

Draft Genome Sequence of *Methylosinus* **sp. Strain 3S-1, an Isolate from Rice Root in a Low-Nitrogen Paddy Field**

Zhihua Bao,* Ryo Shinoda, Kiwamu Minamisawa

Graduate School of Life Sciences, Tohoku University, Sendai, Japan

* Present address: Zhihua Bao, College of Environmental Science and Resources, Inner Mongolia University, Inner Mongolia, China.

Z.B. and R.S. contributed equally to this article.

N2-fixing methanotrophs play an important role in the methane-nitrogen cycle in rice paddies. We report here the draft genome sequence of *Methylosinus* **sp. strain 3S-1 isolated from rice root in a paddy field without N fertilizer input.**

Received 11 July 2016 **Accepted** 18 July 2016 **Published** 1 September 2016

Citation Bao Z, Shinoda R, Minamisawa K. 2016. Draft genome sequence of *Methylosinus* sp. strain 3S-1, an isolate from rice root in a low-nitrogen paddy field. Genome Announc 4(5):e00932-16. doi:10.1128/genomeA.00932-16.

Copyright © 2016 Bao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Kiwamu Minamisawa, kiwamu@ige.tohoku.ac.jp.

Methane, a greenhouse gas, is emitted into the atmosphere through paddy rice plants (1) . The methanotrophs in rice roots $(2, 3)$ $(2, 3)$ $(2, 3)$ contribute to methane consumption $(4, 5)$ $(4, 5)$ $(4, 5)$. Most methanotrophic bacteria possess nitrogen fixation genes and are able to fix N_2 under laboratory conditions [\(6\)](#page-1-2). A recent metaproteomic study [\(7\)](#page-1-3) strongly suggested that type II methanotrophs, including *Methylosinus* spp., mediate both CH₄ oxidation and N₂ fixation in the root tissues of rice plants grown in a paddy field without nitrogen fertilization input. In addition, the *Methylosinus* genus was significantly abundant in rice root in the paddy field by metagenome analyses [\(8\)](#page-1-4).

Rice roots (*Oryza sativa* L. cv. Nipponbare) grown in a low-N paddy field of Kashimadai Experimental Station (Tohoku University, Japan $[38°27'37''N$ and $141°5'33''E]$) were surface sterilized with 1% (wt/vol) NaOCl solution (August 2012). The root segments were placed on nitrate mineral salts (NMS) agar medium [\(9\)](#page-1-5) and incubated at 30°C in chambers charged with 40% (vol/vol) $CH₄$ in the air. Single-colony isolation on the plates was repeated several times in intervals of 2 to 4 weeks. The cells from the resultant single colonies were serially diluted from 10-1 to 10-10 in liquid NMS medium and then cultivated under 40% (vol/vol) $CH₄$ in the air, which was repeated three or four times by using the highest dilutions. Among the resultant methanotrophs, we finally obtained strain S3-1 of *Methylosinus*.

The genomic DNA of *Methylosinus* sp. 3S-1 was sequenced by using paired-end sequencing with an Illumina MiSeq sequencer (New England BioLabs, Ipswich, MA, USA). Raw reads were trimmed and *de novo* assembled using the CLC Genomics Workbench version 8.5.1 (Qiagen, Valencia, CA, USA). The parameters for trimming were as follows: ambiguous limit, 2; quality limit, 0.05; number of $5'$ -terminal nucleotides, 20; number of $3'$ terminal nucleotides, 5. The parameters for the *de novo* assembly were as follows: mapping mode, create simple contig sequences (fast); bubble size, 50; word size, 21; minimum contig length, 1,000 bp; perform scaffolding, no; autodetect paired distances, yes.

The draft genome of *Methylosinus* sp. 3S1 was assembled into

159 contigs, with an accumulated length of 4,762,464 bp $(N_{50}$, 73,505 bp) and an average $G+C$ content of 65.9%. The genome was annotated by the NCBI Prokaryotic Genome Annotation Pipeline (PGAP, version 3.3) (http://www.ncbi.nlm.nih.gov /genome/annotation_prok), and a total of 4,188 coding sequences (CDSs), 3 rRNAs, and 48 tRNAs were predicted.

The genome contained *pmoCAB* genes encoding particulate methane monooxygenase and *mmoRGXYBZDC* genes encoding soluble methane monooxygenase. The genome also contained *nif-HDKENSU* genes for nitrogenase and its related functions, suggesting that strain 3S-1 potentially fixes atmospheric N_2 . Examination of N_2 fixation and CH₄ oxidation of strain 3S-1 could contribute to our understandings of the CH4-N cycle in the rice roots in paddy field ecosystems.

Accession number(s). This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. LXWX00000000. The version described in this paper is the first version.

ACKNOWLEDGMENT

We thank Kaori Kakizaki-Chiba (Tohoku University) for genome sequencing.

FUNDING INFORMATION

This work, including the efforts of Kiwamu Minamisawa, was funded by Ministry of Education, Culture, Sports, Science, and Technology (MEXT) ((A) 23248052 and (A) 26252065).

REFERENCES

- 1. **Nouchi I, Mariko S, Aoki K**. 1990. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol **94:** 59 –66. http://dx.doi.org/10.1104/pp.94.1.59.
- 2. **Bao Z, Watanabe A, Sasaki K, Okubo T, Tokida T, Liu D, Ikeda S, Imaizumi-Anraku H, Asakawa S, Sato T, Mitsui H, Minamisawa K**. 2014. A rice gene for microbial symbiosis, *Oryza sativa CCaMK*, reduces CH₄ flux in a paddy field with low nitrogen input. Appl Environ Microbiol **80:** 1995–2003. http://dx.doi.org/10.1128/AEM.03646-13.
- 3. **Eller G, Krüger M, Frenzel P**. 2005. Comparing field and microcosm

experiments: a case study on methano- and methylo-trophic bacteria in paddy soil. FEMS Microbiol Ecol **51:**279 –291. http://dx.doi.org/10.1016/ j.femsec.2004.09.007.

- 4. **Holzapfel-Pschorn A, Conrad R, Seiler W**. 1986. Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil **92:** 223–233. http://dx.doi.org/10.1007/BF02372636.
- 5. **Minamisawa K, Imaizumi-Anraku H, Bao Z, Shinoda R, Okubo T, Ikeda S**. 2016. Are symbiotic methanotrophs key microbes for N acquisition in paddy rice root? Microbes Environ **31:**4 –10. http://dx.doi.org/10.1264/ jsme2.ME15180.
- 6. **Auman AJ, Speake CC, Lidstrom ME**. 2001. *nifH* sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol **67:** 4009 –4016. http://dx.doi.org/10.1128/AEM.67.9.4009-4016.2001.
- 7. **Bao Z, Okubo T, Kubota K, Kasahara Y, Tsurumaru H, Anda M, Ikeda S, Minamisawa K**. 2014. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol **80:**5043–5052. http://dx.doi.org/10.1128/ AEM.00969-14.
- 8. **Ikeda S, Sasaki K, Okubo T, Yamashita A, Terasawa K, Bao Z, Liu D, Watanabe T, Murase J, Asakawa S, Eda S, Mitsui H, Sato T, Minamisawa K**. 2014. Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes Environ **29:**50 –59. http://dx.doi.org/10.1264/jsme2.ME13110.
- 9. **Whittenbury R, Phillips KC, Wilkinson JF**. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol **61:** 205–218. http://dx.doi.org/10.1099/00221287-61-2-205.