Szyłak-Szydłowski et al. 2016). The colonies, which were 
visible on the plate, were counted by an automatic colony-
counting instrument (HICC-B, Wanshen, Hangzhou). The 
concentration of microbial bioaerosols was calculated by 
dividing the volume of air sampled from the sum number 
of colonies on the plate, as shown in Eq. (1). The num-
ber of colonies was corrected by positive-hole correction 
(Andersen 1958; Macher 1989) as follows:

where C refers to the bioaerosol concentration and is 
expressed as (CFU  m−3). N1-N6 are the number of colonies 
on each stage of the six-stage Andersen impactor. Q is the 
flow rate (28.3 L  min−1), and t is the sampling time for the 
microbial bioaerosol (min).

(1)C =
N1 + N2 + ... + N6

Qt
× 1000,

The median, mean, and standard deviation of the experi-
mental data were calculated with outlier samples taken into 
account. The maximum and minimum values were on behalf 
of the worst estimate and the optimistic estimate, respec-
tively (Lim et al. 2015; Stellacci et al. 2010). Part of these 
date have been already contained in our previous research 
(Chen et al. 2021).

Estimating health risks by QMRA

The QMRA approach was used to evaluate and quantify 
the health risks (annual infection risk and disease burden) 
associated with exposure to microbial bioaerosols (Haas 
et al. 2014; Parkin 2007). A scenario associated with the 
health risks after equipping individuals with various grade 
PPE (KN90, KN95, and KN100) was also analyzed. The 
QMRA framework included four steps: hazard identifica-
tion, exposure assessment, dose–response assessment, and 
risk characterization (Haas et al. 1999; National Academy 
of Sciences 1983; National Research Council 2009), which 
are briefly described below.

Hazard identification

The staffs (field engineer and laboratory technician) 
employed in WWTPs and temporary entrants (researchers, 
visitors, and inspectors) were subject to the risk of inhala-
tion of microbial bioaerosol (Myrmel et al. 2015). Reference 
bioaerosols for this study, including Staphylococcus aureus 
bioaerosol and Gram-negative bacteria bioaerosol, were 
selected because they are well-known bioaerosol indicators, 
and they cause a large proportion of wastewater-associated 
illnesses (Douwes et al. 2003; Fracchia et al. 2006; Rosen-
berg Goldstein et al. 2012). In the QMRA calculation pro-
cess of this study, all pathotypes of Gram-negative bacteria 
bioaerosol were assumed to be pathogenic E. coli bioaerosol 
(Shi et al. 2018).

Exposure assessment

The objective of the exposure assessment was to estimate 
the dose of microbial bioaerosol to which staffs employed in 
WWTPs and temporary entrants might be exposed within a 
day and a year. In the present study, several exposure scenar-
ios were evaluated (Table 1). The exposure dose of microbial 
bioaerosol was estimated using Eq. (2) (Brooks et al. 2012):

where d is the exposure dose expressed in pathogens  day−1, 
C is the concentration of the microbial bioaerosol detected in 
bioaerosol samples (CFU  m−3), RR is the respiratory intake 

(2)d = C × RR × IR × ET,
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ratio, IR is the inhaled breathing rate  (m3/day), and ET is the 
exposure time (h/day).

The parameter respiratory intake ratio was calculated 
from experimental data. Approximately 74% of all the bio-
aerosol particles collected by the Andersen impactor, on 
average, had a diameter < 4.7 μm (stage 3–6) (Supplemen-
tary Material Table 5) (Pillai 2007; Szyłak-Szydłowski et al. 
2016; Wathes et al. 1988). Hence, it was assumed that the 
respiratory intake ratio was 0.74.

Dose–response assessment

The dose–response model estimated the probability of infec-
tion caused by exposure to microbial bioaerosol (Katukiza 
et al. 2014). The exponential dose–response model, which 
was used for Staphylococcus aureus bioaerosol, is shown in 
Eq. (3) (Rose and Haas 1999):

where Pinf is the probability of being infected after daily 
exposure (per person per day), d is the exposure dose calcu-
lated in Eq. (2) (pathogens  day−1), and r is the model param-
eter for Staphylococcus aureus bioaerosol infection risk.

For Gram-negative bacteria bioaerosol, the beta-Poisson 
dose–response model was used to calculate the infection 
risk, as defined by Eq. (4) (DuPont et al. 1971)

where α, β, and N50 are the best-fit parameters of the model, 
which represent the pathogenicity of Gram-negative bacteria 
bioaerosol.

The annual infection risks were calculated on the basis of 
the theorem of independence using Eq. (5)

where Pa(inf) is the probability of being infected after a yearly 
exposure expressed in per person per year (pppy). Pinf is the 
probability of being infected after daily exposure (per person 
per day), and n is the number of days exposed per year (d 
 a−1). All parameters related to these models of the QMRA 
can be found in Supplementary Material Table 6.

Risk characterization

Risk characterization was carried out on the basis of the 
information provided from the aforementioned hazard iden-
tification, exposure assessment, and dose–response assess-
ment. The health risks, including annual infection risk and 
disease burden, were estimated for each scenario presented 

(3)Pinf = 1 − e−rd,

(4)Pinf = 1 − (1 + d∕�)−� , � =
N50
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in Table 1 and the scenario of field engineers equipped with 
PPE. The results of health risks were characterized accord-
ing to the U.S. EPA annual probability of infection bench-
mark (≤  10−4 pppy) and the WHO disease burden bench-
mark (≤  10−6 DALYs  pppy−1) (U.S. EPA 2005; WHO 2008). 
The estimation of the disease burden is provided by Eq. (6) 
(Pasalari et al. 2019)

where DB is the disease burden expressed in DALYs per 
person per year (DALYs  pppy−1). Pa(inf) is the annual infec-
tion risk (pppy), Pill/inf is the probability of illness to infec-
tion ratio, and HB is the disease burden per case (DALYs 
per case). These parameters are presented in Supplementary 
Material Table 6.

Results and discussion

Bioaerosol concentrations

The influence of temporal variations of meteorological 
factors on microbial bioaerosol emissions can be seen in 
the Supplementary Material Fig. 1. According to the last 
two times sampling in January 2020, the concentrations of 
microbial bioaerosols were generally increased with the 
decrease of illumination while there is no distinct differ-
ence between concentrations and other meteorological fac-
tors. This was because high illuminance of solar radiation 
could affect the survival of microbial bioaerosols aero-
solized from wastewater and result in partial inactivation 
(Maier et al. 2000). Meanwhile, several studies have been 
also revealed that low temperature, high humidity, and low 
illuminance of solar radiation tended to favor microbial bio-
aerosols’ survival (Hughes 2003; Mohr 2007; Stellacci et al. 

(6)DB = Pa(inf) × Pill/inf × HB,

2010). The concentrations of microbial bioaerosols were 
affected by various meteorological factors, but the aeration 
mode was dominant in this study.

Table 2 shows the concentrations of Gram-negative bac-
teria bioaerosol and Staphylococcus aureus bioaerosol in 
the aeration tanks of the two WWTPs. Figure 2 presents the 
size distribution of two microbial bioaerosols. Part of these 
date have been showed in our previous research (Chen et al. 
2021). The average bioaerosol concentrations in the rotat-
ing disc aeration tank were two orders of magnitude higher 

Table 2  Microbial bioaerosol concentrations (CFU  m−3) in various sampling sites

Items Plant A Plant B

Rotating disc aeration 
tank

Microporous aeration 
tank

Inverted umbrella 
aeration tank

Microporous aeration 
tank

Gram-negative bacteria bioaerosol
 Max 189.03 17.77 122.33 24.32
 Min 21.88 3.54 32.59 1.77
 Median 113.31 6.50 59.38 5.76
 Mean ± SD 114.60 ± 63.02 8.37 ± 4.76 67.55 ± 32.16 8.19 ± 7.61

Staphylococcus aureus bioaerosol
 Max 15,760.04 1307.64 593.34 332.71
 Min 4560.25 58.01 124.57 0
 Median 11,614.54 189.27 200.43 77.80
 Mean ± SD 11,103.13 ± 3362.95 331.83 ± 332.84 257.49 ± 153.74 101.71 ± 107.91

Fig. 2  Size distribution ratio of microbial bioaerosols collected by 
six-stage Andersen impactor in various aeration tanks of plant A 
and plant B. AG-Rot. Gram-negative bacteria bioaerosol collected in 
rotating disc aeration tank in plant A, AG-Mic. Gram-negative bac-
teria bioaerosol collected in microporous aeration tank in plant A; 
AS-Rot. Staphylococcus aureus bioaerosol collected in rotating disc 
aeration tank in plant A, AS-Mic. Staphylococcus aureus bioaerosol 
collected in microporous aeration tank in plant A, BG-Inv. Gram-neg-
ative bacteria bioaerosol collected in inverted umbrella aeration tank 
in Plant B; BG-Mic. Gram-negative bacteria bioaerosol collected in 
microporous aeration tank in Plant B, BS-Inv. Staphylococcus aureus 
bioaerosol collected in inverted umbrella aeration tank in Plant B, 
BS-Mic. Staphylococcus aureus bioaerosol collected in microporous 
aeration tank in Plant B
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than those in the microporous aeration tank in plant A. In 
plant B, lower bioaerosol concentrations were still detected 
in the microporous aeration tank rather than the inverted 
umbrella aeration tank. Previous works had reported simi-
lar results, in which the mechanical agitation of wastewater 
using horizontal rotors (e.g., rotating disc aeration mode) 
or surface turbines (e.g., inverted umbrella aeration mode) 
raised higher concentrations of bioaerosol emissions than 
that of diffuser aerators (e.g., blast microporous aeration 
mode) (Brandi et al. 2000; Sanchez-Monedero et al. 2008). 
Therefore, mechanical agitation (rotating disc aeration mode 
and inverted umbrella aeration modes) seems to generate 
more bioaerosol emissions than the blast aeration mode.

In fact, these results were unsurprising and expected, as 
the bursting of bubbles at the wastewater liquid surface had 
been well recognized as an important generation mecha-
nism for bioaerosol emissions from the blast aeration mode 
(Resch et al. 1992). Air was injected into the bottom of the 
aeration tank by a microporous aeration device, which trans-
ferred oxygen from air into wastewater as it rose upward. 
Remaining at the wastewater liquid surface, the bubble film 
became thin and then gently burst into minor droplets that 
enclosed microbial suspensions (Blanchard et al. 1975). 
Finally, these droplets evaporated to form microbial bioaero-
sol particles (Fannin et al. 1985). Nevertheless, mechanical 
agitation caused turbulence and fierce splashing that might 
lead to the generation of droplets, which resulted in a large 
amount of microorganisms splashing out and releasing into 
the air (Korzeniewska 2011). Evidently, the blast aeration 
mode induced only minor turbulence to wastewater rather 
than in the violent mechanical aeration agitation to emit 
microbial bioaerosol (Korzeniewska et al. 2007). Referring 
to the blast aeration mode (the two microporous aeration 
tanks), the concentrations of microbial bioaerosols in plant 
A were generally one to two orders of magnitude higher 
than those in Plant B. This variation was related to the dif-
ferent water quality (Supplementary Material Table 1) and 
dissolved oxygen (Supplementary Material Table 2) of the 
two WWTPs (Piqueras et al. 2016).

According to the Polish Standard, the microbial bioaero-
sol emissions in all aeration tanks were generally regarded 
as safe (Polska Norma PN-89 Z-04111 02). The exception 
was the Staphylococcus aureus bioaerosol emissions in the 
rotating disc aeration tank in plant A, which was considered 
as heavily contaminated on the basis of the Polish Stand-
ard (Polska Norma PN-89 Z-04111 02), was over the maxi-
mum allowable concentration of total bacterial bioaerosol 
by Korean standards (Ministry of Environment, Republic 
of Korea 2010) and the National Institute of Occupational 
Safety and Health standards (Vilavert et  al. 2009). The 
concentration also exceeded the Swiss occupational expo-
sure limits (OELs) (Oppliger et al. 2005). However, the 
abovementioned standards or OELs may not have scientific 

justification because bioaerosols are complex mixtures of 
microbial particles (ACGIH 1989; Vilavert et al. 2009). 
These standards and OELs are usually founded on simple 
baseline bioaerosol concentrations rather than dose–response 
relationships of health risk assessment, thus neglecting the 
effects of such concentrations on human health (Kim et al. 
2018). Therefore, no internationally accepted standards or 
OELs for microbial bioaerosol emission have been formu-
lated (Turner et al. 2008).

Annual infection risks

The annual infection risks of Gram-negative bacteria 
bioaerosol and Staphylococcus aureus bioaerosol refer-
ring to various exposure scenarios in the two WWTPs are 
presented in Table 3. The infection risks of females were 
always smaller than those of males for the grow-ups age 
group. This difference was caused by the huge inconsistency 
of the breathing rate between the genders (Supplementary 
Material Table 6). In the elderly age group, the infection 
risks of microbial bioaerosol showed no significant differ-
ences between the two genders. This comparison signified 
that the inhaled breathing rate of elderly males and females 
were nearly the same (Supplementary Material Table 6). The 
correlation between the inhaled breathing rate and the infec-
tion risks of microbial bioaerosols was consistent with other 
studies. As described by Shi et al. (2018), the infection risks 
are commonly expressed on the basis of the dose of expo-
sure to microbial bioaerosol concentrations, which is highly 
affected by the inhaled breathing rate (Brooks et al. 2012).

The infection risks of Gram-negative bacteria bioaerosol 
for visitors and inspectors were slightly one order of mag-
nitude higher or even on the same order of magnitude as 
the U.S. EPA annual infection benchmark (≤  10−4 pppy). 
However, for researchers, the infection risks were higher 
than the benchmark by two orders of magnitude because the 
exposure time for researchers was much longer than that for 
visitors and inspectors (Table 1). Moreover, the exposure 
time and the infection risks had a significantly positive rela-
tionship (Blanky et al. 2017). Notably, under the optimistic 
estimate (i.e., for the min value of the annual probability of 
infection), elderly female inspectors could still be deemed 
acceptable because these inspectors’ infection risks satisfied 
the benchmark. In view of the uncertainty of the estimation, 
the worst case estimate was taken into account through the 
risk assessment, which was considered overly conservative 
and impractical (Shi et al. 2018; Stellacci et al. 2010). In 
contrast, conducting the risk assessment under an optimistic 
estimate would more effectively inform stakeholders of the 
range of the annual probability of infection that microbial 
bioaerosols might cause.

However, the infection risks for all staffs were generally 
two orders of magnitude over the benchmark. Therefore, 
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sewage workers were at a higher risk metric of developing a 
large variety of work-related infection risks compared with 
temporary entrants (Masclaux et al. 2014). Several works 
had reported similar results that sewage workers severely 
suffered a markedly higher prevalence than others of a par-
ticular illness called “sewage worker’s syndrome” (Clark 
1987; Fannin et al. 1985). Besides, it is worth noting that 
although the microbial bioaerosol emissions in all aeration 
tanks were largely regarded as safe according to existing 
standards (Sect. 3.1), their infection risks were still unac-
ceptable here.

The infection risks of Staphylococcus aureus bioaerosol 
for visitors and inspectors were generally on the same order 
of magnitude as the U.S. EPA benchmark (except the grown-
up male visitors). However, for researchers, the infection 
risks were much higher than the benchmark by approxi-
mately two orders of magnitude. The researchers’ exposure 
time was much longer than the other two temporary entrants 
(Table 1). The infection risks for all staffs in plant A were 
two orders of magnitude higher than the benchmark. How-
ever for staffs in Plant B, the infection risks were marginally 
one order of magnitude higher or even on the same order of 
magnitude as the benchmark. This result could be attrib-
uted to the high concentrations of Staphylococcus aureus 
bioaerosol in plant A (Table 2). For all exposure scenarios, 
even under the optimistic estimate, the infection risks of 
Staphylococcus aureus bioaerosol were still generally over 
the benchmark (except the elderly female inspectors). Thus, 
the Staphylococcus aureus bioaerosol generated during 
wastewater treatment posed a considerable infection health 
risk to the exposure of temporary entrants and staff.

Disease burden

The disease burden of Gram-negative bacteria bioaero-
sol and Staphylococcus aureus bioaerosol for temporary 
entrants and staff in the two WWTPs are listed in Table 4. 
Referring to the WHO disease burden benchmark (≤  10−6 
DALYs  pppy−1), the results of the disease burden of Gram-
negative bacteria bioaerosol were nearly the same as the 
estimation of the annual infection risks (Table 3). The excep-
tion was that the elderly female inspectors still exceeded 
the benchmark even under the optimistic estimate (i.e., for 
the min value of the disease burden). This trend was likely 
due to the relatively high pathogenicity of Gram-negative 
bacteria bioaerosol (Jahne et al. 2015).

The disease burdens of Staphylococcus aureus bioaero-
sol for temporary entrant researchers and visitors both 
exceeded the benchmark. However, the optimistic estimate 
for female grown-up visitors, indicated that their health risk 
could still be considered acceptable, as their disease bur-
dens satisfied the benchmark. This level of acceptability was 
due to the slow inhaled breathing rate of female grown-up 

(Supplementary Material Table 6) and the low concentration 
of Staphylococcus aureus bioaerosol under the optimistic 
estimate (i.e., considering the min value of Staphylococcus 
aureus bioaerosol concentrations in various sampling sites) 
(Table 2). In contrast, the disease burdens of the temporary 
entrant inspectors were over the benchmark under the worst 
estimate (i.e., for the max value of the disease burden), but 
their disease burdens generally satisfied the benchmark. This 
result entailed that a potential disease health burden risk 
for inspectors was non negligible. The exception was for 
the female elderly inspectors whose disease health burdens 
always fulfilled the benchmark under all estimates. This out-
come could be explained by the theory that slower inhaled 
breathing rate (Supplementary Material Table 6) and shorter 
annual exposure time (Table 1) might result in a lower health 
risk for female elderly inspectors (Blanky et al. 2017).

As for the staffs, the disease burdens of the two microbial 
bioaerosols in all exposure scenarios were generally above 
the benchmark. Notably, under the optimistic estimate for 
the laboratory technician in Plant B, the disease burdens of 
Staphylococcus aureus bioaerosol could satisfy the bench-
mark. The Staphylococcus aureus bioaerosol in Plant B had 
a lower concentration under the optimistic estimate (i.e., 
considering the min value of Staphylococcus aureus bio-
aerosol concentrations in various sampling sites) (Table 2). 
In conclusion, these results presented a high disease health 
risk burden for staffs, which could not be ignored. Sewage 
workers exposed to microbial bioaerosols for a long time 
were at risk. Thus, a significant association between expo-
sure to microbial bioaerosol emissions and health was at 
stake (Cyprowski and Krajewski 2003; Heng 1994; Paten-
talakis et al. 2008).

In addition, the disease burdens of microbial bioaerosol 
showed no significant differences between the grow-ups age 
group and the elderly age group. When calculating disease 
burdens, the unique characteristics of different age groups 
on morbidity and mortality were not taken into account, 
which was affected by the lack of local surveillance data. 
Thus, this calculation might not best characterize the true 
impacts of illnesses related to microbial bioaerosols. In fact, 
the disease surveillance data were often regionally bounded 
as a consequence of the differences in medical resources and 
living habits in different regions (Lim et al. 2015; Shi et al. 
2018). Thus, disease surveillance databases, which are based 
on surveillance data from various regions of the world, are 
needed for a more accurate and more reliable health risk 
assessment (Shi et al. 2018).

Health risks for field engineers equipped 
with personal protection equipment

Tables 5 and 6 show the annual infection risks and disease 
burdens of field engineers equipped with various grade 
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PPE (KN90, KN95 and KN100 mask) in the two WWTPs, 
respectively. The results of the disease burden were simi-
lar to the estimation of the infection risks. The health risks 
(annual infection risk and disease burden) for field engineers 
were significantly lower than those without PPE. Masks can 
block most of the microbial bioaerosols due to its good filtra-
tion efficiency, thus effectively protecting its wearers (GB 
2626-2019; Liu and Zhao 2020).

When field engineers were equipped with KN90 masks, 
the health risks were generally one order of magnitude 
higher than the WHO and U.S. EPA benchmarks. The excep-
tion was the health risks of Staphylococcus aureus bioaero-
sol in Plant B. The disease health burdens satisfied the WHO 
benchmark in general but not for the worst estimate (i.e., for 
the max value of the disease burden) (Table 6). In addition, 
the annual health infection risks complied with the U.S. EPA 
benchmark under the optimistic estimate (i.e., for the min 
value of the annual infection risks) (Table 5). This outcome 
was mainly due to the lower concentration of Staphylococcus 
aureus in Plant B (Table 2). Compared with KN90 masks, 
the health risks for field engineers equipped with KN95 
masks were reduced but still exceeded the benchmarks. The 
exception was that the health risks of Staphylococcus aureus 
bioaerosol in Plant B generally satisfied the benchmarks but 
exceeded the U.S. EPA benchmark under the worst estimate 
(Table 5). The worst estimate of Staphylococcus aureus bio-
aerosol in Plant B had a higher concentration (i.e., consid-
ering the max value of Staphylococcus aureus bioaerosol 
concentrations in various sampling sites) (Table 2). These 
results indicated that KN90 and KN95 masks could not fully 
protect field engineers from microbial bioaerosols, which 
still posed unacceptable risks to them. However, the health 
risks for field engineers equipped with KN100 masks were 
clearly acceptable in relation to the U.S. EPA and WHO 
benchmarks, and the result sometimes even reached zero 
when two decimal places were reserved. Therefore, equip-
ping workers with KN100 masks is recommended to reduce 
health risks related to sewage workers effectively. However, 
absolute safety is unattainable according to field engineers 
(Haas 2015). Completely eliminating the health risks inher-
ent to field engineers in wastewater treatment is impossible, 
and the best efficient prevention measures must be imple-
mented to minimize the generation of microbial bioaerosols 
exposure dose at the workplace (Teixeira et al. 2013).

Uncertainties during QMRA process

Given that not all individuals in the exposure population 
infected with microbial bioaerosol ended up exhibiting 
symptoms and became ill, the burden of disease could 
measure the impact of particular health conditions, not only 
focusing on annual infection risks (Blanky et al. 2017). Sim-
ple yes-or-no judgments by only one commonly adopted 

benchmark is an oversimplification of the assessment (De 
Gisi et al. 2016). However, the two health risk benchmarks 
(the U.S. EPA annual infection benchmark and the WHO 
disease burden benchmark) should be used as complements 
rather than in opposition (Lim et al. 2015).

The WHO disease burden benchmark and the U.S. EPA 
benchmark, which were originally and primarily established 
for the assessment of safe drinking water, might not be very 
suitable for the health risk assessment on bioaerosol pollu-
tion (Mara 2011; Mara and Sleigh 2010). Thus, such bench-
marks should calculate the risk assessment more accurately 
by taking the optimistic estimate and the worst estimate into 
consideration (Shi et al. 2018). These shortcomings also 
implied the need for incorporating updated science into risk 
assessment, which could be used to revise the current health 
risk benchmarks (Lim et al. 2015).

Moreover, dose–response models used for estimat-
ing infection risks might be the most important source of 
uncertainties during the QMRA process (Lim et al. 2015). 
Although the dose–response models of different bioaerosol 
pathotypes were not exactly the same due to different infec-
tion or illness mechanisms, dose–response models had not 
been established for all scenarios (Graham et al. 1983; June 
et al. 1953; Levine et al. 1977). Therefore, these variations 
would overestimate or underestimate the health risk. Another 
reason for the uncertainty was that dose–response models 
to date usually only focus on single pathogen bioaerosols 
(Haas, 2015). However, in realistic exposure scenarios in 
WWTPs, concomitant exposure to multiple bioaerosol path-
ogens are possible (Aksoy et al. 2007; Bopp et al. 2003; Gal-
layet al. 2006). Consequently, further improvements on data 
collection and model refinement are necessary to restrict the 
uncertainties associated with the health risk outcomes (Lim 
et al. 2015).

The traditional QMRA approach still contains many 
uncertainties and variability that are not mentioned and 
considered above. Some statistical approaches, such as the 
Monte Carlo simulation approach, can be used to take into 
account the uncertainties in the process of QMRA (Nauta 
2000). Meanwhile, the modeling approach can be improved 
by considering the variability and uncertainties of different 
parameters involved in the QMRA model (Chen et al. 2021). 
The approach used most frequently is to apply Bayesian 
inference to a QMRA model (Courault et al. 2017; Rigaux 
et al. 2013).

Conclusion

Although the results of the bioaerosols concentrations 
were generally regarded as safe compared with pub-
lished standards and OELs except for the concentration 
of Staphylococcus aureus bioaerosol in the rotating disc 
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aeration tank in plant A, these bioaerosols’ occupational 
health risks were still unacceptable. Referring to the dis-
ease burdens of inspectors, no significant differences were 
observed between the grow-ups age group and the elderly 
age group. The health risks of females were always smaller 
than those of males for the grown-ups age group due to 
the huge inconsistency of the inhaled breathing rate of the 
genders. Staffs who had been exposed to bioaerosols for 
a long time had higher health risks compared with tem-
porary entrants. The health risks in all exposure scenarios 
were generally above the WHO and U.S. EPA benchmarks 
except for those of the female elderly inspectors exposed 
to Staphylococcus aureus bioaerosol. These results showed 
that bioaerosols posed considerable infection health risks 
to exposed temporary entrants and staffs in WWTPs. The 
risk assessment for field engineers equipped with PPE ren-
dered a low health risk, which revealed that PPE could 
effectively protect the wearers and reduce the occupa-
tional health risks. Moreover, a higher filtration efficiency 
of PPE increases the protective effect of the equipment 
on the wearers. The present research provided novel data 
and enriched the knowledge of microbial bioaerosols 
emissions’ health risks from various aeration modes in 
WWTPs. Furthermore, it significantly aided in advancing 
the understanding of human health risks in various expo-
sure scenarios associated with the annual infection risk 
and disease burden. Then, management decisions can be 
implemented by authorities on the basis of the results of 
the QMRA for field engineers equipped with PPE to abate 
the related occupational health risks.
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