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Synopsis Articulating structures, such as the vertebrate skeleton or the segmented arthropod exoskeleton, comprise a

majority of the morphological diversity across the eukaryotic tree of life. Quantifying the form of articulating structures

is therefore imperative for a fuller understanding of the factors influencing biological form. A wealth of freely available

3D data capturing this morphological diversity is stored in online repositories such as Morphosource, but the geometric

morphometric analysis of an articulating structure is impeded by arbitrary differences in the resting positions of its

individual articulating elements. In complex articulating structures, where the angles between articulating elements

cannot be standardized, landmarks on articulating elements must be Procrustes superimposed independently (locally)

and then recombined to quantify variation in the entire articulating structure simultaneously. Here, we discuss recent

advances in local superimposition techniques, namely the “matched local superimpositions” approach, which incorpo-

rates anatomically accurate relative sizes, positions, and orientations of locally-superimposed landmarks, enabling clearer

biological interpretation. We also use simulations to evaluate the consequences of choice of superimposition approach.

Our results show that local superimpositions will isolate shape variation within locally-superimposed landmark subsets

by sacrificing size and positional variation. They may also create morphometric “modules” when there are none by

increasing integration within the locally-superimposed subsets; however, this effect is no greater than the spurious

between-module integration created when superimposing landmark subsets (i.e., articulating elements) together.

Taken together, our results show that local superimposition techniques differ from conventional Procrustes superimpo-

sitions in predictable ways. Finally, we use empirical datasets of the skulls of wrasses and colubriform snakes to highlight

the promise of local superimpositions and their utility. Complex articulating structures must be studied, and the only

current solution to do so is local superimpositions.

Introduction

Since the “revolution” in morphometrics, geometric

morphometrics (GM) has provided organismal biol-

ogists with a powerful toolkit to visualize and quan-

tify the link between morphological disparity and

factors influencing biological form such as function,

ecology, and development (Rohlf and Marcus 1993;

Adams et al. 2004; Zelditch et al. 2004). Under the

“Procrustes Paradigm” (Adams et al. 2013),

Generalized Procrustes Analysis (GPA) is used to re-

move nonshape variation (position, orientation, and

scale) from landmark data by scaling all

configurations to unit centroid size, translating to a

common location, and rotating to minimize the

squared distance between each configuration and

the mean shape (Gower 1975; Rohlf and Slice

1990). This process allows pure shape variation be-

tween landmark configurations to be quantified and

compared to covariates of interest. GPA, however, is

limited to rigid structures; in an articulating struc-

ture with a mobile joint, arbitrary differences in the

resting position of separate articulating elements will

confound the biologically relevant landmark varia-

tion of interest (Fig. 1A) (Adams 1999). Yet, kinetic
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articulating structures, such as the skulls of fishes

and snakes, the limb segments of tetrapods, the

body segments of arthropods, the component parts

of flowers, even the entire vertebrate skeleton, com-

prise the majority of morphological diversity across

the eukaryotic tree of life. Developing ways in which

the form of articulating structures can be accurately

quantified is imperative for a comprehensive under-

standing of the evolution of morphological disparity.

Analyzing shape variation in the individual artic-

ulating elements separately is one solution (i.e., sta-

tistically linking their morphologies to covariates of

interest one-by-one), but it may be desirable to in-

vestigate shape variation of an articulating structure

in a common coordinate space. Adams (1999) devel-

oped the “fixed angle method”, eloquently extended

into three dimensions by Vidal-Garc�ıa et al. (2018)

(Fig. 1A). In fixed angle methods, variation due to

mobility (referred to as “preservational variation”

hereafter) is erased by standardizing the angle be-

tween the landmarks of articulating elements for all

observations, and then treating the modified land-

marks as a rigid structure during GPA. This may

be the best practice for GM analysis of simple artic-

ulating structures, like the cranium and mandible

(Adams and Rohlf 2000; Adams 2004; Davis et al.

2016) or limb segments (Vidal-Garc�ıa and Keogh

2017), because it maintains the relative sizes of ar-

ticulating elements while removing preservational

variation. However, the fixed angle method is limited

when considering complex articulating structures

(Box 1), where individual rigid elements articulate

with multiple other elements, possibly forming link-

age systems or with numerous joints at different

locations between observations. In these complex ar-

ticulating structures, for example, the kinetic linkage

system of a fish skull, individual articulating ele-

ments cannot be rotated to fixed angles while also

preserving their articulations because the relative size

of each rigid element determines its resting articula-

tion angle with the others (Fig. 1b).

Superimposing articulating elements separately

(i.e., “local” superimpositions), scaling each separate

fit to their relative sizes (i.e., the subset’s centroid

size divided by the total centroid size of all subsets,

possibly incorporating a priori user-defined weights

for each subset), and then concatenating the land-

marks into the same coordinate space are a conve-

nient and simple approach to analyze a complete

articulating system simultaneously, no matter the

complexity (Collyer et al. 2020). We refer to this

procedure as the “combined subsets” approach. In

this procedure, each landmark subset is rotated to

its principal axis and translated to the origin after

scaling, and then treated as an already-superimposed

rigid structure in subsequent analyses. Hellert (2019)

analyzed the separate limb elements of birds in a

common coordinate space by superimposing each

element separately and then concatenating the sepa-

rate superimpositions. However, unlike the com-

bined subsets approach, the individual

superimpositions were set apart along the X-axis so

that each limb element was located in a different

position. This enabled within- and between-module

landmark covariance to be considered at once while

also giving clarity during the visualization of results

from exploratory analyses of modularity. Rhoda

et al. (2021) presented another local superimposition

approach, where an anatomically accurate reference

landmark configuration was used as an anchor to

place locally-superimposed landmark subsets onto

their corresponding subset in the reference

Box 1. Definitions of relevant terms used in this paper

Complex articulating structure—An anatomical structure containing multiple mobile joints, the angles of which cannot be standardized

across all observations using fixed angle methods. Fixed angle methods are not applicable to these structures because either the articulating

elements form loops (i.e., 4-bar linkage systems in fishes, Fig. 1B), there are numerous rotational degrees of freedom conflating, or the joints

within the structure are located at different positions between observations.

Global superimposition—A Procrustes superimposition of an entire landmark configuration at once, for example, including landmark

subsets defining multiple hypothesized modules, or including landmark subsets from multiple articulating elements from an articulating

structure.

Local superimpositions—Any superimposition procedure that involves independently superimposing landmark subsets and concatenating

the independently-superimposed coordinates into a common coordinate space. The combined subsets approach (Collyer et al. 2020), Hellert’s

(2019) and the matched local superimpositions approach (Rhoda et al. 2021) are each local superimposition procedures that differ in the

relative sizes, positions, and orientations of the locally-superimposed landmark subsets. Local superimpositions are desirable because they

completely eliminate variation due to mobility in an articulating structure.
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configuration (Fig. 1c). This “matched local super-

impositions” procedure is similar to the combined

subsets approach but differs in that it places locally-

superimposed landmark subsets in a position and

orientation reflecting an anatomically accurate refer-

ence configuration rather than at the origin of the

coordinate system and aligned to their respective

principal axes.

These procedures for quantifying the shapes of

articulating structures have different strengths and

weaknesses, and each may be the best practice

depending on the system or question of interest.

Local superimposition methods differ from the fixed

angle method in the number of superimpositions

that are performed, which is significant because

GPA homogenously redistributes landmark variance

across a landmark configuration even when there is

none (Rohlf and Slice 1990). For example, consider

an ontogenetic sequence of a skull displaying positive

allometry in the length of the face but isometry in

Fig. 1 Articulating structures, with a mobile joint between articulating elements, should not be superimposed because arbitrary

differences in articulation angle mask “real” landmark variation. (A) Three pairs of triangles, with no shape differences, have a mobile

joint between the pairs causing their articulation angles to differ. A global superimposition with no modifications will create landmark

variation across the entire structure when there is only variation in the articulation angle. The fixed angle method prevents this by

standardizing the angle between all observations. (B) The fixed angle method is not applicable to complex articulating structures

because the articulation angles are a function of the position of joints and relative sizes and positions of each articulating element. The

4-bar linkage systems in wrasses is used to show how each link cannot be rotated to a fixed angle while also preserving their natural

articulations because these articulations are directly a product of each link’s relative size. (C) The matched local superimposition

approach captures shape variation within each articulating element and places this variation at the relative position, orientation, and

size of its corresponding element from a reference configuration. Each subset is individually superimposed with a GPA and “matched”

onto their corresponding subset from a reference configuration. There is only rotational and size variation in the top triangles, and only

shape variation in the bottom triangles. The matched local superimpositions procedure recovers the shape variation, or lack thereof, in

each set landmark subset
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the braincase. In this scenario, there is no “real”

shape variation in the braincase, but because there

is in the face the centroid positions will shift anteri-

orly through ontogeny, causing the braincases of

older skulls to be disproportionately smaller and

shifted posteriorly following a GPA. Such redistribu-

tion of variance is a particularly important concern

in the study of morphological integration and mod-

ularity (i.e., correlations between anatomical traits

and their assembly into semi-independently varying

clusters of traits, respectively, Olson and Miller 1958;

Wagner 1996) because it may dampen a modular

signal. Cardini (2019) demonstrated that a global

Procrustes superimposition produces covariation be-

tween landmark subsets when there is only isotropic

variation, causing statistical tests of morphological

integration to erroneously recover statistically signif-

icant integration between the subsets. Locally super-

imposing the modules eliminated this effect, but the

covariance structure is still altered within each lo-

cally-superimposed subset, and the extent to which

local superimpositions promote modularity is less

understood (Cardini 2019).

Interrogating the evolution of form in complex

articulating structures is necessary because of the

vast morphological diversity they represent, yet the

best way to analyze such structures has received little

attention. Here, we use simulations to consider the

strengths and weaknesses of local superimposition

procedures and highlight their utility with empirical

datasets of highly kinetic snake and wrasse skulls. We

also present preliminary analyses of the effect of local

superimpositions on the covariance structure of a

GM dataset and evaluate its implications for studies

of morphological integration and modularity.

Local and global superimpositions differ

in predictable ways

When an anatomical structure is composed of com-

ponent parts that are not spatially fixed, and either

do not articulate or form a complex articulating

structure, locally superimposing each component

and concatenating the shape variables is the only

current solution to consider the shapes of each com-

ponent simultaneously during analysis.

The matched local superimpositions procedure

incorporates information about the relative orienta-

tion, position, and scale of an anatomically realistic

reference landmark configuration (Fig. 1C) (Rhoda

et al. 2021). This procedure is a direct extension of

that advocated by Collyer et al. (2020) with relative

orientation and position of each subset included,

permitting clearer biological interpretation of

patterns of shape variation. R code for this proce-

dure is attached in the Supplementary data. The pro-

cedure first scales the reference configuration to unit

centroid size, translates to the origin, and calculates

the centroid sizes and centroid positions of each

landmark subset defined by the input partition (ef-

fectively retaining the proportional sizes of subsets as

in the combined subsets approach if each subset

weight ¼ 1). Landmark subsets should represent

the individual rigid articulating elements of an artic-

ulating structure (or the smallest potential module,

as discussed below). Each landmark subset is locally

superimposed using GPA, then scaled to the centroid

size, and translated to the centroid position of its

corresponding subset from the (scaled and trans-

lated) reference configuration. The locally-superim-

posed configurations are then rotated to minimize

the squared distance between the reference subset

and the mean shape of the locally-superimposed sub-

set. Because each observation is scaled, translated,

and rotated by the same amount, pure shape varia-

tion within each subset is preserved throughout the

procedure.

The matched local superimposition procedure

extracts the pure shape variation within each land-

mark subset and then places this variation at the

position, orientation, and scale defined by a refer-

ence configuration. This procedure is applicable to

any GM dataset as long as an anatomically-realistic

reference landmark configuration can be obtained.

The reference landmark configuration may be the

mean configuration of a global superimposition of

the raw landmark data if the raw landmark data are

in repeatable positions (with preservational variation

minimized, meaning that the mean configuration

will resemble the repeatable position). Alternatively,

the reference configuration may be from a single

specimen, for example, in its CT-scanned position.

The choice of reference configuration is consequen-

tial because the relative sizes of its subsets determine

the “importance” of each subset during analysis (i.e.,

a larger sized subset will account for proportionally

more total shape variation), so the reference config-

uration should be as anatomically realistic as possible

(Supplementary Fig. S1). When dealing with articu-

lating structures, no “true” position exists because

there is a mobile joint or joints (e.g., there is no

single “true” angle at which elements of a tetrapod

limb articulate, but many “natural” angles may exist;

Collyer et al. 2020), and thus, the fixed angle or

matched local superimposition procedures necessar-

ily incorporate semi-arbitrary choices on the relative

orientations of landmark subsets. Additionally, by

anchoring each subset to an anatomically realistic
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Fig. 2 Simulating positional and shape variation in a complex articulating structure demonstrates that global superimpositions maintain

positional variation, whereas local superimpositions isolate pure shape variation within each locally-superimposed landmark subset.

Simulation I: (A) Midpoints (in gray), representing the joint between four “articulating elements,” were randomly simulated in a

restricted location within a square, simulating positional variation (B). (C) Correlated shape variation (stronger covariation within each

articulating element, represented by color) was introduced to create the full simulated dataset (D), and a (E) global and (F) matched

local superimpositions were then applied to visualize the patterns and magnitudes of landmark variation each superimposition pro-

cedure captures. Simulation II: (H) The simulation was repeated with two adjacent squares, with correlated shape variation introduced

between squares, represented by color. The “boxes” and “corners” labels denote the competing hypotheses of modularity. Each

column and row in the VCV matrices represent a shape variable (i.e., the x or y value of a landmark). Lighter colors of cells represent

values closer to zero and darker colors (red or blue) represent values farther away from one (i.e., stronger (co)variance between

variables). Visualization of the VCV matrices reveals that local superimpositions capture the introduced shape variation and that the

global superimposition maintains the positional variation but spreads it across the entire landmark configuration. (I) VCV matrix of just

the positional variation created by randomly sampling midpoints. The two blue squares in the VCV matrix correspond to the separate

boxes. (J) VCV matrix of just the simulated shape variation. (K) VCV matrix of the full simulated dataset before any superimposition.

(L) VCV matrix after a global superimposition. (M) VCV matrix after matched local superimpositions

D. Rhoda et al.1896



reference configuration, the matched local superim-

positions procedure allows users to visualize shape

variation with each element in a homologous posi-

tion and orientation, facilitating biological interpre-

tation. The landmark subsets may overlap at times

(especially in particularly variable datasets) and will

only articulate perfectly in the reference configura-

tion, because their positions and orientations are

fixed but shapes vary (see the bottom triangle in

the product of the matched local superimpositions

in Fig. 1C).

Simulation I

Local superimposition procedures will sacrifice the

positional and relative size variations between obser-

vations in favor of pure shape variation (Baab 2013).

We demonstrate this point by performing simula-

tions on an artificial linkage system: a square with

4 sets of equally-spaced landmarks connecting each

vertex to a point within the square. Inside of this

square, we randomly sampled 500 “midpoints”

within a restricted location. For each replicate, we

placed 3 equally-spaced landmarks between each ver-

tex and the midpoint. By randomly sampling mid-

points before calculating equally-spaced landmarks,

the relative sizes and positions of each set of

equally-spaced landmarks for each replicate depend

on the midpoint location (Fig. 2A, B), just as how

the resting articulation angles in the 4-bar linkage

systems of wrasse depend on the relative sizes and

positions of its constituent bones (Fig. 1B). In this

analogy, the sets of equally-spaced landmarks repre-

sent articulating elements, each connected to a com-

mon joint represented by the midpoint. This design

is meant to simulate the relative size and positional

variation that exists in a complex articulating struc-

ture completely independent of shape or preservatio-

nal variation. We used the “mvrnorm” function in

the R package MASS (Ripley et al. 2013) to intro-

duce simulated shape variation, drawn from a nor-

mal distribution, with a variance–covariance (VCV)

matrix constructed that induced covariation within

the sets of equally-spaced landmarks but not between

(Fig. 2C). We then rotated the direction of variation

within each landmark by a random angle because the

“mvrnorm” function induces covariation in a com-

mon direction, which would immediately be re-

moved during the translation step of a GPA.

Neither positional nor shape variation was added

onto any of the 4-vertex landmarks so that the full

simulated dataset represented a “natural” superim-

position from which we could observe the true pat-

terns of landmark covariation before any

superimpositions (Fig. 2D; Goswami et al. 2019).

Finally, we applied a global superimposition and

matched local superimpositions to the full simulated

dataset with the midpoints removed, each set of

equally-spaced landmarks as subsets, and the mean

configuration from the global superimposition as

reference. The matched local superimpositions

should extract only the simulated shape variation,

whereas the global superimposition should preserve

the simulated positional and size variation intro-

duced by modifying the midpoint location.

The global superimposition preserves the simu-

lated positional variation but distributes much of it

onto the 4 vertex landmarks, which each have rect-

angular landmark scatters (Fig. 2E). These rectangu-

lar scatters are created because the centroids of each

configuration change as a function of the simulated

positional variation more than they do because of

shape variation, such that during the translation

step of the global superimposition the entire config-

urations will be translated predominantly based on

each replicate’s random midpoint location.

Conversely, as predicted, the matched local superim-

positions better reflect the shape variation (Fig. 2F).

The directions of shape (co)variation are affected by

both superimpositions, but especially by the local

superimpositions. The local superimpositions distrib-

ute variance within each subset rather than the whole

configuration, shown by the ellipsoidal scatters

around the vertex landmarks. Because covariation

was introduced within each subset, centroid posi-

tions vary slightly between observations in a consis-

tent way, creating the ellipsoidal scatters in the

vertices via the same mechanism by which the global

superimposition creates rectangular scatters. Another

key difference shown in these simulations is that lo-

cal superimpositions will have a lower absolute var-

iance because each local superimposition

incorporates fewer landmarks than a global superim-

position, resulting in tighter fits than if all landmarks

were considered (Fig. 2G) (Collyer et al. 2020).

Simulation II

To statistically analyze the effect that global versus

local superimpositions have on the inference of pat-

terns of positional and size variation versus shape

variation, we conducted a second version of the

“square” simulation. This version used 2 squares ad-

jacent to one another and simulated covariation

within the equally-spaced landmarks from the same

vertices and between the equally-spaced landmarks

from similar corners of the different boxes

(Fig. 2H). We visualized the VCV matrices of the
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simulated data at each step of the experiment and

tested 2 a priori hypotheses of modularity on both

the globally and locally-superimposed data (Fig. 2I–

M). We measured modularity using the Covariance

Ratio (CR) in geomorph, which is a ratio of between-

module integration to within-module integration,

and its effect size (ZCR), where lower values reflect

stronger modular signals (Adams and Ot�arola-

Castillo 2013; Adams 2016; Adams and Collyer

2019). The “boxes” hypothesis of modularity pro-

posed the 4 sets of equally-spaced landmarks from

the different boxes as 2 separate modules and the

“corners” hypothesis proposed that the equally-

spaced landmarks from the same corner of the sep-

arate boxes were modules (4 modules). The “boxes”

hypothesis should be more supported after a global

superimposition because it preserves relative size and

positional variation, whereas the “corners” hypothe-

sis should gain more support in the matched local

superimpositions because it favors within-module

pure shape variation.

As predicted, the “boxes” hypothesis is supported

in the global superimposition (CR ¼ 0.861,

P¼ 0.004, ZCR ¼ –2.444) but not the local superim-

position dataset (CR ¼ 0.9616, P¼ 0.274, ZCR ¼ –

0.648). Both superimposition procedures showed

support for the “corners” hypothesis, but the local

superimpositions procedure recovered a much lower

CR value than the global superimpositions despite

their having similar effect sizes (global: CR ¼
0.625, P¼ 0.001, ZCR ¼ –5.494; local: CR ¼ 0.064,

P¼ 0.001, ZCR ¼ –6.15). This is because there is a

lower absolute variance in the local superimposi-

tions, as discussed above, indicating that ZCR values

should not be directly compared between superim-

position procedures. However, the relative order of

support of competing hypotheses can be compared

between different procedures. This point is especially

important because it means that locally-superim-

posed subsets should represent the smallest possible

modules, because modules would be both locally and

globally superimposed if not. Visual inspection of

the VCV matrices further demonstrates the effect

that the choice of superimposition can have on the

covariance structure of a GM dataset (Fig. 2I–M).

The local superimposition VCV matrix is nearly

identical to the shape only VCV matrix, differing

only in that the vertex landmarks now covary with

their corresponding equally-spaced landmarks. The

global superimposition VCV matrix differs dramati-

cally from the full simulated VCV as well as both

position- and shape-only VCV matrices. The shape

covariation is subtly visible in the global VCV matrix

but is overshadowed by the homogenously

redistributed variance. Altogether, these simulations

validate our expectations and illustrate the primary

differences between global versus local

superimpositions.

The utility of local superimpositions,

examples from wrasses and snakes

We present 2 empirical examples to demonstrate the

promise of local superimpositions in analyzing complex

articulating structures, the jaws of aquatic-foraging

snakes (colubriform species from Rhoda et al. 2021;

non-colubriforms were excluded because of significant

structural changes that are beyond the scope of this

study; Cundall and Irish 2008), and the skulls of wrasses

(Evans et al. 2019). The snake dataset contains 1335

total landmarks and 29 species, and the wrasse dataset

contains 178 landmarks and 30 species. Semi-landmarks

in both datasets were slid by minimizing bending en-

ergy (Gunz et al. 2005). Both represent complex artic-

ulating structures unsuitable for the fixed angle method

because the bones articulate to form linkage systems

where natural articulation angles depend on the relative

sizes and positions of the constituent bones. The pres-

ervational variation is small in comparison to the inter-

specific positional and rotational variation captured in

the datasets; the bones still articulate, there are many

soft tissue connections reducing preservational varia-

tion, and each specimen in both datasets was in a neu-

tral resting position by ensuring the mouths were closed

with no visible deformation in the overall configuration

of the skull prior to landmark placement. Because both

datasets contain morphologically variable species argu-

ably in homologous positions, the major axes of shape

variation after a global superimposition should still re-

flect the prominent patterns of interspecific shape var-

iation within the datasets. Although these axes may not

be exactly the same as if there was no preservational

variation, if the biologically noteworthy variation is

greater than this preservational variation, the global su-

perimposition can be compared with a local superim-

position procedure to better understand how the

exclusion of relative size and positional variation affects

results in an empirical dataset. We globally superim-

posed each dataset as if it was a rigid structure and

then locally superimposed it using the matched local

superimposition approach with the mean configuration

from the global superimposition as the reference. We

visualized the major axes of shape variation using prin-

cipal components analysis (Fig. 3). To mathematically

compare how species are distributed throughout mor-

phospace of the alternative superimposition methods,

Procrustes distance (dissimilarity) matrices were calcu-

lated for each superimposition method and compared

D. Rhoda et al.1898



with a Mantel test (Smouse et al. 1986) for both data-

sets. To determine how these different superimpositions

affect the inference of modularity in empirical datasets,

we directly compared alternative hypotheses of modu-

larity that would be expected in certain functional or

developmental contexts using the CR in a phylogenetic

framework (Pyron and Burbrink 2014; Adams 2016;

Aiello et al. 2017; Adams and Collyer 2019;

Supplementary Fig. 2).

As expected, the major axes of shape variation in

the global superimposition recovered variation in the

relative sizes and positions of the component parts

of the skulls, whereas the local superimpositions em-

phasized pure shape variation within each part

(Fig. 3). In the wrasse dataset, PC1 captures 41.1%

of the variance, with narrow and elongated skulls at

the negative side of the axis and shorter, dorso-

ventrally inflated skulls at the positive end

Fig. 3 Patterns of landmark variation along principal components 1 and 2 of the local and global superimpositions in (A) wrasses and

(B) colubriform snakes. Landmark configurations represent the extremes of the PC axes with a mesh warped to its shape.

Configurations from the global superimposition are on blue backgrounds and local superimposition configurations are on orange

backgrounds
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(Fig. 3A). The orientation of the mouth (maxilla,

premaxilla, dentary, angular) and position of the

pharyngeal jaw varies along PC2 (15% of shape var-

iation). In the wrasse local superimpositions dataset,

dorso-ventral elongation of the neurocranium drives

shape variation along PC1 (34.7% of variation),

while the length of the supraoccipital crest varies

along PC2 (14.3% of variation) (Fig. 3A).

A more posteriorly rotated quadrate, slender max-

illa, and dorsally concaved mandible are observed at

the negative end of PC1 (40.7% of variation) in the

snake global superimposition dataset. Along PC2

(14% of variation) the latero-medial orientation of

the mandible and maxilla varies, as well as the slen-

derness of the supratemporal (Fig. 3B). Besides pos-

terior rotation of the quadrate in PC1 (34% of

variation) and orientation of the mandible and max-

illa in PC2 (13.7% of variation), the patterns of

shape variation in the local superimpositions dataset

mimic those that are found in the global superim-

positions (Fig. 3B).

In both the wrasse and snake datasets, species are

distributed along PC1 in similar ways regardless of

superimposition type; this is also true for PC2 in the

snake dataset (Supplementary Figs. S3–S6). Pure

shape variation within landmark subsets is intimately

related to the positional variation captured in the

global superimpositions. Wrasse skulls at PC1þ
would not be elongated dorsoventrally if not for

the depth of the neurocranium, and the snake quad-

rates would not be posteriorly rotated at PC1� if

they were not slender and elongated. This does not

mean that pure shape and positional variation are

always related, but in an empirical dataset, it is likely

that the factors driving positional variation are also

imprinting as pure shape variation, allowing these

factors to be linked to morphology during the anal-

ysis of a local superimposition dataset. This is cor-

roborated by the Mantel test results, which showed

high correlations between superimposition methods

(snakes: r¼ 0.853, wrasses: r¼ 0.847), indicating that

species are distributed across the morphospaces in

similar ways.

The results from the modularity analyses support

this assertion. In the wrasse dataset, the different

superimposition procedures recovered the greatest

support for the same hypothesis of modularity, and

in the snake dataset, similar relative support for al-

ternative hypotheses was found as well (Tables 1 and

2). The hypothesis of complete modularity (all land-

mark subsets as separate modules) was most sup-

ported in the wrasse dataset and the 2-module

hypothesis of the mandible, quadrate, and maxilla

as a module separate from the rest of the

configuration was most supported in the snake data-

set. In the snake dataset, the 2-module hypothesis of

the mandible, quadrate, and maxilla separate from

the rest of the configuration received the least

amount of support in the global superimposition

dataset but was the most supported in the matched

local superimpositions. This is likely because the po-

sition and orientation of the maxilla is in part de-

pendent on that of the rest of the upper jaw through

its medial joints with the palatine and ectopterygoid

(Fig. 3B), but its shape variation is co-adapted with

the mandible to accommodate certain prey items

and foraging strategies (Savitzky 1983). In this case,

the global superimposition recovers positional varia-

tion and the local superimpositions recovers only

shape variation, consistent with expectations from

the square simulations (Fig. 2). Interestingly, in the

snake dataset, the CR values of each hypothesis are

larger in the global superimposition dataset, whereas

in the wrasse dataset, the CR values are smaller in

the global superimposition dataset (besides the hy-

pothesis of complete modularity). This result indi-

cates that even if local superimpositions promote

modularity or global superimpositions promote in-

tegration (Cardini 2019, and further discussed be-

low), in an empirical dataset these effects do not

necessarily overshadow the potentially different

“true” patterns of covariance in positional versus

pure shape variation. These examples show that in

an empirical dataset, results from local superimposi-

tions will differ from global superimpositions in pre-

dictable ways, concordant with the box simulations.

All superimpositions modify covariance

structure

Complex articulating structures are excellent systems

for the study of morphological integration and mod-

ularity because they are composed of articulating

parts that may have distinct developmental origins

and that may work in concert to fulfill their func-

tions (Hallgr�ımsson et al. 2009). Local superimposi-

tions allow us to place the shape variations of these

component parts in a common coordinate space,

facilitating the simultaneous analysis of within- and

between-module covariance. Understanding how lo-

cal superimpositions disrupt the statistical inference

of modularity is therefore an important consider-

ation. Global superimpositions can create covariation

between landmark subsets (i.e., modules, articulating

elements) when there is only random isotropic var-

iation, leading to spurious results in integration tests

(Cardini 2019). Locally superimposing each module

removes this erroneous between-module integration,
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but the integration-inducing aspects of GPA that

cause erroneous results in the global superimposition

persist within each locally-superimposed landmark

subset. Local superimpositions may promote modu-

larity either by increasing within-module covariance

or reducing between-module covariance associated

with size (Cardini 2019).

To investigate how the choice of superimposition

influences tests of modularity, we simulated both

isotropic noise and modular variation on two land-

mark configurations: (1) a set of 6 triangles, each

representing a module and (2) the Type I landmarks

from the mean shape of the snake dataset with each

articulating element as a module (Tables 3 and 4).

For each module, simulated covariance was greater

within the subset than between it and other subsets,

and within-landmark variation for each landmark

was larger than covariation with any other landmark.

We applied a global superimposition, matched local

superimpositions, and local superimpositions using

the “combine.subsets” function in geomorph (with

the “weights” and “CS.sets” parameters set to

NULL so that the relative sizes from the input sub-

sets were preserved, as in the matched local super-

impositions) to both datasets for both models of

landmark covariance. For all datasets, we tested the

a priori hypothesis of each landmark subset as a sep-

arate module using the CR. We used 2-block partial

least-square analyses to test the magnitude of

between-module integration (the averaged effect

size, ZPLS, between each module, Rohlf and Corti

2000; Adams and Collyer 2016), and relative eigen-

value variance (Pavlicev et al. 2009; Machado et al.

2019) to assess the magnitude of within-module in-

tegration. The less a superimposition procedure

alters the covariance structure of a dataset, the

more its results should match results from the nat-

ural superimposition. We used Mantel tests to sta-

tistically compare the Procrustes distance matrices of

the global and matched local superimpositions of

each simulated dataset. We found that in both data-

sets when isotropic noise is simulated, a strong mod-

ular signal is recovered in both local superimposition

procedures (Table 3). A weak but significant modu-

lar signal is recovered in the global superimposition

of the triangle dataset. When landmark variation is

simulated, the centroid positions and sizes of each

subset will change slightly, even when randomly ro-

tating the directions of covariance. During local

superimpositions of these subsets, each observation

will be scaled and translated to a common size and

position, creating covariation within the subsets but

Table 1 Results of modularity analyses of the wrasse dataset

Wrasse dataset
Global Local

Hypothesis CR P-value ZCR CR P-value ZCR

[premaxilla, angular, dentary, pharyngeal jaw, maxilla] þ other 0.901 0.001 –7.328 0.955 0.039 –2.139

[nasals, neurocranium] þ other 0.864 0.001 –8.897 0.963 0.062 –1.722

[nasals, neurocranium] þ [premaxila, angular, dentary, maxilla] þ other 0.826 0.001 –10.431 0.875 0.001 –5.958

Complete modularity 0.757 0.001 –10.759 0.653 0.001 –9.661

Darker green cells denote lower effect sizes and a stronger modular signal. “Other” refers to a module of all bones not mentioned

Table 2 Results of modularity analyses of the colubriform snake dataset

Colubriform snake dataset
Global Local

Hypothesis CR P-value ZCR CR P-value ZCR

mandible þ other 0.828 0.001 –28.172 0.626 0.001 –20.627

[mandible, quadrate, supratemporal] þ other 0.691 0.001 –30.371 0.680 0.001 –22.937

[mandible, quadrate, maxilla] þ other 0.895 0.001 –27.127 0.672 0.001 –23.056

[mandible] þ [quadrate, supratemporal] þ other 0.695 0.001 –29.992 0.649 0.001 –21.719

[mandible, quadrate, supratemporal] þ maxilla þ other 0.671 0.001 –29.510 0.639 0.001 –20.266

[dentary, maxilla] þ [compound, quadrate, supratemporal] þ other 0.663 0.001 –30.188 0.620 0.001 –22.699

[mandible] þ [quadrate, supratemporal] þ [ectopterygoid, pterygoid, palatine] þ
maxilla

0.658 0.001 –29.909 0.616 0.001 –21.402

Complete modularity 0.571 0.001 –28.683 0.531 0.001 –18.557

The dentary and compound bones are referred collectively as the mandible. “Other” refers to a module of all bones not mentioned
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not between because each subset is superimposed

separately (Goswami et al. 2019). This is supported

by the eigenvalue variance results, which showed that

the average overall magnitude of integration within

each module is greater in the local superimposition

datasets than in the natural or global superimposi-

tion datasets (Tables 3 and 4). In the absence of any

covariation, this creates a strong modular signal, but

it is important to note that this is an unrealistic

expectation for empirical datasets because morpho-

logical integration is ubiquitous in biological systems

(Wagner et al. 2007). Our isotropic noise simula-

tions are only used to demonstrate that the

integration-inducing aspects of GPA highlighted by

Cardini (2019) may promote modularity when using

local superimpositions by increasing within-module

integration. Along these lines, by homogenously

redistributing variance across entire landmark con-

figurations, global superimpositions inflated the de-

gree of between-module integration in both datasets

and models of variation, corroborating these trou-

bling findings (ZPLS values, Tables 3 and 4). All su-

perimposition procedures maintained the simulated

modular variation (Table 4), with all ZCR values be-

ing similar to the natural superimposition effect

sizes. The matched local superimpositions procedure

produced CR values nearly identical to the natural

superimposition values, and the global and com-

bined subset approaches recovered marginally larger

CR values, suggesting greater between-module

covariation.

Despite these discrepancies in covariance struc-

ture, results from Mantel tests showed that the global

and matched local superimpositions Procrustes dis-

tance matrices were all highly correlated (triangle

isotropic: r¼ 0.928, snake isotropic: r¼ 0.843, trian-

gle modular: r¼ 0.993, snake modular: r¼ 0.966),

meaning that the distances between species in mor-

phospace are similar between the two superimposi-

tion methods.

Taken together, these preliminary findings suggest

that all three superimposition procedures tested here

may lead to the recovery of erroneous patterns of

integration. The local superimposition procedures

both promote modularity when there is only isotro-

pic noise because they increase within-module inte-

gration (without necessarily increasing between-

module integration) in the same way that global

superimpositions create whole-configuration integra-

tion when there is none. The global superimpositions

increase between-module integration both under iso-

tropic and modular variations. Importantly, the iso-

tropic variation modeled here is not realistic, so the

extent to which local superimpositions promote

Table 3 Integration test results from the isotropic noise simulations

Isotropic noise

Datasets
Triangles Snakes

CR P-value ZCR Mean zPLS REV CR P-value ZCR Mean zPLS REV

Natural superimposition 1.007 0.144 –1.068 –2.295 0.049 1.069 0.883 1.174 0.867 0.05

Global superimposition 0.971 0.003 –2.999 3.043 0.053 1.042 0.396 –0.223 2.056 0.056

Matched local superimpositions 0.444 0.001 –13.883 –0.719 0.105 0.296 0.001 –7.543 1.243 0.165

Combined subsets 0.512 0.001 –14.845 0.157 0.093 0.340 0.001 –6.275 1.448 0.15

Note that a higher relative eigenvalue variance value corresponds to a higher degree of morphological integration. Different colors correspond

to the different landmark subsets that are locally superimposed in the matched local superimpositions and combined subsets approaches, as well

as the patterns of simulated modular variation. REV: relative eigenvalue variance

Table 4 Integration test results from the modular variation simulations

Modular variation

Datasets
Triangles Snakes

CR P-value ZCR Mean zPLS REV CR P-value ZCR Mean zPLS REV

Natural superimposition 0.067 0.001 –11.408 –1.29 0.676 0.0653 0.001 –9.194 0.28 0.637

Global superimposition 0.102 0.001 –11.088 2.59 0.668 0.121 0.001 –8.355 2.657 0.596

Matched local superimpositions 0.064 0.001 –10.606 –0.21 0.67 0.070 0.001 –10.285 –0.248 0.516

Combined subsets 0.105 0.001 –10.544 –1.12 0.695 0.082 0.001 –11.014 –0.373 0.506

Note that a higher relative eigenvalue variance value corresponds to a higher degree of morphological integration. Different colors correspond

to the different landmark subsets that are locally superimposed in the matched local superimpositions and combined subsets approaches, as well

as the patterns of simulated modular variation. REV: relative eigenvalue variance
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modularity when faced with heteroscedastic or

completely integrated variation is an area for future

research.

Conclusions

Local superimpositions are essential for the morpho-

metric analysis of complex articulating structures.

These systems range from the linkage systems com-

posing the hyperkinetic skulls of snakes or fishes as

presented here, to the carpals and tarsals of tetrapod

appendages, to the feeding apparatuses of insects, to

a myriad of other biological systems. The promise of

local superimpositions is particularly exciting as it

may be the only means for whole-body GM analysis

in a common coordinate space for some organisms,

for instance, in the skeletons of felids (Randau and

Goswami 2018) or birds (Bjarnason and Benson

2021). Further, leveraging the wealth of freely avail-

able 3D data within online repositories such as

Morphosource, Phenome10k, MorphoMuseuM, and

others (Boyer et al. 2016; Lebrun and Orliac 2016)

will expedite comparative studies of phenotypic evo-

lution in complex articulating structures.

There are key differences between local and global

superimpositions. Local superimpositions will have a

lower absolute variance and only consider pure

shape variation within subsets, whereas global super-

impositions maintain the relative size and positional

variation between subsets. Importantly, as demon-

strated using simulations, these differences are pre-

dictable, and although it is true that positional and

relative size variation is lost in a local superimposi-

tion approach, the incorporation of this information

during a global superimposition actually confounds

the pure shape variation within potential modules.

Because relative size and positional variation between

modules is maintained, analyses of modularity

within a global superimposition are analyzing covari-

ation in form, not pure shape. Thus, when analyzing

a modular rigid structure, these different approaches

may be used jointly to better understand how the

inclusion of positional and size variation between

modules or the emphasis of pure shape affects the

inference of modularity and the processes that gen-

erate these patterns. Unlike rotation and position,

relative size variation of landmark subsets between

observations is independent of preservational varia-

tion. Development of local superimposition proce-

dures that maintain this size variation (as fixed

angle methods do) while also fixing angles between

component parts of a complex articulating structure

(e.g., “iterative rearticulations” and “superimposed

centroids” approaches in Rhoda et al. 2021) should

be an avenue for future research.

Local superimpositions may induce a modular sig-

nal when there is none, but this is likely less of a

concern in empirical datasets with anisotropic pat-

terns of variation. Moreover, this concern does not

appear to be any more severe than how global super-

impositions promote between-module integration

when there is none, as both of these modifications

to the covariance structure spring from the same

processes inherent to any GPA. Further development

of superimposition methods assuming more biolog-

ically realistic models of covariance will alleviate

these concerns.

Ultimately, any quantitative analysis of morpho-

logical integration is an imperfect estimation of the

processes that produce relationships among traits;

local superimpositions facilitate these analyses in ki-

netic articulating structures with predictable conse-

quences. Taken together, these findings demonstrate

that local superimpositions enable the morphometric

analysis of complex articulating structures.
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