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SUMMARY

Single-cell RNA sequencing (scRNAseq) has been used to assess the intra-tumor
heterogeneity and microenvironment of pancreatic ductal adenocarcinoma
(PDAC). However, previous knowledge is not fully universalized. Here, we built
a single cell atlas of PDAC from six datasets containing over 70 samples and
>130,000 cells, and demonstrated its application to the reanalysis of the previous
bulk transcriptomic cohorts and inferring cell–cell communications. The cell
decomposition of bulk transcriptomics using scRNAseq data showed the cellular
heterogeneity of PDAC;moreover, high levels of tumor cells and fibroblasts were
indicative of poor-prognosis. Refined tumor subtypes signature indicated the tu-
mor cell dynamics in intra-tumor and their specific regulatory network. We
further identified functionally distinct tumor clusters that had close interaction
with fibroblast subtypes via different signaling pathways dependent on sub-
types. Our analysis provided a reference dataset for PDAC and showed its utility
in research on the microenvironment of intra-tumor heterogeneity.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) originates from the ductal epithelial cells of the pancreas and is

a lethal disease with limited treatment options and poor survival (the 5-year survival rate was estimated at

9%) (Siegel et al., 2020). This poor-prognosis is attributed to late detection and early metastases; thus, the

cancer is often in the unresectable stage at diagnosis (McGuigan et al., 2018).

Major genomic mutations, such as those in KRAS, TP53, SMAD4, and CDKN2A genes, eventually accumu-

late during the progression from low-grade pancreatic intraepithelial neoplasia to tumorigenesis; however,

there are currently no targeted therapies for these driver mutations (Pihlak et al., 2018). In addition to can-

cer cells, the tumor microenvironment (TME), which is composed of blood vessels, hematopoietic cells, fi-

broblasts, and extracellular matrices, largely affects tumor heterogeneity and malignancy. Based on the

transcriptomic profile of tumor samples, several tumor subtypes were suggested in PDAC (Bailey et al.,

2016; Collisson et al., 2011; Moffitt et al., 2015; Network, 2017). Furthermore, the estimation of cell compo-

sition using empirical cell marker genes has been challenging, in particular for immune cells (Newman et al.,

2015; O’Kane et al., 2020). Moreover, non-tumor cells within the TME play a critical role in PDAC progres-

sion; however, the elucidation of their role in this context has been challenging because of their complexity,

such as stromal hyperplasia with low tumor purity.

The remarkable breakthroughs in single-cell transcriptomics have further advanced the interpretation of

the TME at single-cell resolution, which can be used to address the complex cellularity of PDAC via the

analysis of the target cells, regardless of cell composition, in a given sample. In addition to cell rate, their

state could be proposed based on known markers, such as T cells (e.g., memory, effector, and exhausted

cells) (Chen et al., 2021; Lin et al., 2020; Steele et al., 2020; Zhou et al., 2021) andmacrophages (e.g., M1 and

M2 types) (Chen et al., 2021; Kemp et al., 2021b; Lin et al., 2020). Moreover, beyond conventional cellular
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analysis methods, such as flow cytometry and/or immunohistochemistry, scRNAseq analysis can indicate

the presence of new subpopulations within the TME: Elyada et al. proposed that cancer fibroblasts may

be classified into inflammatory, myofibroblast, and antigen-presenting cells (Elyada et al., 2019);

conversely, Chen et al. suggested two cancer-associated fibroblasts (CAF) types in classical and comple-

ment secreting (Chen et al., 2021). Regarding tumor cells, novel tumor subtypes at cellular levels and their

trajectory along differentiation or malignancy have been described (Carstens et al., 2021; Lee et al., 2021;

Peng et al., 2019a; Qadir et al., 2020; Raghavan et al., 2021). Furthermore, single-cell transcriptomics allow

the interpretation of the communication among different cell types within the TME (Lee et al., 2021).

The tumor subtype is determined in each patient with PDAC (Bailey et al., 2016; Collisson et al., 2011; Mof-

fitt et al., 2015; Network, 2017). Moreover, the heterogeneity of tumor subtypes is of great practical impor-

tance, and scRNAseq is not a high-throughput assay that deals with a large number of individuals. However,

because of tremendous efforts and technological convergence, the data available for various tumors,

including PDAC, have been deposited in similar platforms. Peng et al. reported scRNAseq data from 35

patients, including 24 PDAC and 11 control pancreas-adjacent tumors (Peng et al., 2019a), whereas Steele

et al. reported data from 16 patients with PDAC and three adjacent tissues (Steele et al., 2020). The second-

ary use of these data has contributed to the fine-tuning of basic research on PDAC (Carstens et al., 2021;

Chen et al., 2021; Dominguez et al., 2020; Kemp et al., 2021a, 2021b). In the present study, we integrated

these freely available datasets and built a huge reference dataset containing >130,000 cells, to universalize

the scRNAseq data available for PDAC. Furthermore, we reanalyzed the cellular components of a previous

bulk RNAseq cohort (i.e., the TCGA) using built data and demonstrated a profound cell–cell communica-

tion between the tumor and CAF.

RESULTS

Establishment of a reference single-cell transcriptome from deposited data

Single-cell transcriptomes for human pancreatic adenocarcinoma (PDAC) have been reported by several

groups. However, they hold obvious differences in clinical setting, sampling methods, platform used

(103 Genomics or InDrop), and version of the kit/reagent used for scRNAseq. To generalize previous ef-

forts, we tried to build a useful reference tool based on five freely available datasets (PRJCA001063,

GSE111672, GSE154778, GSE155698, and GSM4293555) (Lin et al., 2020; Moncada et al., 2020; Peng

et al., 2019a; Schlesinger et al., 2020; Steele et al., 2020) and our original data (termed OUGS). These

data were largely divergent and biased regarding cell population (Figure S1A). When each dataset was

simply merged, cells were divided using a bias of batch effect between datasets, rather than cell-specific

features (Figure S1B). Therefore, each dataset was integrated through batch correlation, followed

by dimensionality reduction and unsupervised clustering (Figures 1A–1C). Two large datasets,

PRJCA001063 and GSE155698, which encompass over 15 patients, including non-cancerous pancreas sam-

ples, were used as reference data during the integration of the six datasets. The cell labels were transferred

from PRJCA001063 by predicting cell-specific signatures using the Seurat function. According to a previous

report (Peng et al., 2019a), clusters for normal ductal epithelial cells and malignant epithelial cells were

referred to as ductal cell type 1 and 2, respectively. The integrated data included 10 cell types with reason-

able differentially expressed genes (Table S1). Although the proportion of cells varied among patients

(Figures S2A and S2B) and each dataset exhibited different ranges of unique molecular index (UMI) counts

and types of detected mRNAs, their trends beyond cell type were almost comparable between datasets

(Figure S2C), indicating proper correlation.

Differentially expressed genes among cell types were comparable to general cell markers (Table S1).

Recent research on TCGA-PAAD using NMF methods identified nine different components (including

non-tumor cells), as follows: classical tumor, basal tumor, activated stroma, normal stroma, endocrine,

exocrine, immune, histone, and olfactory cells (Peng et al., 2019b). Those authors reported that unique

gene sets determined these components. When the scRNAseq data were scored using these gene sets,

their component scores agreed with the cell types (Figures 1D and 1E). The scores for endocrine and

exocrine types were specifically high in clusters of endocrine and acinar cells, respectively. The immune

score reflected the presence of T cells, B cells, and macrophages. Two cancer scores were higher in the

malignant cell cluster, and two stromal scores were higher in the clusters of fibroblasts and stellate cells,

in accordance with the finding that CAFs originate from stellate cells (Öhlund et al., 2017). These facts sup-

ported the validity of this bulk scRNAseq dataset.
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Figure 1. Integration of the six scRNAseq datasets and reinterpretation of altered gene expression in bulk

transcriptomics at the cellular level

(A–C) The integrated data are summarized in the UMAP and color-coded according to cell type (A), dataset (B), and

sample type (C).
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Cell origin of the differentially expressed genes identified in TCGA-PAAD

To further understand the previous findings of whole-tissue transcriptome analyses, the cell origin of the

differentially expressed genes (DE-Gs) identified in TCGA-PAAD were verified in this scRNAseq dataset.

We found that the upregulated genes were mainly derived from malignant cells, although fibroblasts,

B cells, and macrophages were also listed as the unique origin of top DE-Gs, which indicated the formation

of stromal tissues and infiltration of immune cells (Figure 1F). Conversely, the downregulated genes re-

flected the loss of acinar cell functions (Figure 1G). Genes having a significant effect on overall survival

were also validated that the poor-prognosis genes were found to be upregulated in malignant cells (Fig-

ure S3A). However, genes associated with prognosis were less specific among cell types, unlike that

observed for DE-Gs. Moreover, genes associated with a good prognosis were not marked clearly, as

they were expressed in a low proportion of each cell type (Figure S3B). Genes from T cells, which are impor-

tant for tumor immunity, were not detected among the top DE-Gs, with the exception of IL2RG; moreover,

immune cell features were not ranked among the good-prognosis markers. These findings may reflect the

feature of PDAC as a ‘‘cold’’ tumor (Kabacaoglu et al., 2018).

Decomposition of TCGA-PAAD using scRNAseq data

Cell composition in samples can be estimated via decomposition of bulk RNAseq data using cell-specific

markers or scRNAseq data (Baron et al., 2016; Jew et al., 2020; Menden et al., 2019). Decomposition of the

built scRNAseq dataset revealed the diversity in cell proportions among the patients in TCGA-PAAD (Fig-

ure 2A). Based on the patterns of estimated composition, patients were divided into five groups and their

survival data were then analyzed (Figure 2B and Table S2). This grouping was not affected by clinical status,

genomic mutation, and previously reported cancer subtypes (Figures 2C and 2D). Surprisingly, patients in

group 4 had an obviously good prognosis, as they had a high proportion of endocrine, stellate, and T cells

and a low proportion of cancer cells (Figures 2E and 2F). However, this good prognosis group was relatively

small. Furthermore, similar population could not be identified in other cohorts of PDAC transcriptomics

(ICGA-PACA-CA, ICGA-PACA-AU, and E-MTAB-6830 (Dijk et al., 2020)) as patients with a high ratio of

endocrine, stellate, and T cells also exhibited cancer cells, which corresponds to group 3 in TCGA-

PAAD (Figure S4A and Table S2). T cells and normal pancreatic functionmay contribute to survival, whereas

tumor immunity fails in most patients with PDAC. In fact, the estimation of infiltrated T cells alone does not

correlate with prognosis in TCGA-PAAD (Figure S4B).

Interestingly, although group 2 had a lower ratio of malignant cells, their prognosis was poor compared

with other clusters comprising a high level of malignant cells. This group contained abundant fibroblasts,

which accounted for the hyperplasia of the stroma (Figure 2F). Moreover, the presence of fibroblasts was

negatively correlated with T cells, endocrine cells, and stellate cells in all cohorts, suggesting that the pres-

ence of CAFs is serious risk factor for PDAC, as well as malignant cells (Figures 2G and S4A).

Estimation of cell–cell communication in PDAC

The signaling interaction within PDAC was explored using CellChat (Jin et al., 2021) based on the expres-

sion of the known ligand–receptor pair. The number of signaling patterns indicated that normal pancreatic

components, such as acinar and endocrine cells, work independently from other cells as a less outgoing

and incoming signaling (Figure 3A). Conversely, malignant cells received signals most frequently, espe-

cially from fibroblasts. Moreover, their interaction was the strongest of the cell–cell communications de-

tected in PDAC (Figure 3B). We hypothesized that fibroblast-derived extracellular matrices, such as

collagen, laminin, fibronectin, and thrombospondin, provide scaffolds for the TME and interfered with ma-

lignant cells via several adhesion molecules, such as integrins, CD44, and SDC4, which in turn transduce

inner cellular signals for cell growth, differentiation, and adhesion/migration (Figures 3C and S5)

Figure 1. Continued

(D and E) The module scores calculated using the signatures defined in the NMF method on TCGA-PDAC are plotted on

UMAP (D) and their violin plot (E).

(F and G) Bubble plot showing the cell origin of the driving genes that were highly upregulated (F) and downregulated

(G) in TCGA-PAAD, with cell types indicated in the rows and genes in the columns.

The size of each bubble represents the rate of cells expressing the gene, and the color represents the scaled average

expression in their cell type cluster. The bar plot shows the log2 fold change in the TCGA-PAAD sample vs. the control

pancreas obtained from GEPIA2.
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Figure 2. Cellular decomposition analysis of the bulk transcriptome using scRNAseq data

(A–D) Heatmap showing the estimated cell ratio of each patient from TCGA-PAAD (A). Hierarchical clustered heatmap for the correlation among patients

based on the cell composition (B) with previously defined tumor subtypes, clinical metadata (C), and Oncoprint for major gene mutation (D).

(E) Kaplan–Meier curve for a group of five patients defined by hierarchical clustering of cell composition (p = 0.03 from likelihood ratio test in Cox

proportional hazards regression model).

(F) Boxplot (25th percentile, median, and 75th percentile) showing cell composition aggregated for each patient group. Significance was assessed using

PairwiseWilcoxon Rank Sum Tests with Bonferroni correction (****, p < 0.001; ***, p < 0.05; **, p < 0.01; *, p < 0.05. Sample number is indicated in Figure 2E).

(G) Hierarchical clustering for the correlation among cell types based on their pattern. The red frame highlights the positive/negative correlations among

stellate cells, endocrine cells, T cells, and fibroblasts.
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(Harjunpää et al., 2019). These findings supported the notion that malignant cells and CAFs coordinately

operate on cancer development.

Tumor subtypes in malignant cells and optimization signatures for scRNAseq data

As a classification of PDAC subtypes, classical or basal-like tumors have been proposed via the factorization

of bulk transcriptome data (Moffitt et al., 2015), which did not depend on tumor purity compared with the

other classification (Network, 2017). Of particular interest in the cell-type scoring described above (Fig-

ure 1D), the cancer subtypes appeared to be segmented within malignant cell clusters. To further analyze

the heterogeneity of malignant cells, ductal cells (normal and malignant) were extracted and processed for

dimensionality reduction using PCA and UMAP. The normal ductal cells were overlapped within the same

cluster, whereas malignant cells behaved heterogeneously among patients (Figures 4A and 4B). Further-

more, the score on tumor subtypes showed that these malignant cell types were determined in accordance

with individual patients (Figure 4C).

Figure 3. Estimation of cell–cell communication within PDAC using CellChat

(A) Heatmap showing the summary of the signaling pathways that contribute to outgoing or incoming communication. The color bar represents the relative

signaling strength of a signaling pathway across cell types. The bars indicate the sum of the signaling strength of each cell type or pathway.

(B) Circle plots displaying putative ligand–receptor interactions, with the width of edges representing the strength of the communication.

(C) Chord diagram showing each ligand–receptor pattern and their weights in the interaction between CAFs and malignant cells.
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Because the current scRNAseq techniques cannot detect expression over an adequate dynamic range,

these data are sparse: many genes are undetectable or detected at a lower level. In fact, 41 out of 372

genes in the classical tumor signatures and 34 out of 394 genes in the basal-like tumor signatures were

not detected in this scRNAseq data. Moreover, the expression of some genes was not correlated with

the subtype scores (Figures S6A and S6B), and two subtype scores in malignant cells were weakly

correlated (Figure 4D). Thus, tumor-subtype signatures should be refined for scRNAseq data. To

omit unrelated features, clusters containing cells undergoing cell division, tuft cells, contamination of

immune cells, and rare cell populations were excluded after correction for their batch effect between

each individual (Figures S7A–S7E). To optimize subtype signatures adaptable for scRNAseq data,

genes for which the expression was correlated with subtype scores were extracted as new subtype sig-

natures (top-25% genes). Furthermore, genes that were correlated with both scores were omitted as

common PDAC features (Table S3). These new signatures could classify the malignant cells into

classical or basal-like tumor cells and describe the cellular fate together with their subtypes

(Figures 4E–4G, S7F and S7G).

Tumor subtypes were determined in individual patients: 33/58 and 20/58 patients had a significantly higher

classical score and basal-like score, respectively (Figure 4H). However, several patients harbored both sub-

types of cells and/or intermediate cells, as reported recently (Lee et al., 2021; Raghavan et al., 2021; Zhou

et al., 2021) (Figure S8).

Differentially expressed genes and upstream transcription factors among tumor subtypes

DE-Gs were compared among normal ductal cells, classical type cells, basal-like cells, and intermediate

cells (lower score of subtypes), which revealed the existence of subtype-specific features (Table S4). An

enrichment analysis for a disease database, all three tumor cells that had terms for cancer and basal-like

cells exhibited common pan-cancer features (Figure S9A). Regarding cell function and signaling, terms

involved in the gastrointestinal epithelium, digestion, glycosylation, mucin, and interferon gamma

response were enriched in classical cells. In contrast, terms such as extracellular matrix, cell adhesion,

and growth signaling (PI3/Akt, HIF-1, p53, estrogen, VEGF, and YAP/TAZ) were enriched in basal-like cells,

which indicated the key features in the epithelial–mesenchymal transition (Figures 4I, S9B–S9D and

Table S4).

A regulatory network analysis using SCENIC (Aibar et al., 2017) showed that the subtype-specific transcrip-

tional activities (Figures 4J and 4K, S10A, S10B and Table S5), such as GATA4, GATA6, FOXA1, and HNFs,

were activated in classical cells, as reported previously (Brunton et al., 2020; Camolotto et al., 2018; Gong

et al., 2018; Kloesch et al., 2021; O’Kane et al., 2020; Roe et al., 2017; Song et al., 2010; Zhou et al., 2021).

FOXA3, NR1I2, SREBF2, and ONECUT2 were also reported in a PDAC study, although they have not been

well clarified as classical PDAC features. Of note, the transcription factors that are activated in basal-like

cells, i.e., RCOR1, RARG, PITX1, and PLAG1, have not been reported in PDAC. RARG-related retinoic

acid signaling was reported to be involved in the EMT (Doi et al., 2015; Kim et al., 2017; Kobayashi

et al., 2021). RCOR1 interacts with epigenetic factors, such as HDACs (Figure S10C) (Monaghan et al.,

2017). These findings may reflect the dynamic epigenetic regulation that occurs during the epithelial–

to–mesenchymal transformation (Skrypek et al., 2017).

Figure 4. Re-clustering of ductal cells and their tumor-subtype analysis

(A and B) The subset of ductal cells alone was isolated and further processed using the Seurat pipeline without batch correction. UMAP color-coded

according to cell type (A) and individual (B) showing high heterogeneity of malignant cell clusters.

(C) Tumor-subtype scores defined in Figure 1 plotted on UMAP showing the segmented pattern of the score.

(D–G) Pearson’s correlation analysis of the two subtypes of scores indicate weak correlation. The color coding was according to tissue type (D) or new

classification (F) (E, G) Modified tumor-subtype scores are shown on the UMAP, which processed new signatures as features for PCA to classify cells

according to tumor-subtype (E). Based on their score distribution (F), ductal cells were classified into five groups (G).

(H) Boxplot (25th percentile, median, and 75th percentile) of modified subtype scores aggregated for cells from each tumor sample showing their

dependency on the source sample. Significance was assessed usingWelch’s t-tests (****, p < 0.001; ***, p < 0.05; **, p < 0.01; *, p < 0.05. N = 26 to 2585 cells

per patient.).

(I) Enrichment analysis of differentially expressed genes in cell clusters using GeneOntology Biological Process. Tree plot showing the hierarchical clustering

of enriched terms with word clouds.

(J and K) Tumor-subtype specific regulatory analysis conducted using SCENIC. The heatmap was colored according to the residual sum of squares (RSS)

showing the specificity of the activated transcription factor (J). The representative transcript factor is plotted on the UMAP with color attributed according to

regulon activity.
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Unsupervised clustering of malignant cells

As recently pointed out, some patients harbor the two subtypes and/or an intermediate state (Figure S8)

(Lee et al., 2021; Raghavan et al., 2021; Zhou et al., 2021). In the present study, a regulatory analysis indi-

cated several activations of transcription factors, such as NF-kB, specifically in intermediate cells (Fig-

ure 4H). To identify the functional features of malignant cells, unsupervised clustering based on highly var-

iable genes was performed next. Because re-clustering of ductal subsets showed that cells assigned to

clusters 0, 1, and four were representative in patients with PDAC (Figure S7A–S7D), these cells were

selected for dimension reduction and classified into eight clusters with removal of the batch effect between

patients (Figures 5A and 5B). Without intending to assign along subtypes, the classical score was higher in

clusters 0 and one and the basal-like score was higher in cluster 6, indicating that tumor subtype was a

prominent feature of malignant cells (Figures 5C–5E). Conversely, cancer cells that were not biased with

subtype scores were found in clusters 2, 3, 4, and 5. An enrichment analysis of DE-Gs among clusters

showed the activation of RNA splicing in cluster three in GO_BP (Figure S11A) and translation in cluster

4, as evidenced by terms like ribosome and protein folding in the KEGG pathway (Figures 5F, S11B and

Table S6). These clusters harbored highly intermediate cells, implying that gene expression was activated

in cells with an undefined cellular status (Figure 5E). Terms that were enriched in clusters 0, 1, and six resem-

bled the findings obtained in the subtype classification (Figures 4G and S11A–S11D). Cluster five exhibited

the feature involved in inflammation. Although a fraction of cells from non-tumor sites (adjacent normal tis-

sues) was assigned to malignant cells (Figure 5B), that had inflammatory features as marked higher ratio of

cluster 5 (Figures 5E and 5G). This implied the involvement of inflammation as a key mediator in precancer-

ous lesions and/or the underlying status in patients with PDAC (Shadhu and Xi, 2019).

Two major CAF types and their interaction with malignant cells

As shown above, CAFs possibly orchestrate malignant cells via cell–cell communication (Figure 3). Previous

studies have reported several subtypes of CAFs with different terminology, such as inflammatory cells, myofi-

broblasts, antigen-presenting cells (Elyada et al., 2019), complement-secreting cells, and classical cells (Chen

et al., 2021). To validate these subtypes, unsupervised clustering was conducted within the fibroblast cluster

of our integrated data. Batch correlation was performed among five datasets (Figures 6A and 6B) because

the cell ratio of fibroblasts was largely distinct among patients (Figure S1C), and GSE111672 did not contain

fibrotic components (Figure S1A). Among previous reports, the features of myofibroblasts and inflammatory

cells were relatively confidential (Han et al., 2021; Raghavan et al., 2021). The expression of representative

makers for pan-CAFs (COL1A1 and VIM), myofibroblast CAFs (myCAFs) (TAGLN,ACTA2, and FAP), and inflam-

matory CAFs (iCAFs) (DCN, PDGFRA, and CXCL12) indicated that cells could be divided along CAF subtypes

(Figures 6D and S12A). Moreover, module scores obtained using the CAF-subtype signatures provided in the

original report (Elyada et al., 2019) behaved via clear-cut classification as negatively correlatedbetweenmyCAFs

and iCAFs (Figures 6E and 6F). The activated stromal score determined inNMF of bulk RNAseq (Figures 1D and

1E) was mainly reflected as a feature in myCAFs (Figure 6C). Chen et al. suggested two CAF types, classical and

complement-secreting cells (Chen et al., 2021), whereas these features were almost comparable to those ofmy-

CAFs and iCAFs, respectively (Figure S12B). Regarding antigen-presenting CAFs (apCAFs), cells that were pos-

itive for CD74, HLA-DPA1, HLA-HRA, and HLA-DRB1 and negative for PTPRC dispersedly presented in each

dataset compared with previous reports (Elyada et al., 2019; Lee et al., 2021) (Figure S12C). However, these

markers were remarkable in macrophages and B cells, and the actual roles of apCAFs could not be determined

in the present study as apCAFs were not found in other studies (Chen et al., 2021; Lin et al., 2020).

The cell–cell interaction estimated among iCAFs, myCAFs, andmalignant clusters using CellChat indicated

that two CAF types similarly had an effect on each malignant feature (Figure 6G); the extracellular matrices

commonly expressed from CAFs supported most of the malignant clusters. Clusters 3 and 4, which were

intermediate cells with activated transcription and translation, had less communication, showing that

gene expression is a fundamentally independent event. Several communications via growth factors were

found, such as TGFb from both CAFs to cluster 6, PDGF from tumor to CAFs, and IGF from iCAFs to tumor

cells (Figure 6H). Thus, CAFs and tumors possibly support each other’s growth in the TME. Furthermore,

distinct interactions of the two CAFs regulating malignant functions were estimated using NicheNet (Bro-

waeys et al., 2020), which considers not only the expression of receptors, but also downstream expression.

Among the upregulated genes of iCAFs, tumor signaling for a lipoprotein receptor, chemokines, and IGF1

were specifically regulated by iCAFs (Figures 6I, S13A and S13B). In contrast, among myCAF highly ex-

pressed genes, in addition to strong contribution to the formation of extracellular matrices, INHBA

signaling via activin receptors was markedly elevated in the myCAF–tumor interaction.
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DISCUSSION

The present study provided a reference scRNAseq dataset for PDAC research and recognized the impor-

tance of CAFs in the development of PDAC. As shown here, scRNAseq enables the utilization of previous

bulk transcriptomics cohorts. The current cell-estimation tools for bulk transcriptomics often focus on

Figure 5. Unsupervised clustering of malignant cells indicates tumor-associated features in addition to subtype-specific functions

(A and B) Unsupervised clustering of the malignant cell fraction plotted on the UMAP and color-coded according to cluster (A), tissue type, and dataset (B).

(C–E) The modified subtype score (C) and cell label defined in Figure 4E are projected on the UMAP. Violin plots showing the aggregation of subtype scores

for each cluster (D).

(F) Enrichment analysis of differentially expressed genes in cell clusters using the KEGG database. Gene-Concept Network showing enriched terms of the

KEGG database with nodes colored according to malignant cell clusters. The node size indicates the number of leaf nodes, and the characters show the

Gene ID.

(G) Heatmap of the proportion of malignant cell clusters in each sample. The normal pancreas sample is highlighted in red.
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immune cells because their markers, such as surface antigens and transcript factors, have been well studied

(Sturm et al., 2019). The estimation of immune cells will provide a diagnostic tool for further immuno-

therapy. However, despite the promising successes of immune checkpoint inhibitor (ICI) therapies in

several cancer types, there have been very limited responses to immunotherapy in patients with PDAC

(Morrison et al., 2018; Balachandran et al., 2019). In fact, in patients with infiltration of T cells, the single

parameter of their ratio could not predict the prognosis of PDAC because of immune suppression (Fig-

ure S4B). In contrast, in addition to T cells, normal pancreatic function and a lower number of fibroblasts

were possibly promising markers because of their good prognosis. However, the abundance of CAFs

affected other good-prognosis components, as patients with a lower amount of CAFs and a high level

of T cells may possibly be sensitive to ICI. Thus, considering the composition of the various cell types

will be useful for personalized medicine.

scRNAseq easily provides signatures of undefined subpopulations, which enable the estimation of the

whole-cell composition, rather than only of immune cells, from bulk expression. Recent reports demon-

strated that not only cell types, but also their detailed state could be indicated by combining scRNAseq

and previous bulk transcriptomics (Luca et al., 2021; Steen et al., 2021). Although scRNAseq remains a

less high-throughput technique, preparing reference scRNAseq data with a sufficient size will bring added

value to bulk expression analyses. However, data quality is a significant problem in practice. In fact, the cur-

rent scRNAseq data are thought as not being sufficient to comprehend the precise biology of PDAC.

Although scRNAseq is expanding, the current available data are often the result of scRNAseq techniques

that were custom made or processed with platforms that are currently not in use. We tried to integrate the

dataset from GSM4008637, which was processed through Microwell-seq (Han et al., 2020); however, that

approach failed to provide extraordinary cluster formation, even after adjusting the Seurat parameter

(data not shown). Moreover, two datasets (PRJCA001063 and GSE111672) showed unacceptable expres-

sion as insulin was detected in all cells other than common practice (Tosti et al., 2021), which was shown

by our ligand–receptor analysis as the insulin signaling was listed. Moreover, several datasets did not

contain a sufficient population of CAFs. This is possibly the result of the fact that the specific cell-isolation

protocol was not adequate for the dissociation of solid tumors, leading to biases among datasets.

As CAFs are considered a therapeutic target, further analysis of CAFs are key for unlocking the door to

pancreatic cancer treatment (Geng et al., 2021). Interestingly, the signaling between CAFs and tumor cells

was relatively unidirectional, i.e., from CAFs to tumor cells. Our data showed that iCAFs and myCAFs sup-

ported malignant cells using distinct growth-factor signaling pathways; moreover, the cancer-suppressive

effect of CAFs has also been suggested (Mizutani et al., 2019; Öhlund et al., 2017). Moreover, CAFs affect

tumor immunity as CAF-secreted APOE contributes to immune suppression (Kemp et al., 2021a). Macro-

phages were highly present immune cells in the current scRNAseq data, and these features were highly

ranked among the upregulated genes in PDAC (Figures 1F and S2A). Interestingly, the decomposition

of the bulk transcriptome showed a positive correlation between macrophages and fibroblasts

(Figures 1G and S4A). Furthermore, several CAF ligands that affect tumor cells, such as APOE, C3, FN1,

PLAU, and INHBA, were also expressed in the macrophage cluster (Figure S13A). These findings may imply

the role of macrophage coupling with fibroblasts and the possibility of their role as a therapeutic target in

PDAC (Kemp et al., 2021b).

Figure 6. Re-clustering based on the fraction of cancer-associated fibroblasts and their subtype analysis

(A and B) An unsupervised clustering of the CAF fraction plotted on the UMAP, which was color-coded according to

dataset (A) and tissue type (B).

(C–E) UMAP plots showing the stromal scores defined in Figure 1C, the expression of marker genes for CAF subtypes (D),

and the subtype score for inflammatory/myofibroblast CAFs (E).

(F) Pearson’s correlation analysis of two CAF scores indicating a negative correlation.

(G) Circle plots displaying putative ligand–receptor interactions, with the width of edges representing the strength of the

communication.

(H) Heatmap showing the summary of signaling pathways that contributed to outgoing or incoming communication. The

color bar represents the relative signaling strength of a signaling pathway across cell types. The bars show the sum of

signaling strength for each cell type or pathway.

(I) Sanky diagram summarizing the interaction between iCAF/myCAF-upregulated ligands and the receptor of malignant

clusters. The width of the edges represents the weight value defined in NicheNet, and the color of the output of the edge

represents the target malignant cluster. Bubble plot showing the expression levels in myCAFs or iCAFs. The size of each

bubble represents the rate of cells expressing a gene, and the color represents the scaled average expression in their cell-

type cluster.
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The classification of the tumor subtypes of PDAC at the individual level remains controversial (Chan-Seng-

Yue et al., 2020; Dijk et al., 2020; Martens et al., 2019; Rashid et al., 2020). However, this will yield a future

diagnostic tool for personalized medicine (Froeling et al., 2021; Xu et al., 2021). As an advantage of

scRNAseq, tumor subtypes could be determined at the cellular resolution and revealed the presence of

intra-tumoral heterogeneity. Moreover, our data and recent studies suggested the presence of intermedi-

ate cells between the classical and basal-like types and/or their coexistence (Lee et al., 2021; O’Kane et al.,

2020; Raghavan et al., 2021; Zhou et al., 2021). A pseudotime analysis indicated their trajectory from the

classical to the basal-like type, which was suggestive of the epithelial–mesenchymal transition (Lee

et al., 2021). Our results may indicate the features in those undefined cells as the chronic inflammation in

tumor-adjacent samples and activated gene expression in intermediate cells. Moreover, the epigenetic

dynamism of basal-like cells was also implied in the regulatory network analysis. In contrast, the clas-

sical-type-specific regulons shown in this study were known for their roles in retaining their classical

features and for the fact that their loss leads to a basal-like (mesenchymal) transition (Brunton et al.,

2020; Martinelli et al., 2017; Song et al., 2010).

Limitations of the study

The data presented here could not uncover their full story because of various limitations, such as insufficient

quality of the data and missing clinical information. Moreover, the cell proportions and analyzable number

of cells were entirely different among datasets and patients. Therefore, the size of the cell clusters and their

cell–cell communication in this combined dataset may not represent pancreatic cancer realistically. As the

platform of scRNAseq is currently undergoing refinement, and multimodal omics approaches, such as

spatial transcriptomes (Moncada et al., 2020) and single-cell mutation analysis (Miles et al., 2020), are

rapidly developing, further single-cell chemistry methods and their integration will be continuously

required to fully understand PDAC.
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Data and code availability

d The authors declare that all data supporting the findings of this study are available within the article, the

supplementary data, and the data repository or from the corresponding author upon reasonable

request. The processed data for integrated, tumor subtype classified, malignant cell subsets, and CAF

subsets are deposited with all custom codes in zenodo (https://zenodo.org/record/6024273#.

Yg2eTJZUtaY). The doi listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
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REAGENT or RESOURCE SOURCE IDENTIFIER

EnsDb.Hsapiens.v86 R package (v 2.99.0) Bioconductor http://bioconductor.org/packages/release/

data/annotation/html/EnsDb.Hsapiens.v86.

html

BisuqeRNA R package (v1.0.5) (Jew et al., 2020)

R CRAN

https://cran.r-project.org/web/packages/

BisqueRNA/index.html

TCGAbiolinks R package (v2.22.1) (Colaprico et al., 2016)

Bioconductor

https://bioconductor.org/packages/release/

bioc/html/TCGAbiolinks.html

CellChat R package (v1.1.3) (Jin et al., 2021)

Github

https://github.com/sqjin/CellChat

SCENIC R package (v1.2.4) (Aibar et al., 2017)

Github

https://github.com/aertslab/SCENIC

clusterProfilerR package (v4.2.0) (Wu et al., 2021)

Bioconductor

https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

ReactomePA R package (v1.38.0) (Yu and He, 2016)

Bioconductor

https://bioconductor.org/packages/release/

bioc/html/ReactomePA.html

DOSE R package (v3.20.0) (Yu et al., 2014)

Bioconductor

https://bioconductor.org/packages/release/

bioc/html/DOSE.html

enrichplot R package (v1.14.1) Bioconductor https://bioconductor.org/packages/release/

bioc/html/enrichplot.html

org.Hs.eg.db R package (v3.14.0) Bioconductor https://bioconductor.org/packages/release/

data/annotation/html/org.Hs.eg.db.html

AnnotationDbi R package (v1.56.1) Bioconductor https://bioconductor.org/packages/release/

bioc/html/AnnotationDbi.html

nichenetr R package (v1.0.0) (Browaeys et al., 2020)

Github

https://github.com/saeyslab/nichenetr

networkD3 R package (v0.4) CRAN https://cran.r-project.org/web/packages/

networkD3/index.html

fastp v0.20.1 (Chen et al., 2018) https://github.com/OpenGene/fastp

STAR v2.7.9a (Dobin et al., 2013) https://github.com/alexdobin/STAR

RSEM v1.3.3 (Li and Dewey, 2011) https://github.com/deweylab/RSEM
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study design and patients

The materials sequenced in this study were collected from patients with pancreatic cancer who were

admitted to the Osaka University Hospital and underwent surgical treatment from 2019 to 2021. Written

informed consent was provided according to the institutional ethical approval of the Osaka University Hos-

pital (approval number 664; chaired by President S. Nishio on December 16, 2018).

Data collection

The processed data of PRJCA001063 (Peng et al., 2019a) were obtained from zenodo [10.5281/zen-

odo.3969339], which had undergone quality control and annotation with cell labels into 10 cell types. Other

public data were obtained from the NIH GEO database. GSE155698 (Steele et al., 2020) provided the

output files of the CellRanger (103 Genomics) pipeline. GSE111672 (Moncada et al., 2020), GSE154778

(Lin et al., 2020), and GSM4293555 (Schlesinger et al., 2020) provided expression matrix files. OUGS con-

tained four scRNAseq datasets from patients with PDAC that were newly collected from Osaka University.

Public cohorts for bulk transcriptomics

TCGA-normalized RNAseq gene expression data of PAAD were downloaded from the Broad Institute

FIREHOSE portal [https://gdac.broadinstitute.org/] and their clinical data were obtained from cBioPortal

[https://www.cbioportal.org/]. Differentially expressed genes between PDAC and normal pancreatic tis-

sues were obtained fromGEPIA2 (Tang et al., 2019). Previously assigned tumor subtypes were used (Rashid

et al., 2020). Mutation data were obtained using the R package ‘‘TCGAbiolinks’’ (Colaprico et al., 2016). Two

additional cohorts (PACA-AU and PACA-CA) were obtained from the ICGA Data Portal [https://dcc.icgc.

org/] with a normalized expression table and clinical data. Only patients with RNAseq data were used in

the decomposition analysis. A recent cohort in ArrayExpress under project E-MTAB-6830 was downloaded

in FASTQ format with clinical data (Dijk et al., 2020). Reads were aligned against the human reference

genome (GRCh38.p13) using STAR (ver.2.7.3a), and the gene expression values (transcripts per million)

were calculated using RSEM (ver.1.3.3).

METHOD DETAILS

Single-cell preparation

To isolate single cells from surgically resected samples, pancreatic tumor tissues were washed with phos-

phate-buffered saline (PBS), cut into small pieces, and incubated in Roswell Park Memorial Institute (RPMI)

1640 medium containing 10% fetal bovine serum (FBS), 2 mg/mL of collagenase D (Roche, Basel,

Switzerland), and 15 mg/mL of DNase I (Roche) for 60 min in a shaking water bath at 37�C. The digested

tissues were passed through a 40-mm cell strainer. Next, the isolated cells were washed with RPMI 1640 me-

dium, incubated in 3 mL of ACK buffer for 3 min (to lyse red blood cells), and washed again with RPMI 1640

medium. Pancreatic tumor cells were collected in PBS containing 2% FBS. The isolated cells were stained

with surface antibodies for 30 min at 4�C, followed by 7AAD staining (BD Biosciences, Franklin Lakes, NJ).

To confirm the proportion of living cells, a flow cytometric analysis and cell sorting were performed using a

FACSAria II instrument (BD Biosciences). Data were analyzed using the FlowJo software (Tree Star, San Car-

los, CA).

Single-cell RNA sequencing (scRNAseq)

Single-cell suspensions were processed through the 103Genomics Chromium Controller according to the

protocol outlined in the Chromium Single Cell 3’ Reagent Kits User Guide. Chromium Next GEM Single

Cell 30 Kit v3.1 (Cat# PN-1000269), Chromium Next GEM Chip G Single Cell Kit (Cat# PN-1000127), and

Dual Index Kit TT Set A (Cat# PN-1000215) were applied during the process. Approximately 16,500 live cells

per sample, according to the manufacturer’s recommendations, were loaded onto the Chromium

controller, to generate 10,000 single-cell gel-bead emulsions for library preparation and sequencing. Oil

droplets of encapsulated single cells and barcoded beads (GEMs) were subsequently reverse transcribed

in a Veriti Thermal Cycler (Thermo Fisher Scientific), resulting in cDNA tagged with a cell barcode and UMI.

Next, the cDNA was amplified to generate single-cell libraries according to the manufacturer’s protocol.

Quantification was achieved using an Agilent Bioanalyzer High-Sensitivity DNA assay (Agilent, High-Sensi-

tivity DNA Kit, Cat# 5067-4626). Subsequently, the amplified cDNA was enzymatically fragmented, end re-

paired, and polyA tagged. Cleanup/size selection was performed on amplified cDNA using SPRIselect

magnetic beads (Beckman-Coulter, SPRIselect, Cat# B23317). Next, Illumina sequencing adapters were
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ligated to the size-selected fragments and cleaned up using SPRIselect magnetic beads. Finally, sample

indices were selected and amplified, followed by a double-sided size selection using SPRIselect magnetic

beads. The final library quality was assessed using an Agilent Bioanalyzer High-Sensitivity DNA assay. Sam-

ples were then sequenced on a NovaSeq 6000 (Illumina) or DNBSEQ-G400RS (MGI) instrument in the

paired-end mode. The resulting raw reads were processed by cellranger (103 Genomics).

scRNAseq data processing

The R v4.1 and Seurat v4.0.5 packages were used to process the scRNAseq data. All detailed codes were

provided in zenodo [10.5281/zenodo.6024273]. The CellRanger output files were converted into expression

matrices using the function Read10x. Expression matrices were transformed to Seurat objects through the

‘‘CreateSeuratObject’’ function. PRJCA001063 was loaded using the ‘‘SeuratDisk’’ package, to convert

AnnData into a Seurat object. Counts of transcripts measured as UMIs were normalized to 10,000 counts

per cells and log transformed. The detected range varied among the datasets (Figure S2C); therefore,

the cutoff value for quality filtering was adjusted according to dataset. Cells with a high percentage of mito-

chondrial genes (>25%) and outer value of expression genes or UMI counts were digitally filtered out for

further analysis.

Integration of scRNAseq datasets

To perform batch correction among the datasets, data integration was performed using a reciprocal

principal component analysis (rPCA) according to the developer’s vignettes [https://satijalab.org/seurat/

articles/integration_rpca.html]. Briefly, each dataset was scaled and a PCA was performed using

highly variable genes, which were selected using the Seurat functions ‘‘FindVariableFeatures’’

and ‘‘SelectIntegrationFeatures’’. Subsequently, an anchor was created via the Seurat function

‘‘FindIntegrationAnchors’’ with arguments that 30 principal components, two reference data

(PRJCA001063 and GSE155698), and rPCA, followed by six datasets, were integrated through the Seurat

function ‘‘IntegrateData’’. The data were then scaled, analyzed for principal components, and visualized

using UMAP.

Re-clustering of scRNAseq data

To subcluster the ductal subpopulation, ductal cells (types 1 and 2) were first isolated from a built

scRNAseq data and objects were split into each individual level, followed by integration, as described

above. Cell cycling was regressed in the data scaling based on the cell-cycle score determined by the

Seurat function ‘‘CellCycleScoring’’. The remaining clusters mainly consisting of G2M phase or S phase

were manually removed. Furthermore, clusters with a suspicion of being contamination of other cell types

or taft cells were also eliminated (Figures S7A–S7C). To analyze the features related to tumor subtypes, a

PCA was performed using the tumor-subtype signatures refined in this paper (Table S3), followed by a

further dimensional reduction UMAP using 1 to 6 principal components. To determine the specific features

of malignant cells, clusters included in most tumor samples, but not in normal samples, were isolated, fol-

lowed by unsupervised clustering with variable features, as described above (Figure S7D).

CAF were collected, with the exception of GSE111672, which did not contain fibroblasts. Batch correction

among datasets was performed as described above. Based on the expression of CAF-subtypemarkers and

module scores, cells were classified as inflammatory CAFs or myofibroblast CAFs, and used for further

analyses.

Module scoring

Scores for cell cycling and a gene set of interest were calculated based on the average relative expression,

as described by Tirosh et al. (Tirosh et al., 2016) and implemented in the Seurat function

‘‘AddModuleScore’’. Gene sets for tumor subtypes and other PDAC components were obtained from a

previous deconvolution study (Peng et al., 2019b). Gene sets for CAF classification were obtained from

the original papers (Chen et al., 2021; Elyada et al., 2019).

Decomposition of bulk RNAseq data

Estimation of cell composition in the bulk transcriptome was conducted using the R package ‘‘BisqueRNA’’

and the function ‘‘ReferenceBasedDecomposition’’ (Jew et al., 2020). The required scRNAseq data were

randomly extracted into 50,000 cells because of memory limitations. The correlation among individuals
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based on cell composition was assessed, followed by hierarchical clustering using the R package

‘‘pheatmap’’.

Differentially expressed genes and their pathway enrichment analysis

Differently expressed genes among cell types or clusters were detected using the Seurat function

FindAllMarkers. An enrichment analysis was implemented in the R package clusterProfiler (Wu et al.,

2021) using the terms from Gene Ontology Biological Process, KEGG, WikiPathway, ReactomePA, and Dis-

ease Ontology (Yu et al., 2016). The visualization functions ‘‘dotplot,’’ ‘‘cnetplot,’’ and ‘‘treeplot’’ provided

by clusterProfiler and enrichPlot were used to generate the enriched pathway.

Cell–cell communication

To identify and visualize the cell cross-talk among tumor cells or between malignant clusters and CAFs, the

R package ‘‘CellChat’’ was used according to the developer’s vignette [https://github.com/sqjin/CellChat]

(Jin et al., 2021). Furthermore, ‘‘NicheNet’’ was used to infer the actual interaction considering the expres-

sion of downstream genes (Browaeys et al., 2020).

Regulatory network analysis

SCENIC was used to estimate upstream transcription factors according to the developer’s vignette

[https://github.com/aertslab/SCENIC] (Aibar et al., 2017). scRNAseq data were randomly extracted into

10,000 cells because of memory limitations. The specificity of regulons was identified based on the residual

sum of squares, which was calculated in the SCENIC pipeline. The protein–protein interactions were further

confirmed in the STRING database [https://string-db.org/].

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical tests used here are indicated in the relevant figure legends. All analyses were performed us-

ing the R software. The Kaplan–Meier survival curves were plotted using the R packages ‘‘survival’’ and

‘‘survminer’’. The Coxph test was used to determine the hazard ratio (HR) and 95% confidence interval.

Fisher’s exact test was used for between-categorical data comparisons. For the comparison of two contin-

uous variables, data were tested by the Wilcoxon rank sum test. Multiple testing correction was performed

where necessary using the Bonferroni method.
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