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Varying HLA allele-specific expression levels are associated with human

diseases, such as graft versus host disease (GvHD) in hematopoietic stem cell

transplantation (HSCT), cytotoxic T cell response and viral load in HIV infection,

and the risk of Crohn’s disease. Only recently, RNA-based next generation

sequencing (NGS) methodologies with accompanying bioinformatics tools

have emerged to quantify HLA allele-specific expression replacing the

quantitative PCR (qPCR) -based methods. These novel NGS approaches

enable the systematic analysis of the HLA allele-specific expression changes

between individuals and between normal and disease phenotypes. Additionally,

analyzing HLA allele-specific expression and allele-specific expression loss

provide important information for predicting efficacies of novel immune cell

therapies. Here, we review available RNA sequencing-based approaches and

computational tools for NGS to quantify HLA allele-specific expression.

Moreover, we explore recent studies reporting disease associations with

differential HLA expression. Finally, we discuss the role of allele-specific

expression in HSCT and how considering the expression quantification in

recipient-donor matching could improve the outcome of HSCT.

KEYWORDS

human leucocyte antigen, next generation sequencing, RNA sequencing, allele-
specific expression, disease associations
Introduction

Due to their biological role of presenting peptide antigens to T cells, the highly

polymorphic HLA class I and class II molecules are crucial for T cell activation and

therefore for effective immune response against various pathogens, autoantigens,

alloantigens, and cancer (1, 2). HLA class I molecules, which are constitutively expressed

on the surface of nearly all nucleated cells present intracellular peptides to CD8+ T cells and
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are encoded by genes HLA-A, -B, and -C (3). In contrast, HLA

class II molecules, which are expressed on professional antigen

presenting cells (APCs) such as B cells, macrophages, and

dendritic cells (DCs) display extracellular peptides to CD4+ T

cells and are encoded by HLA-DRA, -DRB1-9, -DQA1, -DQB1,

-DPA1, and -DPB1 (4). In addition to the classical HLA, the low-

polymorphic non-classical HLAmolecules such asHLA-E, -F, and

-G and HLA-DM and -DO have important roles in

immunosuppression (5, 6) and peptide loading (7). Several

factors affect HLA expression (Table 1). For example,

differential expression levels have been demonstrated between

different HLA genes, alleles, tissues, and cell types (8, 9, 12, 13, 15,

30). Part of this variation emerges from structural differences in

the promoter motifs involved in transcriptional expression

regulation between HLA genes and alleles (31, 32). Besides,

multiple transcriptional and translational factors as well as

proinflammatory cytokines can affect the mRNA- and surface-

level expression of HLA (18, 31, 33, 34). Varying expression may

also result from individual-specific factors such as genetic

polymorphism, age, environment, and medication (25–28).

Since many of these factors affecting HLA expression have been

previously described in detail e.g. by Carey et al. (18) and

Petersdorf et al. (19), in this mini review, we will focus more on

the RNA-based methods in HLA allele-specific expression

quantification and known disease associations with

HLA expression.

Over the past decade, studies have associated differential

HLA expression levels with infectious and autoimmune diseases,

neurological disorders, cancer, and drug hypersensitivity (35–

39). Additionally, HLA expression variation has been shown to
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impact the outcomes offlow cytometric crossmatches and HSCT

(10, 40, 41). The earlier studies have applied methods such as

flow cytometry, qPCR, and microarray in the quantification of

HLA expression at the protein- and mRNA-level (12, 42–45).

Although these methods have offered valuable information of

HLA expression and its associations with human diseases, they

are laborious, time-consuming, and do not allow high-resolution

and high-throughput expression quantification. Thus, RNA

sequencing (RNA-seq) enabling accurate and massively

parallel analysis, provides a powerful tool for studying inter-

allelic and inter-individual expression differences in healthy

tissues and diseases (46). Since determination of HLA gene-

and allele-level expression is important in several applications

such as biomarker discovery, transplantation medicine,

development of cancer vaccines targeting neo-epitopes, and

disease susceptibility (41, 47–49), RNA-seq methods together

with novel computational software capable of measuring HLA

expression at the allele-level (8, 9, 11, 13, 14, 50) hold great

promise to meet this need.
Methods in HLA expression
quantification

Flow cytometry, qPCR, and microarrays

Different methods exist for HLA expression quantification.

At the protein-level, HLA expression at the cell surface can be

quantified with fluorolabeled monoclonal antibodies and flow

cytometry. Earlier studies have used flow cytometry to compare
TABLE 1 Factors associated with differential HLA expression levels.

Factor Effect on expression References

Gene Expression levels can vary between different HLA genes e.g. HLA class I genes are expressed at higher levels than class II
genes.

(8–11)

Allele Expression can vary between HLA alleles due to genetic polymorphisms. (8, 9, 11–14)

Tissue and cell HLA expression and turnover rates of HLA molecules can be tissue- and cell-specific. (15–17)

Promoter polymorphisms Proximal and distal promoter polymorphisms have been associated with differential HLA expression. (12, 18, 19)

Alternative splicing Alternative splicing may lead to misfolded HLA proteins and aberrant expression. (18, 20)

Epigenetic regulation DNA methylation can alter HLA expression e.g. the methylation level in high-expression HLA-A allotypes is higher than
in low-expression HLA-A allotypes.

(18)

Turnover and stability of
mRNA and protein

Post-transcriptional and -translational factors can affect the degradation and internalization rates of HLA molecules. (18)

HLA LOH In cancer, the decrease of HLA expression can be dependent on the different forms of HLA LOH (total or partial)
resulting from genetic mutations and chromosomal aberrations.

(21, 22)

Proinflammatory cytokines Depending on the gene, HLA expression can either be upregulated or downregulated by proinflammatory cytokines. (23, 24)

Age Ageing can alter class I and class II expression. (25, 26)

Medication and environment Medication and environmental factors such as diet can alter HLA expression. (27, 28)

Time point HLA allele-specific expression can vary between different time points in activated memory T cells. (29)

Cell composition of study
sample

HLA expression can vary between different cell types and thus when HLA expression is quantified from bulk RNA-seq,
cell composition should be taken into account.

(15)
fr
LOH, loss of heterozygosity.
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cell surface expression between different HLA genes as well as

to explore the gene-specific changes in constitutive and

induced HLA expression (45, 51). Together with a specific

antibody flow cytometry has revealed differential HLA-C

surface expression between HLA-C allotypes in healthy

individuals (42, 44). Moreover, flow cytometry has been used

to demonstrate how sequence variation in the coding and non-

coding area and the turnover of heavy chain mRNA can

modulate HLA-C protein expression (44, 52–54). Before the

advent of NGS technologies, the level of HLA transcription was

quantified with qPCR and microarrays (12, 43, 54–59). Studies

using qPCR have demonstrated the impact of distinct DNA

methylation patterns and genomic variants in differential

expression between divergent HLA allelic lineages (43, 55).

Moreover, at the allele-level, a study with qPCR associated high

allele-specific expression variation in HLA-C with HLA-

extended haplotypes (12). These more conventional methods,

however, have certain limitations. They require careful design

and selection of antibodies, PCR primers, and microarray

probes to equally capture the high allelic variation of HLA

(37). Potential biases introduced at this step may lead to

specificity and sensitivity issues and ambiguous results in the

downstream analyses.
RNA-based NGS methods for HLA allele-
specific expression quantification

Over the past decade, NGS has rapidly replaced the more

conventional HLA typing methods providing more accurate high-

resolution typing (60, 61). In addition, RNA-based NGS

technologies have enabled simultaneous expression analysis and

identification of expression quantitative trait loci (eQTLs) (11). Due

to this revolution, several RNA-seq methods have emerged allowing

accurate HLA allele-specific expression quantification. After a

common step of reverse-transcribing RNA into complementary

DNA (cDNA), these methods rely on different approaches in the

sequencing library preparation such as using whole transcriptome

data (9, 10) or enriching HLA genes either with PCR amplification

with universal gene-specific primers (9, 13, 62) or capturing them

using biotinylated oligonucleotide probes covering the target

sequences (8). The first published method was based on cDNA

amplicon pyrosequencing using a common universal primer to

enrich all class I genes (62). Although, it was initially developed for

HLA typing, it was later applied also in a study revealing differential

allele-specific expression in human and macaque leukocyte subsets

(63). A method capturing and enriching the targeted HLA

sequences in a hybridization step prior to sequencing has also

been successful in quantifying HLA allele-specific expression (8).

The method enabled both HLA genotyping and quantification of

HLA allele-specific expression of 12 classical genes from healthy

PBMC and umbilical cord bloods samples. By using an in-house

method for the Illumina RNA-seq reads, the authors reported
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differential allele-specific expression in several HLA genes. In our

method, we incorporated unique molecular identifiers (UMIs) by

using template-switching oligo (TSO) during first-strand synthesis

in the library preparation to accurately quantify HLA gene- and

allele-specific mRNA expression from PBMC samples of healthy

individuals (9). Since UMIs enable the removal of PCR bias in the

data analysis step, the expression quantification was based on solely

counting the original mRNA transcripts in the sample (64). By

quantifying unique UMIs per allele with HLAXPress pipeline, we

identified differential expression levels between distinct HLA genes,

alleles, and haplotypes. Although, many of the RNA-seqmethods in

HLA research have used Illumina’s short-read technology, there are

also a few studies, which have applied Oxford Nanopore

Technology’s (ONT) long-reads in expression quantification (10,

13). A recent study quantified HLA allele-level expression using

UMIs from ONT HLA-gene specific PCR amplicons (13). In

addition to the high-resolution HLA typing of classical class I and

class II genes, the assay provided allele-specific HLA expression

quantification using Athlon2 pipeline (65) fast enough to be

considered in graft allocation for transplantation from a deceased

donor. Moreover, ONT’s whole transcriptome data without any

HLA gene enrichment step was demonstrated to be sufficient for

accurate HLA typing and measuring of the gene-level expression of

HLA class I genes (10). There is also evidence that T cell activation

can alter the balance of allele-specific expression (29). Interestingly,

by using Illumina’s whole transcriptome data together with an

HLA-personalized reference for individuals, the authors showed

that the expression balance between two alleles in a heterozygous

individual changed over time.
Computational tools for HLA expression
quantification from existing
RNA-seq datasets

In addition to laboratory protocols, several computational

tools have been developed for RNA-seq data, allowing HLA

expression quantification from existing public datasets (11, 14,

50, 66, 67). The obvious advantage here is that large, well-

documented study materials may be utilized for detailed HLA

expression studies.

Seq2HLA, a python- and R-based in silico -method, was the

first tool, which was introduced as capable of quantifying HLA

expression from RNA-seq data (50). The tool accepts standard

RNA-seq reads in fastq format as an input, uses bowtie (68) in

aligning reads against exon 2 and 3 sequences of HLA alleles,

and outputs HLA types and class-level expression estimates.

When applied to a paired-end data with a read length of 37 bp of

previously HLA genotyped individuals, seq2HLA achieved 100%

specificity and 93.5% sensitivity in 1-field genotyping results.

Since seq2HLA was first introduced, two other studies have

applied it to quantify HLA expression in human cancer cell lines

and non-cancer human tissues and cell types demonstrating
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HLA expression variation between cancer types and distinct

anatomical sites (15, 16).

AltHapAlignR provides estimates of transcript abundance

by using alternate reference haplotypes (14). AltHapAlignR first

aligns reads against the standard genome reference using read

mappers such as Tophat2 (69), HISAT2 (70), or STAR (71) and

then extracts reads mapping to HLA region and unmapped

reads, which it further re-aligns to the HLA reference haplotypes

to obtain the expression estimates for HLA genes and

haplotypes. The authors showed that when compared to the

standard single reference mapping, AltHapAlignR improved the

accuracy of HLA expression quantification. Recently,

AlthHapAlignR was applied in a study demonstrating allele-

specific expression in HLA-DRB1 in patients with rheumatoid

arthritis and in healthy controls (72).

HLApers enables accurate quantification of HLA gene- and

allele-specific expression from whole-transcriptome RNA-seq

data (11). It provides both HLA genotyping and allele-specific

expression quantification and has two pipelines options

implemented; one for the STAR mapper combined with

Salmon (73) for expression quantification and one for kallisto

pseudoaligner (74) providing both the HLA genotyping and

expression quantification. To reduce the possibility of multi-

mapping reads in the expression quantification step, HLApers

uses a personalized index, which comprises only the HLA allele

sequences carried by the individual. The personalized pipeline of

HLApers demonstrated several advantages such as higher

accuracy in read alignment, HLA allele-specific expression

quantification, and identification of causal eQTLs. A recent

study applied HLApers to measure allele-level expression of

HLA class I genes in unstimulated and stimulated PBMCs (30).

ArcasHLA, a python-based pipeline was initially developed

for HLA genotyping from RNA-seq reads using kallisto,

however, the authors later added the feature for allele-specific

expression quantification currently allowing both highly

accurate HLA typing and expression analysis (66). By using

this novel pipeline, the authors analyzed the clinical significance

of HLA class I LOH in multiple tumor types using public RNA-

seq data (75).

scHLAcount enables HLA allele-specific expression

quantification from single-cell RNA-seq (scRNA-seq) data

(67). The pipeline builds a personalized reference based on

prior HLA genotyping results and quantifies HLA expression

at the allele-level using UMIs. In contrast to the tools for bulk

RNA-seq data, scHLAcount provides an option to study HLA

allele-specific expression and HLA loss of heterozygosity (LOH)

at the single-cell resolution.

Although, these computational tools are advantageous by

enabling mining of existing RNA-seq datasets, they face similar

challenges as NGS-based HLA typing software with short RNA-

seq reads multi-mapping to several alleles or even genes due to

the high level of polymorphism and sequence similarity between

HLA genes potentially resulting in biased expression estimates.
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ONT’s long-reads spanning over several exons might reduce

ambiguous read alignment in expression quantification.

However, currently, there is only one public computational

tool, HLAXPress (9), in addition to Athlon2, for ONT long-

read RNA-seq data, allowing HLA allele-specific expression

quantification. The low throughput of ONT RNA-seq and low

number of publicly available ONT RNA-seq datasets have

potentially hindered the development of such tools (46).

Additionally, although ONT’s whole transcriptome data has

been sufficient for HLA gene-level expression analysis (10),

accurate allele-level expression quantification may require an

additional enrichment step to gain enough reads mapping to

HLA. Moreover, in contrast to short-read technologies, ONT

data has a higher error rate, which can hamper reliable UMI

counting and accurate HLA genotyping. Lower number of reads

and higher error rate are challenges that need to be considered in

the development of novel computational tools for ONT RNA-

seq. Table 2 presents some examples of the criteria and methods

in allele-specific expression quantification for different

methodological approaches.
HLA expression in human diseases

Despite being crucial for protective immunity against

various pathogens, the huge allelic variation of HLA is also

responsible for autoimmune reactivity (35). In addition to allele

polymorphisms as the susceptibility risk for autoimmune

diseases, there is increasing evidence of associations between

HLA expression and human diseases. However, in many cases

further studies are needed to confirm whether the expression

alone is the predisposing factor and how the regulatory variation

affects differential expression in diseases. Elevated HLA

expression levels have been associated with inflammatory

bowel diseases (56, 76), scleroderma patients with interstitial

lung disease (77), ankylosing spondylitis (78), Graves’ disease

(79), systemic lupus erythematosus (80), rheumatoid arthritis

(72), and multiple sclerosis (81). Additionally, in celiac disease

and type 1 diabetes, higher expression of DQA1*05 and

DQB1*02 alleles was found in patients when compared to

healthy controls (82, 83). There is evidence that also low HLA

expression predisposes to diseases. Decreased HLA expression

levels have been associated with cystic fibrosis (84),

immunoglobulin A nephropathy (85), end stage renal disease

and acute allograft rejection (86). In addition to multiple

autoimmune diseases, differential HLA expression has also

been associated with infectious diseases i.e. high HLA-C

expression in HIV viral control (42, 44, 56) and high HLA-A

expression in higher HIV viremia (87). For class II genes,

associations exist between high HLA-DP expression and in

hepatitis B virus infection (54) and reduced expression of

HLA-DR on monocytes and severity of COVID-19 disease

(88). Strong HLA expression is an important factor for anti-
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tumor immunity, and thus downregulation or loss of HLA

expression is a common immune escape mechanism in cancer

(21). Indeed, several studies have reported downregulation of

HLA expression in lung cancer (89, 90), gastric cancer (91),

classic Hodgkin lymphoma (92), and in Merkel cell carcinoma

(93). Due to the importance of HLA expression for immune

response against tumor cells, high HLA expression has been

associated with favorable outcomes and prolonged survival in

several cancers (94–97). Opposed to this, high expression of

non-classical HLA genes capable of suppressing immune

responses are shown to correlate with poor prognosis (98, 99).

In many disease studies, HLA expression has been determined

from blood, however, to study the role of allele-specific

expression in T cell maturation, the expression levels should

be measured also from thymus samples. A weaker self-antigen

presentation of low expression alleles could lead to impaired

negative selection of T cell clones further resulting in elevated

risks for the breakdown of tolerance and autoimmune diseases.
Role of HLA allele-specific
expression in HSCT

Although, HLA expression analysis is not considered in the

current donor-recipient matching, there is evidence for the

relevance of HLA allele-specific expression in HSCT. Several

studies have associated differential HLA allele-specific

expression with detrimental effects such as GvHD after the

HSCT (40, 41, 100). Mismatched HLA-C alleles with high cell

surface expression levels (mean fluorescence intensity) were

identified as the key determinants for the increased risk for

acute GvHD (aGvHD) and mortality indicating that high
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expression of patient’s allotypes enhances the graft-versus-host

recognition (40). In the study of Petersdorf et al. (40) particularly

the highly expressed C*14 allotype was associated with poor

outcome after HSCT and was thus considered as a non-

permissive mismatch. Another study also associated patient

mismatched C*14:02 with high risk of severe aGvHD, but

found no association between the HLA-C expression and the

HSCT outcome although the HLA-C*14 allotype was expressed

at the highest level (101). High allele expression predisposing to

aGvHD is also found in HLA-DPB1. Two studies demonstrated

that the risk of aGvHD was greater for patients with highly

expressed HLA-DPB1 alleles who received an HLA-DPB1

mismatched transplant from a donor with low expression

HLA-DPB1 alleles (41, 100). Therefore, in case no matched

donors are available, consideration of HLA expression could

enhance the donor selection by helping to avoid mismatching

against high-expression allele and thus lower the risks in HSCT.

Additionally, identified low expression alleles as tolerated

mismatches could broaden the donor pool. Interestingly, cell

surface expression of HLA-C allotypes is consistent across

populations denoting C*03 as low expression allele and C*14

as high expression allele (42). At the transcript level, there are

similar findings for the expression levels of these alleles (8, 11,

30). However, there are also conflicting reports (9, 14) suggesting

that allele-level expression is not necessarily universal and

possibly population-dependent at least to some extent.
Conclusions and perspectives

The advent of NGS technologies has revolutionized the

study of HLA expression. It has led to the rapid development
TABLE 2 Examples of different approaches in HLA allele-level expression quantification.

Approach Requirements Method in expression quantification References

Illumina bulk RNA-
seq and HLApers

Whole-transcriptome RNA-seq data
(paired end reads in fastq format)

HLA genotyping is first done by aligning RNA-seq reads against all known HLA allele
sequences.
HLA expression is estimated by aligning RNA-seq reads against a personalized index
containing references for individual-specific HLA alleles based on the genotyping
results.
HLA allele-specific expression is reported as the number of reads aligning to each
allele.

(11)

Illumina bulk RNA-
seq with UMIs and
HLAXpress

5’end RNA-seq data with UMIs (paired
end reads in fastq format)
Prior HLA genotyping of samples for the
personalized index

Expression levels are determined by first aligning RNA-seq reads against the reference
sequences of known HLA alleles carried by an individual and then by counting the
unique UMIs per each HLA allele.

(9)

ONT bulk RNA-seq
and Athlon2

Amplicon-based RNA-seq data with
UMIs tagged in the 5’end (ONT
1D reads in fastq format)

HLA genotyping is performed using the NGSengine bioinformatics pipeline and HLA
allele-specific expression is quantified with Athlon2 pipeline by counting the UMI-
tagged HLA-specific reads aligning to an allele.

(13)

Illumina scRNA-seq
with UMIs and
scHLAcount

Preferably 5’end RNA-seq data with
UMIs (aligned reads in BAM format, cell
barcodes)
Prior HLA genotyping of samples

Prior knowledge from genotyping is utilized to construct a personalized reference.
HLA allele-specific expression is determined by using pseudoalignment resulting in a
matrix with allele-specific UMI counts.

(67)
fr
UMI, unique molecular identifier; ONT, Oxford Nanopore Technologies.
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of RNA-seq based laboratory methods as well as computational

tools for HLA expression quantification ready to be applied to

existing datasets. As it can be challenging to obtain reliable

results due to the high polymorphism and high sequence

homology in HLA, many of the current methods rely on the

use of a patient-specific personalized index in the expression

quantification step. With continuous improvements in their

sequencing accuracy, long-read NGS technologies such as

ONT and PacBio could further increase the accuracy of HLA

allele-specific expression quantification. Earlier HLA expression

studies have mainly focused on quantifying HLA allele-specific

expression from bulk RNA-seq data. However, particularly with

class II genes, without information on the proportion of immune

cells in the sample, it is hard to tell whether the expression level

merely reflects the number of APCs in the sample. ScRNA-seq

methods capable of distinguishing HLA expression from single

cells enable more accurate comparisons between tissues and

samples. Furthermore, spatial RNA-seq methods allow

expression quantification between different cells in solid tissues

(102). These methods would permit the study of loss of HLA

expression in distinct spatial tumor clones. Determination of

HLA expression is important in the selection of immune cell

therapy. T-cell based therapies are dependent on strong HLA

expression (103), whereas natural killer cell -based therapies rely

on missing inhibitory ligands of killer-cell immunoglobulin-like

receptors on the cell surface (104). Since, the previous studies

have already demonstrated HLA allele-specific expression in

healthy PBMCs, the focus in the future should be in investigating

the role of HLA allele-specific expression in different tissues and

diseases and how the expression changes in response to different

stimuli and medications. Additionally, more information is

needed on the dynamic changes in expression of HLA alleles

over time from longitudinal samples from the same individual.

Finally, the expression regulation of specific HLA alleles is still

poorly understood. Therefore, by studying the methylation levels

or using the expression quantitative loci (eQTL) analysis

combining HLA expression together with data of non-coding

variation obtained from genome-wide association studies might
Frontiers in Immunology 06
help to find potential factors affecting HLA allele-specific

expression. By using scRNA-seq technology, the potential

eQTLs behind differential expression could be identified even

at the single-cell level.
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