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Metabolic impairments associated with obstructive sleep apnea syndrome (OSA) are

linked to tissue hypoxia, however, the explanatory molecular and endocrine mechanisms

remain unknown. Using gas-permeable cultureware, we studied the chronic effects

of mild and severe hypoxia on free fatty acid (FFA) uptake, storage, and oxidation in

L6 myotubes under 20, 4, or 1% O2. Additionally, the impact of metformin and the

peroxisome proliferator-activated receptor (PPAR) β/δ agonist, called GW501516, were

investigated. Exposure to mild and severe hypoxia reduced FFA uptake by 37 and

32%, respectively, while metformin treatment increased FFA uptake by 39% under mild

hypoxia. GW501516 reduced FFA uptake under all conditions. Protein expressions of

CD36 (cluster of differentiation 36) and SCL27A4 (solute carrier family 27 fatty acid

transporter, member 4) were reduced by 17 and 23% under severe hypoxia. Gene

expression of UCP2 (uncoupling protein 2) was reduced by severe hypoxia by 81%.

Metformin increased CD36 protein levels by 28% under control conditions and SCL27A4

levels by 56% under mild hypoxia. Intracellular lipids were reduced by mild hypoxia by

18%, while in controls only, metformin administration further reduced intracellular lipids

(20% O2) by 36%. Finally, palmitate oxidation was reduced by severe hypoxia, while

metformin treatment reduced non-mitochondrial O2 consumption, palmitate oxidation,

and proton leak at all O2 levels. Hypoxia directly reduced FFA uptake and intracellular

lipids uptake in myotubes, at least partially, due to the reduction in CD36 transporters.

Metformin, but not GW501516, can increase FFA uptake and SCL27A4 expression

under mild hypoxia. Described effects might contribute to elevated plasma FFA levels

and metabolic derangements in OSA.
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INTRODUCTION

Obstructive sleep apnea syndrome (OSA) is a chronic disorder
characterized by periodic upper airway narrowing or complete
occlusion during sleep followed by blood hemoglobin
desaturation (tissue hypoxemia) and sleep fragmentation.
With a prevalence of 5–15% in the general population (1), OSA
represents a significant health burden. Several independent
studies have identified OSA as a risk factor for hypertension,
cardiovascular disease, as well as all-cause mortality, which is
independent of other risk factors (2, 3). More recently, studies
have indicated that OSA represents a strong risk factor for
glucose intolerance, insulin resistance, and type 2 diabetes
mellitus (T2DM) when adjusted for confounding variables (e.g.,
obesity, age, and sex) (4, 5).

Even though cross-sectional as well as prospective studies
documented association between OSA and impaired glucose
metabolism, the mechanisms mediating this link remain only
partially understood (4). Mimicking hemoglobin desaturation
observed in OSA patients by exposing humans or rodents to
intermittent hypoxia (IH) demonstrated that IH is sufficient to
impair fasting and post-challenge glucose levels, diminish insulin
sensitivity in muscle tissue and the liver, and reduce pancreatic
insulin production (6–10). Among the explanatory molecular
mechanisms suggested, activation of the sympathetic nervous
system, oxidative stress, stimulation of pro-inflammatory
pathways together with increased corticosteroid levels or
endothelin-1 signaling have been suggested (4, 11). More
recently, interest has focused on the role of circulating free
fatty acids (FFA) as a possible mediator of OSA-associated
impairments in glucose homeostasis as researchers reported
increased FFA levels after intermittent hypoxic exposure in
humans and mice (12–14). Importantly, prolonged exposure
to elevated plasma FFA levels was shown to induce insulin
resistance in muscle and liver tissue (15) as well as impair insulin
secretion (16), thus causally contributing to the development of
T2DM (17).

Plasma FFA levels are determined by the balance between FFA
release from adipose tissue (predominantly through lipolysis)
and FFA uptake/oxidation by liver and muscle tissue (18).
Although the cause of FFA elevation in the context of OSA
and intermittent hypoxia remains to be determined, recent
studies have reported that hypoxia stimulates lipolysis in both
adipocytes in vitro as well as in mouse epididymal adipose
tissue (13, 19). Direct measurements of tissue oxygen levels
performed during IH (a model of OSA) suggest that skeletal
muscle experiences profound hypoxia reaching O2 levels of ≈

Abbreviations: ADP, Adenosine diphosphate; AKT, Protein kinase B; BCA,
Bicinchoninic acid assay; BSA, Bovine serum albumin; CD36, Cluster of
differentiation protein 36; CPAP, Continuous positive airway pressure; CPT-1,
Carnitine-palmitoyl transferase-1; DMSO, Dimethylsulfoxide; FBS, Fetal bovine
serum; FFA, Free fatty acids; GLUT1, Glucose transporter 1; IRβ, Insulin receptor-
β; IRS-1, Insulin receptor substrate-1; OSA, Obstructive sleep apnea; PBS,
Phosphate-buffered saline; PGC1α, Peroxisome proliferator-activated receptor
gamma coactivator 1-alpha; PMP70, Peroxisome-specific protein 70; PPAR,
Peroxisome proliferator-activated receptors; SLC27A4, Solute carrier family 27
(fatty acid transporter), Member 4; T-PER, Tissue-protein extraction reagent;
T2DM, Type 2 diabetes mellitus; UCP2, Uncoupling protein 2.

26 mmHg (20). The specific effects of hypoxic exposure on FFA
uptake and oxidation still remain unclear even though a detailed
understanding of FFA turnover in OSA is of significant clinical
importance, since lipolysis, as well as FFA oxidation, represent
proven pharmacological targets (21). It could be hypothesized,
that decreased FFA uptake and/or oxidation in skeletal muscle
during hypoxia might contribute to elevated circulating FFA or
directly alter intracellular insulin signaling in myocytes.

The aim of this study was to assess the direct effects
of mild (4% O2) and severe (1% O2) hypoxia on FFA
uptake, storage, and oxidation in differentiated L6 myotubes.
We also investigated, whether pharmacological treatment with
metformin or PPAR β/δ agonist could alleviate hypoxia-
induced changes in FFA metabolism as metformin was showed
previously to reduce intramyocellular lipid accumulation as well
to reduce expression of fatty acid transporters and fatty acid
oxidation genes in skeletal muscle and liver (22, 23). Similarly,
PPAR β/δ activation promotes fatty acid oxidation in skeletal
muscle (24). To address these questions, a novel approach
utilizing gas-permeable cultureware with a membrane-bottom
was employed. This system enables rapid exchange of gases
through the membrane, which allows for prolonged exposure
of cultured cells to predictable levels of pericellular O2 (25,
26).

MATERIALS AND METHODS

Cell Culture, Exposure to Hypoxia, and
Treatment With Chemicals
Rat L6-C11 skeletal muscle cells (European Collection of Cell
Cultures, Cat. No. 92102119) were expanded up to passage
number 10, and subsequently plated in a 24-well fluorocarbon-
bottom dishes (Cat. No. 94.6000.014, Sarstedt AG & Co,
Nümbrecht, Germany) at a density of 4,000 cells/cm2 and
cultured in a CO2 incubator at 37◦C in Dulbecco’s Modified
Eagle’s Medium (DMEM, Cat. No. D6429) supplemented
with 10% v/v Fetal bovine serum (FBS, Cat. No. F6178),
1% v/v Penicillin-Streptomycin (Cat. No. P4333), and 1%
v/v HEPES (Cat. No. H0887), which was replaced every
48 h until cells reached confluence (7 days). After reaching
confluence, concentration of FBS was reduced to 2% to
accelerate spontaneous differentiation into myotubes (successful
differentiation was evaluated by visual inspection confirming
a change in phenotype from individual spindle-like cells to
multinucleated tubular structures). Cells were incubated with or
without pharmacological treatments and dishes were placed in
modular hypoxic incubators (Billups-Rothenberg Inc., Del Mar,
CA, USA). Mild and severe hypoxic exposures were achieved
by flushing the respective modular incubators with calibration-
quality gas mixtures of 4% O2 + 5% CO2 or 1% O2 + 5%
CO2 (Linde Gas a.s., Prague, Czech Republic). Control exposures
were performed in a standard CO2 incubator (20% O2 +

5% CO2). Cells were subsequently cultured for an additional
7 days, with the media being changed every 48 h; the cells
were then used for lipid uptake and oxidation assays described
below.
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The effect of the following drugs during control and
hypoxic exposures was investigated: 2mM metformin (Cat. No.
PHR1064), and 100, 500 nM, and 1µM GW501516 (Cat. No.
SML1491). Cells and chemicals were purchased from Sigma-
Aldrich (St. Louis, MO, USA).

Control experiments were performed with appropriate
vehicles: water for metformin andDMSO (dimethylsulfoxide) for
GW501516. Concentrations of GW501516 studied in this paper
are reflecting the range of plasma concentrations observed in
humans after GW501516 administration (27), although higher
(5, 1µM), as well as lower (100, 10 nM) concentrations were also
reported for muscle cells in vitro in the published literature (28–
31). Similarly, metformin concentration used in this paper are
reflecting concentrations typically used in published studies to
maximize cellular responses (32–34), while not deviating too far
from plasma levels observed in humans treated with metformin,
reaching 700µM (35).

Determination of Fatty Acid Uptake
Lipid uptake was measured using fluorescently-labeled palmitate
(BODIPY R© FL C16, Cat. No. D3821 Thermo Fischer Scientific,
Waltham, MA, USA). Differentiated cells were starved for
4 h in FBS-free medium. Subsequently, cells were washed and
incubated for 3 h under normoxic or hypoxic conditions with or
without the previously mentioned pharmacological compounds,
in PBS (Dulbecco’s Phosphate Buffered Saline, Cat. No. D8662,
Sigma-Aldrich, St. Louis, MO, USA) with 1µM of fluorescently-
labeled palmitate (BODIPY FL R© C16, stock prepared in DMSO)
and 0.1% fatty acid free BSA (bovine serum albumin, Cat. No.
A7030 Sigma-Aldrich, St. Louis, MO, USA). After incubation,
cells were washed twice with 1mL PBS and lysed in 150 µL of
T-PER (Tissue-Protein Extraction Reagent, Cat. No. RL243205
Thermo Fischer Scientific, Waltham, MA, USA). Fluorescence
of intracellular BODIPY-labeled palmitate was measured with an
Infinite R© 200 PRO (Tecan Trading AG, Switzerland) microplate
reader with excitation/emission wavelengths of 470/503 nm. Data
were normalized to protein concentration in each well, which was
measured using a BCA assay (bicinchoninic acid assay, Cat. No.
23225 Thermo Fischer Scientific, Waltham, MA, USA).

Determination of Intracellular Lipid Stores
Intracellular lipid stores were quantified using the fluorescence
lipid staining method. Cells were fixed for 1 h in 10% formalin,
washed twice with 1mL PBS, and stained with a working solution
of 1µg/mL BODIPY 493/503 (Cat. No D3922, Thermo Fischer
Scientific, Waltham, MA, USA) for 30min. Subsequently, cells
were washed, lysed with T-PER and fluorescence entrapped by
the cells was determined using an Infinite R©200 PRO microplate
reader with excitation/emission wavelengths 493/503 nm. Data
are expressed as relative values compared to control conditions.

Determination of Fatty Acid Oxidation
Cells were homogenized in 10% sucrose using a motor-driven
homogenizer at 800 rpm. Oxygen uptake in homogenized
samples was measured using a High-Resolution Oxygraph-2K
instrument (Oroboros, Innsbruck, Austria). Measurements were
performed at 30◦C in 2mL of incubation medium containing

1mM EDTA, 75mM KCl, 5mM KH2PO4, 3mM MgCl2 6 H2O,
and 8mM Tris HCl, at pH 7.4. The sequence of substrate/drug
additions to themeasuring chamber was as follows: 1mMmalate,
1.5mMADP (adenosine triphosphate), 5µMcarnitine palmitoyl
followed by 0.1mM etomoxir (inhibiting FFA mitochondrial
transport), 1µM oligomycin (inhibiting ATP-synthase), and last,
4µM antimycin A (an electron transport chain inhibitor). At
each step, oxygen uptake was measured until it reached a plateau.
The rate of oxygen uptake was expressed as pmol/s/mg protein
determined using a BCA assay (Cat. No. 23225 Thermo Fischer
Scientific, Waltham, MA, USA).

Co-localization Analysis
Cells were fixed in 4% formaldehyde for 15min and washed
with PBS. Subsequently, the nuclei were stained with Hoechst
(1:300 in PBS for 15min), lipids were stained for 2 h in 1µg/mL
BODIPY 493/503 (Prod. No. D3922, Thermo Fisher Scientific,
Waltham, MA, USA) and cells were washed 3 times with PBS.
Lastly, cells were permeabilized for 5min using 0.2% Triton X
(Prod. No. X100, Sigma Aldrich, St. Louis, MO, USA) and (1)
incubated for 15min with 5µg/mL of Lectin HPA Alexa Fluor R©

647 conjugate (Prod. No. L32454, Thermo Fisher Scientific,
Waltham, MA, USA) to visualize the Golgi apparatus or (2)
blocked with 1% BSA (bovine serum albumin, Prod. No. A7030,
Sigma Aldrich, St. Louis, MO, US) for 1 h and incubated
overnight with 1:100 anti-PMP70 (The 70-kDa peroxisomal
membrane protein) rabbit monoclonal antibody conjugated
with Alexa Fluor R© 647 (ab199019, Abcam, Cambridge, UK)
to visualize peroxisomes. Nuclei counterstaining was performed
usingHoechst 33258 (Prod. No. H1398, Thermo Fisher Scientific,
Waltham, MA, USA). Images were captured using a Leica
TCS SP5 confocal microscope (Leica Microsystems, Wetzlar,
Germany) and digitally processed using Leica Software. Co-
localization analysis was performed and expressed as an overlap
coefficient.

Gene and Protein Expression Analysis
Isolated RNA was treated with DNAse (Roche Diagnostics,
Mannheim, Germany) and gene expression of cluster of
differentiation 36 (CD36), solute carrier family 27 fatty acid
transporter, member 4 (SCL27A4), carnitine palmitoyltransferase
I (CPT1), peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC1α), uncoupling protein 2 (UCP2)
glucuronidase beta (GUSB), and TATA box binding protein
(TBP) was assessed using quantitative PCR (qPCR) (Applied
Biosystems, Carlsbad, CA) using TaqMan probes (Product
ID: Rn00580728_m1, Rn01438951_m1, Rn00682395_m1,
Rn00580241_m1, Rn01754856_m1, Rn00566655_m1,
Rn01455646_m1). Differences in relative gene expression was
assessed using the REST software (Qiagen, Hilden, Germany)
incorporating the Pfaffl’s bootstrapping algorithm.

Western blotting: Protein expression of SLC27A4, CD36,
and GAPDH (Glyceraldehyde 3-phosphate dehydrogenase—a
loading control) was performed by western blot analysis using
rabbit polyclonal antibodies (Anti-SLC27A4 antibody: ab199718,
Anti-CD36 antibody: ab133625, and Anti-GAPDH antibody:
ab9485, all from Abcam, Cambridge, UK). Goat anti-rabbit
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IgG antibody conjugated with a horseradish peroxidase (sc-
2004, Santa Cruz Biotechnology (Dallas, Texas, USA) was used
as a secondary antibody. Denatured proteins were separated
electrophoretically on an SDS/12% polyacrylamide gel at 125V
using a Criterion Cell (Bio-Rad, Hercules, CA, USA) and then
blotted onto a 0.2µm nitrocellulose membrane for 1.5 h at 100V,
using a Criterion Wire Blotter System (Bio-Rad, Hercules, CA,
USA). The membranes for SLC27A4 and GAPDH quantification
were blocked with 5% BSA in TBS (100mM Tris-HCl, 150mM
NaCl, pH = 7.5) for 30min, the membrane for CD36 was
blocked with 5% non-fat milk in TBS for 30min. After washing
with TBST (TBS + 0.1% Tween-20), the membranes were
incubated with the relevant primary antibody and incubated for
2 h with the corresponding secondary antibody. After washing,
detection was performed using enhanced chemiluminescence
method with SuperSignal West Pico PLUS Chemiluminescent
Substrate (Pierce, Rockford, IL, USA) and a Gel Logic 4000 PRO
Imaging System (Carestream Health, New Haven, CT, USA).
Band intensities were quantified using Image J software (National
Institutes of Health, Bethesda, USA). Band intensities of CD36
and SLC27A4 were normalized to GAPDH signal.

Statistical Analysis and Calculations
The effect of hypoxia on the outcome variables was analyzed
using the ANOVA test with Tukey’s post-hoc analysis using
GraphPad (GraphPad Software, Inc., La Jolla, CA, USA). The
effect of the pharmacological substances on the outcome variables
under various O2 levels was analyzed using the 2-way ANOVA
and interactions between pharmacological treatment and O2

levels was determined. Data are presented as mean ± SEM. A
value of p < 0.05 was considered significant.

RESULTS

The Effect of Hypoxia, Metformin, and
PPAR β/δ Agonist on FFA Uptake in L6
Myotubes
Exposure to pericellular O2 levels of 4 and 1% for 7 days
decreased FFA uptake in differentiated L6 myotubes by 37%
(36718 ± 3585 vs. 23249 ± 1810 AU/mg protein, p <

0.001) and 32%, respectively (36718 ± 3585 vs. 24922 ±

1822 AU/mg protein, p < 0.001). There was no additive
effect associated with severe (1%) compared to moderate (4%)
hypoxia on FFA uptake (Figure 1A). Acute treatment with
2mM metformin had no effect on FFA uptake at 20% O2,
however 7-h metformin administration increased FFA uptake
at 4% O2 and 1% O2 by 31 and 26% (Figure 1B). Similarly,
7-day metformin treatment increased FFA uptake by 39 and
17% respectively; however, a significant interaction between
hypoxia and metformin treatment was only achieved after 7-
days of metformin treatment (2-way ANOVA, p < 0.05 for
interaction), Figure 1C. As a result, 7-day treatment was further
investigated in subsequent analyses. Treatment with 100, 500 nM,
and 1µM GW501516 (PPAR β/δ agonist) reduced FFA uptake
under control and hypoxic conditions (Figure 1D).

The Effect of Hypoxia and Metformin on
Gene and Protein Expression of FFA
Transporters
Protein expression of CD36 transporter was not affected by mild
hypoxia (0.63 ± 0.04 vs. 0.61 ± 0.13, p > 0.05), but dropped by
17% under severely hypoxic (1% O2) conditions (0.63 ± 0.04
vs. 0.52 ± 0.03, p < 0.05), Figure 2A. Identical pattern was
observed for SCL27A4 protein expression, remaining unchanged
after mild hypoxia (1.08 ± 0.09 vs. 1.08 ± 0.12, p > 0.05)
but decreasing with severe hypoxic exposure (1.08 ± 0.09 vs.
0.82 ± 0.06, p < 0.05), Figure 2B. Gene expression of fatty
acid transporters was differentially modulated by hypoxia in L6
myotubes, while expression of CD36 decreased by 61% and 50%
(both p < 0.05) after exposure to 4 and 1% O2, expression of
SCL27A4 increased by 30 and 17% (both p < 0.05) in 4 and 1%
O2, respectively, Figure 3A. Exposure to 1% O2 (but not 4% O2)
also decreased expression of mitochondrial uncoupling protein
UCP2 by 81% (p < 0.05), Figure 3A. Data are summarized in
Supplementary Material Table 1.

Metformin treatment increased FFA transporter SCL27A4
protein expression by 55% (1.08 ± 0.12 vs. 1.68 ± 0.24, p
< 0.05) (Figure 2B) as well as its gene expression by 30%
(p < 0.05) (Figure 3B) under control conditions and mild
hypoxia, while gene expression of CD36 was reduced by 91,
75, and 65% (all p < 0.05) with metformin treatment under
20, 4, and 1% O2, respectively (Figure 3B). Protein expression
of CD36 was moderately elevated by 28% with metformin
administration under control conditions only (0.63 ± 0.04 vs.
0.81 ± 0.07, p < 0.05) (Figure 2A). Metformin administration
also reduced gene expression of PGC1α and UCP2 under
control conditions and under 4% O2 (UCP2) and 1% O2

(PGC1α). Gene expression of the key regulator of FFA oxidation
(CPT1) remained unaffected by hypoxia or metformin treatment
(Figures 3A,B). Data and Western blot pictures are provided in
Supplemental Data Sheet 1.

The Effect of Hypoxia and Metformin on
FFA Oxidation
The influence of hypoxia on mitochondrial and non-
mitochondrial O2 consumption was investigated in L6 myotube
lysates. As summarized in Figure 4, severe hypoxia (1% O2)
reduced palmitate oxidation (27.5± 8.3 vs. 12.5± 4.2 pmol/s/mg
protein, p = 0.05, Figure 4B), however, other parameters were
not affected by pericellular O2 levels. In contrast, metformin
treatment reduced non-mitochondrial O2 consumption,
palmitate oxidation as well as proton leak under at all tested O2

levels, Figures 4A,C.

The Effect of Hypoxia and Metformin on
Intracellular Lipid Stores
Intracellular lipids were localized in two forms within L6
myotubes, as shown in Figure 5A: (1) as diffusely spread
throughout the cytoplasm and (2) concentrated inside
cytoplasmic vesicles positively staining for PMP70 (a 70-
kDa peroxisomal membrane protein). Exposure to 4% O2

reduced total intracellular lipid stores by 18% (AU: 638 ±
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FIGURE 1 | Effect of hypoxia on FFA uptake relative to metformin and GW501516 treatment. The effect of 4% O2 and 1% O2 hypoxia on FFA uptake (A) the impact

of acute (B) and prolonged (C) 2mM metformin administration on FFA uptake; and the effect of various concentrations of GW501516 (a PPAR β/δ agonist) on FFA

uptake (D). *p < 0.05 for comparison with control exposures (20% O2, ANOVA), n = 12 (A,C), n = 6 (B,D). Two-way ANOVA was used to explore interaction

between exposure to hypoxia and metformin treatment.

FIGURE 2 | Protein expression of FFA protein transporters. The effect of mild (4% O2) and severe (1% O2) hypoxia (A) and metformin administration (B) on CD36 and

SCL27A4 protein expression. *p < 0.05 for comparison with control exposures (20% O2, unpaired T-test), #p < 0.05 for comparison with vehicle-treated group

(unpaired T-test), n = 6–9.

27.5 vs. 520.3 ± 26.4, p < 0.05). Metformin administration
decreased total lipid content under control conditions (20% O2)
by 36% (AU: 638 ± 27.5 vs. 406.6 ± 28.2, p < 0.05); however,
no effect of metformin was observed under hypoxic conditions
(AU: 520.3 ± 26.4 vs. 570.8 ± 46.4, p > 0.05), Figure 5B. Less
lipids were localized in peroxisomes under 1% O2 and 4% O2

hypoxia compared to control conditions (overlap coefficient:
0.66 ± 0.02 and 0.68 ± 0.03 vs. 0.74 ± 0.01, respectively, p <

0.05), while co-localization of lipids with the Golgi apparatus
remained unchanged (overlap coefficient: 0.58 ± 0.03, 0.46

± 0.08, and 0.54 ± 0.04 for 20, 4, and 1% O2, respectively,
p > 0.05).

DISCUSSION

The present study utilized a validated membrane-bottom
cultureware technology (25), enabling long-term exposure of
adherent cells to desired oxygen levels in the pericellular space,
to assess the effects of moderate (4% O2) and severe (1%
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FIGURE 3 | Gene expression of FFA protein transporters and key regulators of mitochondria metabolism. The effect of mild (4% O2) and severe (1% O2) hypoxia (A)

and metformin administration (B) on CD36, SCL27A4, CPT1, UCP2, and PGC1α gene expression. *p < 0.05 for comparison with control exposures (20% O2),
#p <

0.05 for comparison with vehicle-treated group, n = 6. Gene expression data were analyzed using the REST Software (Qiagen, Hilden, Germany) based on the Pfaffl’s

method.

FIGURE 4 | Mitochondrial respiration analysis during hypoxia with metformin administration. (A) Non-mitochondrial respiration (residual O2 consumption rate after

addition of oligomycin), (B) palmitate oxidation (O2 consumption rate after addition of palmitoyl-carnitine subtracted from O2 consumption rate after addition of

etomoxir), (C) mitochondrial proton leak (O2 consumption rate after addition of antimycin A subtracted from O2 consumption rate after addition of oligomycin). *p <

0.05 for comparison with control exposures (20% O2), n = 8 (control conditions), n = 4 (metformin administration). Two-way ANOVA was used to explore interaction

between exposure to hypoxia and metformin treatment.

FIGURE 5 | Lipid co-localization imaging and total intracellular lipid content. (A) A representative example of a microscope image of lipids stained with BODIPY

493/503 (green) forming distinct vesicular structures marked by arrows (A), staining (red) for peroxisome-specific protein PMP70 (B), merged image of lipid and

PMP70 staining (C) and merged image of lipid, PMP70, and nuclei staining (blue) with Hoechst 33258 (D). (B) Total lipid content during hypoxia and after metformin

treatment The effect of hypoxic exposure (4% O2) and 7-day metformin administration on total lipid content in differentiated L6 myotubes. *p < 0.05 for comparison

with vehicle-treated cells, #p < 0.05 for comparison with control exposures (20% O2), n = 6. Two-way ANOVA was used to explore interaction between exposure to

hypoxia and metformin treatment.

Frontiers in Endocrinology | www.frontiersin.org 6 October 2018 | Volume 9 | Article 616

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Musutova et al. Hypoxia Reduces Myotube FFA Uptake

O2) hypoxia on lipid uptake and metabolism in differentiated
L6 myotubes. We observed that both moderate and severe
hypoxia reduced FFA uptake and intracellular lipid stores in
peroxisomes, which was probably due the inability to oxidize
FFA under hypoxic conditions together with mild reduction
in FFA transporter proteins (in severe hypoxia). Metformin
administration for 7 days increased FFA uptake, increased gene
expression of the FFA transport protein, SCL27A4, and reduced
palmitate oxidation, which prevented a hypoxia-induced decline
in intracellular lipid stores.

The overarching goal of this study was to assess the role
of modified FFA metabolism in skeletal muscle as a possible
causative mechanism mediating the established link between
obstructive sleep apnea syndrome (OSA) and the development
of type 2 diabetes (4, 36, 37). The present study provided
two potential mechanisms for hypoxia-induced metabolic
derangements: first, decreased FFA uptake in myotubes exposed
to hypoxia might, together with increased lipolysis in adipose
tissue (13, 19), contribute to elevated levels of FFA in OSA
patients (38) and lead to development of pancreatic β-cell
dysfunction and insulin resistance in liver and muscle (17,
39, 40). Second, reduced FFA oxidation, which was observed
under severe hypoxia, represents a feature typically observed
in obese and type 2 diabetes subjects causally associated with
increased intracellular lipid content, impaired insulin signaling,
and reduced glucose uptake (41–44). In-vitro studies of cultured
cells have proved useful in OSA research since they allow for
investigation of the direct effects of hypoxia separated from
the interference of other factors typically observed in OSA,
e.g., sleep fragmentation, endocrine adaptations, and autonomic
nervous system contributions (4). Direct tissue oxygen levels
recordings in mice revealed that under conditions equivalent
to severe OSA with 60 hypoxic episodes per hour, skeletal
muscles becomes profoundly and nearly continually hypoxic
with tissue O2 levels ranging from ≈ 2 to 5% O2 (20). The
levels of mild and severe hypoxia (4 and 1% O2), as defined
in the present study, not only reflect tissue O2 levels expected
in severe OSA, but also allow for assessment of mechanisms
associated with hypoxia-inducible factor 1 (HIF-1) activation,
which starts at O2 levels of 4–5% and reaches a maximum at
0.5% O2 (45, 46).

Uptake of FFA across the sarcolemma membrane happens
partially through passive diffusion, however, its facilitation by
protein transporters (e.g., CD36, FABPpm, and SCL27A4) has
been demonstrated in various cell types including heart and
muscle, together with their regulation by physiological stimuli
(47–50). As oxygen availability significantly modulates energy
metabolism (51), several groups investigated the effect of hypoxia
on expression and localization of FFA transporters. In fact, it
has been shown that acute hypoxic exposure increased CD36
expression, plasma membrane localization and FFA uptake in
cardiomyocytes (52) and decreased expression of SCL27A4
in placenta (53). Furthermore, it has been shown that CD36
levels are acutely regulated by HIF-1 dependent mechanisms
(54). In contrast, human experiments documented that acute
hypoxia increased circulating FFA levels (55, 56). Although
our observations contradict some of these reports, it needs

to be emphasized that our study (employing a gas-permeable
cultureware) investigated the response of cells to a prolonged,
7-day, hypoxic exposure (as compared to minutes or hours of
hypoxia in the mentioned studies). It is plausible to hypothesize,
that acute hypoxia-induced changes differ markedly from
adaptive, long-term, effects of hypoxia. In fact, up-regulation of
HIF-1 by hypoxia shows a transient pattern with a peak activation
detected few hours after the hypoxic exposure followed by a
long-term decline (57–59). Additionally, reduced FFA uptake
in hypoxic myotubes is congruent with reports demonstrating
a significant reduction in skeletal muscle FFA uptake and
oxidation in humans under hypoxic conditions (60, 61). These
effects have been associated with reduced mitochondrial mass,
CPT-1 (carnitine-palmitoyl transferase-1), PPARα and various
tricarboxylic acid cycle enzymes activity or expression in hypoxic
skeletal muscle (62–65), and reflect the metabolic feature of
FFA, which is that they can only be oxidized by aerobic
phosphorylation. Based on our observations, hypoxia did not
reduce expression of key mitochondrial FFA transporter (CPT1)
nor did it significantly reduce expression of mitochondrial
biogenesis and metabolism regulator (PGC1α), suggesting that
limited O2 availability per se might reduce FFA oxidation. Shift
toward glycolytic energy metabolism in severe hypoxia is further
supported by observed reduction of UCP2 gene expression which
was previously shown to limit aerobic phosphorylation and
increase dependence on glucose as energy substrate (66, 67).
Similarly to data previously reported in hypoxic adipocytes (68),
we also observed that severe hypoxia reduced protein expression
of CD36 whichmight further contribute to decreased FFA uptake
and extended this finding to another important FFA transporter
SCL27A4. However, as we did not quantify the membrane
localization of both transporters, relevant for the FFA transport
(69), it is possible that their contribution was underestimated due
to their possible reduced localization in the plasma membrane.
Importantly, differential response of both FFA transporters
was observed after metformin administration which increased
SCL27A4 protein expression under mild hypoxia, while both
transporters were reduced by metformin in severe (1% O2)
hypoxia.

Impaired glucose homeostasis observed in OSA subjects
was subsequently reproduced in mice exposed to intermittent
hypoxia, suggesting the key role of hypoxia. However, mice
studies, as well as a recent randomized clinical trial in diabetic
OSA patients, reported only limited reversibility of hypoxia-
inducedmetabolic impairments by cessation of hypoxic exposure
or OSA treatment (7, 70). These observations, combined
with unsatisfactory compliance with continuous positive airway
pressure (CPAP) treatment in OSA patients (71), warrants
the search for possible pharmacological treatments. In the
present study, the ability of metformin and GW501516 (a
selective PPARβ/δ receptor agonist) to alleviate hypoxia-induced
derangements in FFA metabolism was assessed. From the tested
chemicals, metformin increased, while GW501516 reduced FFA
uptake, even though previous reports showed the ability of
GW501516 to stimulate FFA oxidation in muscle cells (29).
As FFA uptake and oxidation represent two distinct processes,
it can be hypothesized that GW501516 might increase FFA
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oxidation and, at the same time, reduce FFA uptake—this would
reduce intracellular lipid stores and possibly improve cellular
insulin sensitivity. In the subsequent studies, we considered
GW501516 to be a suboptimal pharmacological candidate for
the treatment of reduced FFA uptake (as it further reduced
FFA uptake) and thus subsequently evaluated the mechanistic
consequences behind the metformin effect. The results showed
that metformin administration increased FFA uptake under
hypoxic conditions, partially through the up-regulation of
SCL27A4, however, other mechanisms, e.g., increased FFA
uptake mediated by activation of AMP-activated protein kinase
(AMPK) (72–74), are probably also involved. Besides the AMPK-
mediated effects, metformin was identified as a potent inhibitor
of mitochondrial respiratory chain complex I activity, which
reduces mitochondrial capacity to oxidize substrates, e.g., malate
and glutamate (75, 76). Similarly, we observed reduced palmitate
oxidation and less proton leak after chronic (7 days) metformin
administration, which is congruent with the limited ability to
oxidize acetyl-CoA when complex I is inhibited by metformin.
Although a reduction in FFA oxidation might contribute to
increased intracellular lipid stores and potentially impair glucose
uptake in muscles, the opposite effects have been repeatedly
and independently described. For example, reduction of FFA
oxidation with etomoxir increased intracellular lipid stores but
at the same time enhanced insulin sensitivity, GLUT4 membrane
translocation and glucose uptake in various models including
humans, mice, and in-vitro experiments (76–78). Indeed,
hypoxia in humans has been associated with a nearly doubled
glucose uptake by muscles despite lowered FFA oxidation (55).
Further investigation of the effects of prolonged hypoxia on
insulin sensitivity in myotubes (e.g., insulin-stimulated glucose
uptake, quantification of pAKT/AKT, or detection of insulin
responsiveness genes) is needed to elucidate metabolic status
of myocytes under hypoxia. Although these important variables
were not measured in our study, previous reports showed
that exposure of L6 myotubes to 1% O2 increased expression
of GLUT1 by ∼30% together with a 5-fold induction of
insulin-independent glucose uptake. Surprisingly, glucose uptake
under hypoxia was not stimulated by insulin administration,
even though levels of IRβ (Insulin receptor-β) and IRS-1
(insulin receptor substrate-1) proteins remained unchanged
(79). Additionally, protein levels, phosphorylation status and
activity of AKT/pAKT were lowered by 24 h exposure to
1% O2 (80).

Intracellular localization of lipids was also investigated in the
present paper to better understand intracellular lipid handling
and the impact of hypoxia. We showed that intramyocellular
lipids were distributed diffusely in the cytoplasm but also
formed distinct vesicular structures that stained for peroxisome-
specific protein PMP70. Although peroxisomes exert multiple
functions, FFA β-oxidation ranks among the most preserved
functions of peroxisomes across species (81). Hypoxia reduced
intracellular lipid stores as well as reduced lipid localization into
peroxisomes suggesting a reduction in peroxisome lipid content.

These observations are in line with previous reports of inhibited
peroxisome biogenesis and increased degradation of peroxisomes
as a result of hypoxic exposure and hypoxia inducible factor
2α (HIF-2α) activation (82, 83). We speculate that reduction
in peroxisome lipids might explain the observation of reduced
total intracellular lipid content, however, further investigation
involving quantitative analysis of total peroxisome abundance is
warranted.

In summary, this study showed that exposure to hypoxia
reduced FFA uptake in L6 differentiated myotubes, partially
due to a reduction in the CD36 and SCL27A4 FFA
transporters, which might contribute to elevated circulating
FFA and subsequently to the development of T2DM
associated with OSA. We also demonstrated the potential
of metformin to alleviate hypoxia-induced impairments
through increasing FFA uptake and by reducing FFA
oxidation in mitochondria, thus enabling higher glucose
uptake and oxidation. The present study provides a mechanistic
background that partially elucidated the links between OSA
and associated metabolic impairments including type 2 diabetes
mellitus.
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