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Adult neurogenesis – the formation of new neurons in adulthood – has been shown to
be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and
hormones) as well as exogenous (e.g., physical activity and environmental complexity) fac-
tors. Research on exogenous regulators of adult neurogenesis has focused primarily on
the non-social environment. More recently, however, evidence has emerged suggesting
that the social environment can also affect adult neurogenesis. The present review details
the effects of adult–adult (e.g., mating and chemosensory interactions) and adult–offspring
(e.g., gestation, parenthood, and exposure to offspring) interactions on adult neurogenesis.
In addition, the effects of a stressful social environment (e.g., lack of social support and
dominant–subordinate interactions) on adult neurogenesis are reviewed. The underlying
hormonal mechanisms and potential functional significance of adult-generated neurons in
mediating social behaviors are also discussed.
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INTRODUCTION
Social interactions among conspecifics, such as adult–adult and
adult–offspring interactions, are an integral part of human society
and affect psychological, physiological, and behavioral functions.
Indeed, enduring and selective sociosexual attachments between
partners are an intrinsic part of human social behavior. The for-
mation and maintenance of such strong social bonds are critical
for both mental and physical health. For example, individuals
in a stable marital relationship display a longer life expectancy
than individuals who are single (House et al., 1988; Lillard and
Waite, 1995). Further, high levels of intimacy between partners
are positively correlated with immune function and cardiovas-
cular health; whereas low levels of intimacy are correlated with
negative psychological states, such as depressed mood (Waltz et al.,
1988; Kiecolt-Glaser and Newton, 2001). Close parent–child rela-
tionships (through bi-parental care) lead to the physical as well as
psychological well-being of both parents and their children (Sil-
verstein and Bengtson, 1991; Graziano et al., 2009). Furthermore,
strong adult–adult and adult–offspring interactions also play a
protective role on the vulnerability to substance abuse (Ellickson
et al., 1999; Bell et al., 2000). Social connectedness, defined as
internal sense of social belonging, reduces the likelihood of expe-
riencing anxiety and is a protective factor against depression (Lee
and Robbins, 1998; Townsend and McWhirter, 2005). In contrast,
negative social interactions, such as disruptions of social bonds,
confrontation, isolation, or neglect, can cause psychosocial stress,

Abbreviations: 3H, tritiated thymidine; AMY, amygdala; AOB, accessory olfactory
bulb; BrdU, bromodeoxyuridine; Dcx, doublecortin; DG, dentate gyrus; HYP, hypo-
thalamus; MCM-2, minichromosome marker-2; MOB, main olfactory bulb; MPOA,
medial preoptic area; NeuN, neuronal nuclei; NSE, neuron-specific enolase; PCNA,
proliferating cell nuclear antigen; PFC, prefrontal cortex; SVZ, subventricular zone;
TMT, trimethyl thiazoline.

posing a risk to mental and physical health (Steptoe, 1991; Curtis,
1995). In addition, the lack of social interactions leading to feelings
of loneliness has been correlated with the experience of depression
(Alpass and Neville, 2003; Adams et al., 2004), further highlight-
ing the importance of social interactions. Finally, the inability to
form social bonds is often used to diagnose psychological disor-
ders, including autism, social anxiety, and schizophrenia (Hersen,
2006).

Similar to the importance of social interactions in humans,
adult–adult and adult–offspring interactions also affect physio-
logical and behavioral functions in other mammalian species. For
example, prior sexual experience improves subsequent mating
behavior in both male and female rats and 18–24 h of socio-
sexual interactions between a male and female are sufficient to
lead to a pair bond – the selective, enduring preferential attach-
ment between a mating pair – in the socially monogamous prairie
vole (Microtus ochrogaster ; Dewsbury, 1975; Williams et al., 1992;
Meisel and Mullins, 2006; Hull and Rodriguez-Manzo, 2009). Fur-
thermore, mother–offspring bonds are formed in a variety of
mammalian species in response to interactions with offspring (see
reviews by Nowak et al., 2000; Maestripieri, 2001; Mogi et al.,
2011). Subsequently, this type of social bond leads to adaptive
behavioral changes that maintain offspring proximity and enhance
mother–offspring interactions, thereby increasing the likelihood
of offspring survival as well as parents’ reproductive success (Win-
berg, 2005). Animal models have been utilized to study the effects
of social interactions on the brain, particularly on neuronal acti-
vation, morphology, and neurotransmitter system activity as well
as the roles of social interactions on the regulation of biobehav-
ioral functions. For instance, male–female sociosexual interactions
alter the dendritic morphology in selected brain areas in rats
(Flanagan-Cato et al., 2006). In prairie voles, mating-induced
pair bonds are associated with neuroplastic changes in several
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neurotransmitter systems including dopamine, oxytocin, and argi-
nine vasopressin, which in turn play important roles in social
behaviors such as enduring bonds between mates, selective aggres-
sion against novel conspecifics, and enhanced parental care toward
offspring (reviewed in Young and Wang, 2004; Young et al., 2011).
Recent studies have also shown that social interactions affect neu-
rogenesis in the adult brain in a variety of mammalian species (see
below).

NEUROGENESIS IN THE ADULT BRAIN
Neurogenesis, progenitor cell division leading to functionally inte-
grated neurons, was traditionally believed to only occur in the
developing brain (Ramon y Cajal, 1928). However, over the past
decades the use of new detection methods resulted in the accu-
mulation of a substantial amount of evidence for the occurrence
of neurogenesis throughout adulthood in a variety of mammalian
species (Gross, 2000). These new detection methods include the
discovery of endogenous cell cycle markers as well as the develop-
ment of exogenous cell division markers including genetic tools
(e.g., viral vector) and nucleotide analogs (Ming and Song, 2005).
Endogenous cell cycle markers (see Table 1) include nuclear anti-
gens expressed only in actively dividing cells (namely during
the G1, S, and G2 phases of the cell division cycle and dur-
ing mitosis) and can therefore be used as proliferation markers.
Ki67 (Scholzen and Gerdes, 2000; Kee et al., 2002), proliferating

cell nuclear antigen (PCNA; Galand and Degraef, 1989; but also
see Properi, 1997), minichromosome marker-2 (MCM-2; Stoeber
et al., 2001) as well as the expression of phosphorylated his-
tone H3 (Gurley et al., 1974) are commonly used endogenous
cell cycle markers. Studying adult neurogenesis using viral vec-
tors (such as retroviruses) requires invasive stereotaxic surgery to
inject the viral vector into specific brain regions. As viral vec-
tor integration is dependent on nuclear membrane breakdown
during mitosis, expression of the viral vector is a good indica-
tor of cell division. Retroviruses are usually non-replicative (to
limit viral vector expression to cells that integrated the vector dur-
ing mitosis) and carry a reporter gene, such as green fluorescent
protein (to allow easy identification of cells expressing the retro-
virus). Lastly, nucleotide analogs such as tritiated thymidine (3H)
and bromodeoxyuridine (BrdU) are exogenous cell cycle markers.
After their administration (usually via intraperitoneal injection),
they are incorporated into the DNA in place of thymidine during
the DNA synthesis phase of the cell cycle. Subsequently, labeled
cells can be revealed by autoradiography (for 3H) or immunohis-
tochemistry (for BrdU). While both markers are similar in their
efficiency to label dividing cells, BrdU has several advantages (e.g.,
non-isotopic method, lower cost, and shorter tissue processing
duration) over 3H and, therefore, has become the more com-
monly used nucleotide analog. Depending on the experimental
paradigm (i.e., BrdU injection mode and the time interval between

Table 1 | Commonly used methods to study adult neurogenesis.

Method Example Expression pattern Application Reference

NUCLEOTIDE

ANALOG

Tritiated thymidine (3H) Nucleus Proliferation, survival Cameron and McKay

(2001)

Bromodeoxyuridine (BrdU) Nucleus Proliferation, survival, fate

determination

Cameron and McKay

(2001)

ENDOGENOUS CELL

CYCLE MARKER

Ki67 Nucleus Proliferation Scholzen and Gerdes

(2000), Kee et al. (2002)

Minichromosome marker-2 (MCM-2) Nucleus Proliferation Stoeber et al. (2001)

Phosphorylated histone H3 Nucleus Proliferation Gurley et al. (1974)

Proliferating cell nuclear antigen (PCNA) Nucleus Proliferation Galand and Degraef

(1989)

CELLTYPE-SPECIFIC MARKER

(a) Immature neuron Doublecortin (Dcx) Soma, cell processes Fate determination Francis et al. (1999)

Neuron-specific class III tubulin (TuJ1) Cytoplasm, axons Fate determination Memberg and Hall

(1995)

Polysialylated-neuronal cell adhesion

molecule (PSA-NCAM)

Plasma membrane Fate determination Seki and Arai (1993)

RNA-binding protein Hu Nucleus, cytoplasm Fate determination Okano and Darnell

(1997)

Turned on after division (TOAD64/CRMP4) Cytoplasm Fate determination Minturn et al. (1995)

(b) Mature neuron Microtubule-associated protein (MAP-2) Cytoplasm, soma,

dendrites

Fate determination Huber and Matus (1984)

Neuron-specific enolase (NSE) Cytoplasm Fate determination Schmechel et al. (1980)

Neuronal specific nuclear protein (NeuN) Nucleus Fate determination Mullen et al. (1992)

(c) Glial cell Glial fibrillary acidic protein (GFAP) Astrocytes Fate determination Eng et al. (2000)

VIRAL VECTOR Soma, cell processes Morphology, physiology,

fate determination

van Praag et al. (2002)
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the last injection and perfusion), different stages of adult neuroge-
nesis (namely cell proliferation, neuronal differentiation, and cell
survival) can be investigated. For example, a single acute BrdU
injection combined with a short interval between the injection
and perfusion of the animal (usually 2–24 h) allows the detec-
tion of cell proliferation (division of progenitor cells), similar to
using endogenous cell cycle markers (see above); whereas repeated
BrdU injections and longer survival times are used to study neu-
ronal differentiation (selection of neuronal fate) and cell survival
(maintenance of new neurons). Fluorescent BrdU-labeling can be
combined with cell type-specific markers to determine neuronal
or glial differentiation (see Table 1 for commonly used markers).

In most mammalian species (Huang et al., 1998; Dayer et al.,
2005; Fowler et al., 2005; Luzzati et al., 2006), including humans
(Eriksson et al., 1998), adult neurogenesis occurs primarily in two
brain regions, namely the subventricular zone (SVZ) of the rostral
lateral ventricle and the dentate gyrus (DG) of the hippocampus.
From their site of origin, the newly generated cells migrate to the
main olfactory bulb (MOB, along the rostral migratory stream)
and to the hippocampal granular cell layer, respectively, where
most cells differentiate into neurons and functionally integrate
into the existing circuitry (Lledo and Saghatelyan, 2005; Ming
and Song, 2005; Christie and Cameron, 2006). Adult neurogenesis
has also been documented in other, non-traditional neurogenic
brain regions (for review see Gould, 2007; Migaud et al., 2010).
While there still is debate about the existence of adult neurogene-
sis outside the DG and SVZ/MOB system, several studies reported
adult-generated neurons in the neocortex (Dayer et al., 2005), pir-
iform cortex (Bernier et al., 2002), striatum (Bedard and Parent,
2004), amygdala (AMY; Bernier et al., 2002; Fowler et al., 2002;
Akbari et al., 2007; Okuda et al., 2009), medial preoptic area
(MPOA; Akbari et al., 2007), and hypothalamus (HYP; Huang
et al., 1998; Fowler et al., 2002; Kokoeva et al., 2005).

A variety of endogenous (e.g., trophic factors, neurotransmit-
ters, and hormones) and exogenous non-social (e.g., enriched
environment and physical activity) factors have been shown to
affect adult neurogenesis in both traditional as well as non-
traditional neurogenic brain regions (Grote and Hannan, 2007;
Fowler et al., 2008; Lucassen et al., 2010). Importantly, recent
studies have shown that even the social environment can mod-
ulate adult neurogenesis in a stimulus- and site-specific manner
(reviewed by Gheusi et al., 2009). For example, social stressors,
such as the exposure to an aggressive conspecific or social isola-
tion, reduce (Gould et al., 1997; Westenbroek et al., 2004; Czeh
et al., 2007; Thomas et al., 2007; Lieberwirth et al., 2012), whereas
social stimuli, such as the exposure to male pheromones, mater-
nal experience, or interactions with a conspecific pup, increase
(Furuta and Bridges, 2005; Mak et al., 2007; Ruscio et al., 2008)
hippocampal adult neurogenesis.

In the following review, we will describe the effects of the
social environment on mammalian adult neurogenesis by focusing
on the effects of sociosexual adult–adult interactions (including
mating and chemosensory interactions), adult–offspring interac-
tions (including parenthood and exposure to unrelated conspecific
young), and aversive, stressful social interactions (including social
isolation, social defeat, and predator odor exposure). In addition,
the potential hormonal mechanism(s) for the modulation of adult

neurogenesis via social interactions will be discussed. Finally, our
discussion will also summarize the evidence for adult neurogenesis
in humans and discuss evidence that human adult neurogenesis
can be modulated by distinct factors – highlighting the need for
future studies on the potential link between social interactions and
adult neurogenesis.

EFFECTS OF SOCIOSEXUAL ADULT–ADULT INTERACTIONS
ON ADULT NEUROGENESIS
MALE–FEMALE INTERACTIONS: MATING AND REPRODUCTIVE
BEHAVIOR
Male–female interactions, particularly mating and reproductive
behavior, activate several distinct brain regions in a variety of
mammalian species, including humans, and influence brain plas-
ticity (Mas, 1995; Kollack-Walker and Newman, 1997; Pfaus and
Heeb, 1997; Seeringer et al., 2010). For example, neuroplastic
changes induced by male–female interactions include alterations
in neuronal activation, neurotransmitter release, receptor distri-
bution, as well as neuronal morphology (Pfaus and Heeb, 1997;
Flanagan-Cato et al., 2006; Veenema and Neumann, 2008; Leuner
et al., 2010b). Recently, research has started to focus on evaluating
the potential effect of adult–adult interactions on neurogenesis.
Here, we will focus on the effects of acute and chronic sociosex-
ual interactions on the different stages of adult neurogenesis in
distinct brain regions.

The effect of acute mating encounters on adult neurogenesis
has been investigated in rodents, such as rats and prairie voles, as
well as in sheep. Thirty minutes of interaction with a receptive
female promoted hippocampal cell proliferation in young, adult
(older than 60 days of age) male Sprague-Dawley rats (Leuner
et al., 2010b). These males were injected with BrdU 30 min after
the first mating bout followed by a 2-h post-injection survival
period. Males with mating experience showed an increase in the
number of BrdU- and Ki67-labeled cells in the DG compared to
sexually naïve males, indicating that acute mating exposure upreg-
ulated hippocampal cell proliferation in adult male rats. Acute
sociosexual interactions also promoted hippocampal cell prolif-
eration in middle-aged male Sprague-Dawley rats (9–11 months
of age; Glasper and Gould, 2010). However, it should be noted
that neither study examined whether chemosensory cues, present
during sociosexual interactions, play a role in the observed facili-
tation of cell proliferation. The addition of a male group exposed
only to female odor cues, e.g., female-soiled bedding, would have
allowed the investigation of the effect of chemosensory cues on
adult neurogenesis in the absence of sociosexual interactions. In
female Wistar rats, a 30-min sociosexual encounter facilitated the
survival of newly proliferated cells in the olfactory system in a
region-specific manner (Corona et al., 2011). Cell survival in
the internal cell layer of the accessory olfactory bulb (AOB), but
not the glomerular or external cellular layer of the AOB or the
glomerular, mitral, and granular cell layer of the MOB, was upreg-
ulated 2 weeks after an acute 1-h sociosexual encounter. Within
the same paradigm, the majority of adult-generated cells facili-
tated by the sociosexual experience expressed a mature neuronal
phenotype (BrdU/NeuN double-labeled cells). Most interestingly,
this increase in neuronal survival was only observed in females that
experienced paced mating (pattern of approach and withdrawal in
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which the female controls the timing of sexual interactions), but
not in females with non-paced mating (timing of sexual interac-
tions is controlled by the male). The differential effects of paced
versus non-paced mating on adult neurogenesis may be due to
differences in their hedonic value: paced mating is rewarding and
not stressful, while non-paced mating is stressful (Martinez and
Paredes, 2001; Nyuyki et al., 2011). In addition, paced mating has
been found to optimize the reproductive physiology and behavior
in females, leading to enhanced reproductive success and fitness
(Erskine and Kornberg, 1992). Furthermore, acute sociosexual
interactions (characterized by non-paced mating) did not pro-
mote cell proliferation in female prairie voles (Fowler et al., 2002),
suggesting that the hedonic value of the sociosexual interaction
may play a role in the modulation of adult neurogenesis. Lastly,
the exposure to a male significantly increased cell proliferation
region-specifically in female Merino sheep (Hawken et al., 2009).
In particular, 48 h of male exposure increased hippocampal, but
not hypothalamic, cell proliferation. The importance of paced
mating and the involvement of chemosensory cues in modulating
cell proliferation or cell survival in sheep are not currently known.
Together, these data suggest that acute sociosexual interactions, in
particular rewarding interactions, may facilitate cell proliferation
and/or survival in a species- and brain region-specific manner.

Chronic sociosexual interactions have also been found to mod-
ulate adult neurogenesis. Repeated daily 30-min exposures to a
receptive female for 14 consecutive days promoted hippocam-
pal cell proliferation in young adult male Sprague-Dawley rats,
compared to sexually naïve males (Leuner et al., 2010b). Two
weeks following the last mating exposure, the survival of newly
generated cells was also increased in the DG, while the per-
centage of cells expressing a neuronal phenotype (BrdU/TuJ1
and BrdU/NeuN double-labeled cells) did not differ between the
groups (Leuner et al., 2010b), suggesting that chronic mating expo-
sure facilitates adult neurogenesis. Similarly, chronic sociosexual
experiences (daily 30-min exposures for 28 consecutive days) also
facilitated cell proliferation and survival in the DG of middle-
aged (9–11 months of age) male Sprague-Dawley rats (Glasper
and Gould, 2010). However, it should be noted that neither study
(Glasper and Gould, 2010; Leuner et al., 2010b) examined the role
of chemosensory cues, present during sociosexual interactions,
on the observed facilitation of cell proliferation. Chronic, con-
tinuous sociosexual interactions with a male for 21 consecutive
days affected adult neurogenesis in female prairie voles (Fowler
et al., 2002). Females were either placed with an unrelated intact
male (sociosexual interaction) or an unrelated female (control
condition). BrdU injections were given 24 h following the place-
ment into the respective treatment condition. Short-term chronic
sociosexual interactions (21 days) increased the number of BrdU-
labeled cells in the AMY (in particular the cortical nucleus) and
the ventromedial hypothalamus (VMH), without affecting the
number of BrdU-labeled cells in the DG, MOB, cingulate cor-
tex, or caudate putamen – indicating that the effects of chronic
sociosexual interactions on cell survival are brain region-specific.
It should be noted that the observed changes in cell survival
could be due to different components of the chronic sociosexual
interactions with the male. In particular, 21 days of sociosex-
ual interactions in female prairie voles result in both pair bond

formation and pregnancy, which could have differential or syn-
ergistic effects on adult neurogenesis. Furthermore, the exposure
to only male chemosensory cues, without mating, may also play a
role in mediating adult neurogenesis. In another socially monoga-
mous rodent species, the mound-building mouse (Mus spicilegus),
successful pair bond formation induced by chronic sociosexual
interactions (20-day cohabitation) resulted in a higher number
of BrdU-labeled cells in the MOB of these females compared to
females that did not show a partner preference (an index of an
established pair bond in the laboratory) after chronic sociosex-
ual interactions with a male (Baudoin et al., 2005). Interestingly,
sub-chronic sociosexual interactions did not facilitate hippocam-
pal cell proliferation. In particular, male Long–Evans rats exposed
to a receptive female for 30 min on five consecutive days did not
differ in the level of cell proliferation from sexually naïve males
(Spritzer et al., 2009). Similar to sub-chronic mating, intermittent
mating (weekly sociosexual interactions with a receptive female
over seven consecutive weeks) did not affect adult neurogenesis
in the mating circuit (namely the MPOA and medial AMY) of
Syrian hamsters (Mesocricetus auratus; Antzoulatos et al., 2008).
It should be noted, however, that the effects of intermittent mat-
ing on hippocampal adult neurogenesis, the effect of chronic daily
sociosexual interactions on adult neurogenesis in the mating cir-
cuitry or the DG, or the effect of chemosensory cues without
mating on adult neurogenesis were not evaluated in the above
mentioned studies.

Unfortunately, the majority of the studies investigating the
effects of sociosexual encounters on adult neurogenesis did not
control directly for the effects of chemosensory cues, cues that
are present during mating. Nonetheless, there is evidence suggest-
ing that sociosexual interactions may modulate adult neurogenesis
independent from chemosensory cues. For example, paced mat-
ing resulted in the upregulation of adult neurogenesis compared
to non-paced mating or chemosensory exposure (Corona et al.,
2011). Overall, future research may benefit from investigating
specifically whether both acute and chronic mating exposures
independent of chemosensory cues affect adult neurogenesis in
various mammalian species. Based on the currently available data,
acute and chronic mating seem to facilitate hippocampal cell pro-
liferation and chronic mating seems to facilitate cell survival in
several distinct brain regions, including the AMY, DG, OB, and
VMH. Interestingly, these brain regions, in particular the AMY,
MOB, and VMH, are part of the mating circuitry. Therefore, future
studies should investigate the functional involvement of adult-
generated neurons in these brain regions in the modulation of
mating behavior. Furthermore, additional studies should evaluate
the involvement of adult-generated neurons in the modulation of
the stress response and anxiety. In particular, the AMY, part of the
stress circuitry (Jankord and Herman, 2008), has been implicated
in mediating mating-induced anxiolysis (Waldherr and Neumann,
2007).

CHEMOSENSORY CUES AFFECT ADULT NEUROGENESIS
Chemosensory cues, consisting of odorants (volatile olfactory
cues) and pheromones (non-volatile chemicals), are processed via
the main olfactory and vomeronasal systems (Tirindelli et al.,
2009). Traditionally, pheromones have been described to relay
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information about the sex, social status, and health of conspecifics
(Ganem et al., 2005; Kavaliers et al., 2005), and thereby influence
behavioral responses in most mammalian species (Brennan, 2010).
For example, pheromones are involved in modulating rodent mat-
ing and reproductive behaviors (Dulac and Torello, 2003; Brennan
and Keverne, 2004) and also play a role in human social behav-
ior, such as attraction (Cowley and Brooksbank, 1991). In addi-
tion, evidence has emerged suggesting that volatile olfactory cues
may also communicate social cues and thereby influence social
behavior (Lin et al., 2005).

As chemosensory cues play an important role in social behav-
iors, which have been shown to affect adult neurogenesis, acute,
and chronic exposure to conspecific chemosensory cues have been
investigated for their role in modulating adult neurogenesis. For
example, acute exposure to chemosensory cues increased cell pro-
liferation in the SVZ of female prairie voles (Smith et al., 2001).
Specifically, female prairie voles exposed to a male across a mesh
barrier (mesh-housing), allowing olfactory and visual, but not
physical contact, for 48 h had a greater number of BrdU-labeled
cells in the SVZ compared to females exposed to a female across
a mesh barrier. Recent data indicated that chemosensory cues
also affect cell proliferation in the prairie vole AMY in a sex-
specific manner (Liu et al., 2007). In particular, 48 h of exposure
to opposite-sex bedding caused a significant increase in amygdalar
cell proliferation in female, but not male, prairie voles compared
to voles that were exposed to their own bedding or to the bed-
ding from a same-sex individual. Analysis of the AMY subnuclei
indicated that this increase was present in the cortical and medial,
but not the central, subnuclei. It should be noted that lesions of
either the MOB or the vomeronasal organ were sufficient to block
this chemosignal-induced increase in cell proliferation. In con-
trast, 48 h of chemosensory exposure in female CD-1 mice did not
affect adult neurogenesis in the SVZ or the DG (Mak et al., 2007).
While species-specific differences may explain the lack of an effect
of chemosensory cues on cell proliferation in the SVZ of female
mice, the two studies differed significantly in their methodology.
For example, the chemosensory experience may differ significantly
between mesh-housing as used in the female prairie vole study and
2-day exposure to male-soiled bedding as used in the female mouse
study (Liu et al., 2007; Mak et al., 2007). Furthermore, the effects of
acute chemosensory modulation of adult neurogenesis may ame-
liorate a stress-induced decrease in cell proliferation. Adult male
Balb/C mice showed a significant reduction in hippocampal cell
proliferation following 30 min of restraint stress, while the pres-
ence of either familiar or unfamiliar conspecifics (without physical
interaction) or conspecific odors alone reversed this stress-induced
decrease in cell proliferation (Cherng et al., 2011). The number of
cells expressing a neuronal phenotype (BrdU/Dcx co-labeled cells)
showed the same reversal of this stress-induced decrease due to the
presence of conspecifics or conspecific odors.

Chronic exposure to social chemosensory cues also modu-
lates adult neurogenesis. In one study, adult female CD-1 mice in
proestrus were exposed to male-soiled bedding, volatiles derived
from male-soiled bedding, or clean bedding daily for 30 consec-
utive days (Oboti et al., 2009). Exposure to male-soiled bedding
led to a significant increase in cell survival in the AOB, but not
the MOB, compared to the volatile and clean bedding groups.

Sub-chronic exposure to male chemosensory cues also promoted
cell proliferation in pregnant mice (Larsen et al., 2008); however,
this effect was dependent on the length of exposure. Mated nulli-
parous female C57BL/6J mice exposed to male chemosensory cues
via mesh-housing showed a higher number of BrdU-labeled cells
in the SVZ compared to single-housed mated nulliparous females
after 7 days, but not 3 or 14 days, of male chemosensory exposure.
In addition to the increase in cell proliferation in the SVZ, 7-day
chemosignal exposure also increased the number of BrdU-labeled
cells and cells expressing a neuronal phenotype (cells double-
labeled for BrdU/NeuN or BrdU/Dcx) in the MOB (Larsen et al.,
2008). Sub-chronic chemosensory exposure (7 consecutive days
of male-soiled bedding exposure) also facilitated DG and SVZ cell
proliferation as well as cell survival and neuronal differentiation in
the DG and MOB in sexually naïve female mice (Mak et al., 2007).
It should be noted that the chemosensory cue induced changes of
adult neurogenesis required the MOB, as chemical lesions of the
MOB prevented such changes (Mak et al., 2007). Furthermore, the
social status of the male from which the chemosensory cues were
obtained also played a role in mediating adult neurogenesis in the
female mouse brain (Mak et al., 2007). In particular, the number of
BrdU-labeled cells was only increased when females were exposed
to dominant-male, but not subordinate-male, chemosensory cues,
possibly highlighting a link between adult neurogenesis and social
behavior.

Together, these data demonstrate that exposure to chemosen-
sory cues facilitates cell proliferation and cell survival in the adult
brain in a stimulus-, brain region-, and sex-specific manner. As
facilitation of adult neurogenesis was also observed in response to
sociosexual interactions, future studies are needed to investigate
the function of new neurons, which are generated in response to
mating and mating-related interactions.

EFFECT OF ADULT–OFFSPRING INTERACTIONS ON ADULT
NEUROGENESIS
GESTATION
Gestation leads to dramatic changes in circulating levels of hor-
mones (including increased levels of progesterone, estrogen, and
prolactin) in females (Garland et al., 1987; Pawluski et al., 2009).
Furthermore, gestation causes significant neuroanatomical alter-
ations (e.g., increases in spine density; Rasia-Filho et al., 2004)
and neurochemical alterations (e.g., central receptor-level upreg-
ulation; Grattan, 2001; Russell et al., 2001; Kinsley et al., 2006).
Similarly, pregnancy causes dramatic changes in humans such as
changes in circulating hormone levels (including progesterone,
estrogen, and leptin; Turnbull et al., 1974; Sivan et al., 1998). In
addition, the absolute brain size in humans decreases across preg-
nancy but returns to preconception size after delivery (Oatridge
et al., 2002), implicating alterations in cell birth and death as well
as in cell volumes.

Early evidence suggesting that gestation may affect adult neu-
rogenesis comes from a study in meadow voles (Microtus penn-
sylvanicus) that were wild-captured either during the breeding
or non-breeding season (Galea and McEwen, 1999). Following
capture, voles were injected with 3H and perfused 24 h thereafter
to determine the level of adult hippocampal cell proliferation.
Females captured during the breeding season showed a significant
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reduction in 3H-labeled cells in the granular cell layer and hilus of
the DG compared to females captured during the non-breeding
season. As only the females captured during the breeding season
were pregnant, these data suggest that gestation could impair adult
neurogenesis.

Studies using natural populations of animals often exhibit dif-
ficult to control variables (e.g., length of gestation, animal age, and
experience in addition to environmental factors) that may poten-
tially affect adult neurogenesis. Consequently, the effects of ges-
tation on adult neurogenesis have been studied in the laboratory,
where potentially confounding variables can be controlled more
easily. In female meadow voles of a laboratory-maintained pop-
ulation, reproductively inactive females (female-paired females)
showed a greater level of hippocampal cell proliferation, partic-
ularly in the granular cell layer and hilus, than reproductively
active females (male-paired females; Ormerod and Galea, 2001). In
addition, the survival of adult-generated cells in the hippocampal
granular cell layer was higher in reproductively inactive, compared
to reproductively active, female meadow voles. Similar studies
have also been conducted using other laboratory rodents. For
example, cell proliferation within the subgranular zone of the
DG was reduced in pregnant female C57Bl/6N mice across all
gestational days (14.5, 16.5, and 18.5) examined compared to vir-
gin control mice (Kim et al., 2010). Further, the total number of
Ki67/Dcx double-labeled cells was significantly lower within the
DG of the late gestational groups (day 16.5 and 18.5) compared to
virgin mice, implicating an effect on the neuronal differentiation
(Dcx-expression) of newly generated cells (Ki67-labeled). Simi-
larly, Rolls et al. (2008) showed that the number of cells expressing
a neuronal phenotype (BrdU/Dcx double-labeled cells) within the
murine DG was significantly reduced during both the second and
third trimester compared to virgin C57BL/6 mice. Furthermore,
a comparison between non-pregnant sheep and sheep at the end
of the gestational period revealed a significant reduction in cell
proliferation in the DG of pregnant sheep (Brus et al., 2010). Inter-
estingly, unlike in meadow voles, mice, and sheep, gestation did
not affect hippocampal cell proliferation in Sprague-Dawley rats
(Furuta and Bridges, 2005). In particular, neither the early (ges-
tational day 7) nor the late (gestational day 21) gestational stage
decreased cell proliferation in rats. Furthermore, on gestational
day 1, virgin (control) female rats did not differ in the rate of cell
proliferation in the granule cell layer and hilus of the DG compared
to primigravid (first gestation) or multigravid females, indicating
that the number of pregnancies does not seem to affect adult neu-
rogenesis in rats (Pawluski et al., 2010). Hippocampal cell survival
at gestational day 21 also did not differ between virgin and preg-
nant females, irrespective of the number of pregnancies. Together,
these data suggest that gestation may affect adult hippocampal
neurogenesis in a species-specific manner.

Gestation has also been reported to affect adult neurogene-
sis within the SVZ/MOB. For example, in Sprague-Dawley rats,
cell proliferation was increased in the SVZ on gestational day
21, but not day 7, indicating a time-specific effect (Furuta and
Bridges, 2005). Similarly, gestation increased adult neurogenesis
in the murine SVZ. The number of BrdU-labeled cells in the
SVZ was higher on gestational day 7 (as well as day 7 of pseudo-
pregnancy, following mating with a vasectomized male) relative

to age-matched virgin controls, but such an effect was no longer
observed on gestational day 14 (Shingo et al., 2003). The increase in
BrdU-labeling was likely due to an increase in cell proliferation, as
indicated by a similar increase in Ki67-labeling in the SVZ on ges-
tational day 7. Further, mice injected with BrdU on gestational day
7 had significantly more cells labeled for BrdU or double-labeled
for BrdU/NeuN in the granule and periglomerular cell layers of
the MOB 4 weeks later, compared to virgin controls, indicating
that increased cell proliferation in the SVZ by gestation is closely
paralleled by an enhanced survival of new neurons in the MOB.
Interestingly, no difference was found in the cell proliferation in
the SVZ/OB between non-pregnant (control) sheep and sheep at
the end of the gestational period (Brus et al., 2010).

Together, these data highlight a brain region- and species-
specific effect of gestation on adult neurogenesis. Specifically, ges-
tation seems to suppress hippocampal adult neurogenesis in sev-
eral mammalian species, such as meadow vole, mouse, and sheep,
but not rat. In contrast, gestation seems to facilitate adult neuroge-
nesis in the SVZ/MOB system. Future studies are needed to exam-
ine whether adult neurogenesis differs across gestational stages
(in particular, early versus late gestational stage) and whether
gestation-induced neurons in the SVZ/MOB are involved in medi-
ating behaviors such as parental care, e.g., by enhancing olfactory
discrimination skills.

PARENTHOOD
Parenthood is characterized by dramatic changes in behaviors
(e.g., from indifference or avoidance of young to care and nurtur-
ing of offspring) as well as in hormone levels, neuronal morphol-
ogy, and neurochemical systems (Numan and Insel, 2003; Bridges
and Bridges, 2008). For example, it has been documented that
there is an increase in the level of corticosterone (Atkinson and
Waddell, 1995), hippocampal spine densities, and activation of the
oxytocin and vasopressin systems during the postpartum period
(Caba et al., 1996; Lin et al., 2003). Recently, interest has emerged to
investigate the effect of parenthood on adult neurogenesis (Leuner
et al., 2010a; Levy et al., 2011).

Maternal experience has been found to negatively affect adult
neurogenesis in rats in a time- and brain region-specific manner.
Female Sprague-Dawley rats on postpartum day 2 and 8, but not
on postpartum day 28 and post-weaning, showed a significant
reduction in hippocampal cell proliferation compared to virgin
rats (Leuner et al., 2007). Such reduction in cell proliferation was
not observed in the SVZ. In the same study, 1-week cell survival
in the DG was also reduced in postpartum females compared to
virgin rats in diestrus, but such group difference was no longer
evident at a 2-week survival period. Motherhood also reduced
hippocampal cell survival in female California mice (Peromyscus
californicus; Glasper et al., 2011). Interacting with pups for 3 weeks
(from birth until weaning) significantly reduced hippocampal cell
survival of mice caring for pups compared to control females
whose pups were removed at birth. A study in sheep further illus-
trated the negative impact of motherhood on adult neurogenesis.
Following 24 h of interaction with their lamb, ewes showed a sig-
nificant reduction in cell proliferation in the SVZ compared to
nulliparous ewes and ewes that only had sociosexual interactions
with males (Brus et al., 2010). In addition, cell proliferation was
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reduced in the MOB and DG in ewes following parturition (inde-
pendent of interaction with the lamb) compared to nulliparous
ewes or ewes that had only sociosexual interactions with a male.
It is of interest to note that the hormone-simulated postpartum
period after a hormone-simulated pregnancy (without interac-
tion with pups) in Long–Evans rats also caused a reduction in
cell proliferation in the DG (Green and Galea, 2008). However,
the number of Dcx-labeled cells (newly generated immature neu-
rons) did not differ across groups. Unfortunately, cell survival and
neuronal maturation in the DG as well as the effect of hormone-
stimulated pregnancy on other brain regions was not investigated.
Alternatively, motherhood does not seem to affect adult neuro-
genesis in Yorkshire pigs (Raymond et al., 2006). In particular,
the authors compared pigs in their second parity (female lac-
tating pigs) to adult naïve ones and showed that the number of
PCNA-labeled cells within the HYP was not changed due to mater-
nal experience, possibly suggesting that the number of gestation
periods plays a role in mediating the effect on adult neurogen-
esis. Unfortunately, other brain regions such as the DG or the
SVZ/MOB were not examined in the study.

Unfortunately, there is limited knowledge about whether late
gestation, characterized by drastic changes in hormones (such as a
decrease in progesterone and an increase in estrogen and prolactin;
Grattan and Averill, 1990; Grattan et al., 2008), affects adult neuro-
genesis independently from motherhood. Future studies need to
be conducted to address this research area. In addition, systematic
research is needed to evaluate the underlying mechanism by which
motherhood affects adult neurogenesis. Some research suggests
that hormonal changes (e.g., elevation of corticosterone levels)
during lactation are solely responsible for the observed changes in
adult neurogenesis (Leuner et al., 2007), while there is evidence
to also support the notion that adult neurogenesis is affected by
parturition independent of the interaction (i.e., presence versus
absence of lactation) with offspring (Brus et al., 2010).

Experience with offspring also affects adult neurogenesis in
fathers. For example, in a study in C57BL6 mice, paternal expe-
rience increased cell proliferation in the DG and SVZ (Mak
and Weiss, 2010). Specifically, mated males were injected with
BrdU and assigned to one of three paternal conditions: (1) male
remained with female during gestation until parturition (mini-
mal paternal experience), (2) male remained with female during
gestation until 2 days after parturition (48 h of paternal experi-
ence), or (3) male remained with female during gestation and
was housed alone for 2 days following parturition (minimal pater-
nal experience). Quantification of both BrdU- and Ki67-labeled
cells showed that cell proliferation was significantly increased in
males with 48 h of paternal experience compared to the other
two groups. Additionally, this study showed that cell proliferation
was increased in both the DG and SVZ in males with parental
experience for 8 days after parturition, but cell proliferation did
not differ between males with or without parental experience at
10 days following birth. Furthermore, males in the paternal expe-
rience group had more Dcx-labeled cells in the DG and SVZ
than the males without pup experience. Even 3 weeks after birth,
males with pups still showed more BrdU/NeuN double-labeled
cells in the DG and OB than males without pups, indicating
an enhanced neuronal differentiation of the newly proliferated

cells by paternal experience. Interestingly, fatherhood seems to
modulate adult neurogenesis differently in monogamous species
that are bi-parental. For example, in male California mice (P. cal-
ifornicus), the number of BrdU-labeled cells in both the DG and
SVZ was significantly reduced in males that interacted with pups
for 21 days compared to control males without pup interactions
(from birth until weaning), indicating reduced cell survival asso-
ciated with paternal experience (Glasper et al., 2011). However, no
group differences were found in the percentage of adult-generated
cells expressing a neuronal marker, indicating that neuronal fate
specification was not affected by paternal experience. In addition,
recent data in the socially monogamous prairie voles indicated that
fatherhood differentially affects cell proliferation and cell survival
(C. Lieberwirth, unpublished data). In particular, cell prolifera-
tion (as assessed by Ki67-labeling) in the AMY, DG, and VMH
did not differ between sexually naïve males and fathers. However,
fathers showed a significant reduction in cell survival (as assessed
by BrdU-labeling) in the AMY, DG, and VMH, but not the MOB,
compared to sexually naïve males.

To conclude, parental care plays a key component in the survival
of offspring and not surprisingly places considerable demands on
the parent. In particular, gestation, lactation, and infant care are
energetically costly to females and corticosterone levels are ele-
vated during gestation and the postpartum period (Bronson, 1989;
Atkinson and Waddell, 1995). Consequently, maternal investment
may represent a stressor inhibiting adult neurogenesis similar to
other stressors, such as exposure to an aggressive conspecific or
social isolation (Gould et al., 1997; Czeh et al., 2007; Lieberwirth
et al., 2012). As fathers in monogamous bi-parental mammals
display very similar parental behaviors as females except nursing
(Lonstein and De Vries, 1999), fatherhood likely also places con-
siderable demands on fathers. Indeed, evidence suggests that there
is a significant weight loss associated with paternal care in sev-
eral bi-parental mammals including tamarins, lemurs, and prairie
voles (Sanchez et al., 1999; Achenbach and Snowdon, 2002; Fietz
and Dausmann, 2003; Campbell et al., 2009). In addition, the find-
ing that singly living male prairie voles have a greater survival rate
in the field than paired males (Getz and McGuire, 1993) provides
additional evidence to support the notion that parenthood in bi-
parental mammals places considerable demands on fathers, and
thus paternal investment may be stressful and inhibit adult neu-
rogenesis. Parenthood seems to modulate adult neurogenesis in a
species-specific manner, as parenthood with potentially less invest-
ment (such as paternal care in a non-paternal species) facilitates
adult neurogenesis (Mak and Weiss, 2010).

INTERACTION WITH CONSPECIFIC YOUNG
In several species, the mere exposure to neonatal unrelated con-
specifics can elicit parental behavior (behavioral sensitization;
Rosenblatt, 1967), which does not qualitatively differ from that
seen in natural parents (with the exception of lactation; Lonstein
and De Vries, 2000). Not surprisingly, the exposure to neonatal
unrelated conspecifics may also affect adult neurogenesis.

In the socially monogamous male and female prairie voles, an
acute (20-min) pup exposure facilitated cell proliferation in the
DG, but not the AMY, indicated by a significant increase in the
number of BrdU-labeled cells in the DG, compared to males and
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females which were exposed to a novel object or handled controls
(Ruscio et al., 2008). In another study, female Sprague-Dawley rats
were injected with BrdU, either exposed to six 1-day-old unrelated
pups for 10 min or left alone (controls), and perfused 4 weeks later
(Akbari et al., 2007). Interactions with the unrelated pups did not
affect cell survival in the MOB and AOB. However, a significant
increase in cell survival, indicated by more BrdU-labeled cells, was
found in the nucleus accumbens core and bed nucleus of the stria
terminalis, but not the AMY, following pup interactions.

Interestingly, the interactions with a conspecific pup did not
affect murine adult neurogenesis when males were housed with
unrelated pups. In particular, following 2-day housing with an
unrelated pup no effect on cell proliferation in the DG or SVZ
was observed in male C57BL6 mice (Mak and Weiss, 2010). Sex-
ually experienced males without pup exposure did not differ in
the number of BrdU-labeled cells compared to males that were
exposed to an unrelated pup. Furthermore, the type of interaction
(physical versus chemosensory) did not play a role as males that
were allowed to freely interact with the unrelated pup did not dif-
fer from the males that were exposed to the unrelated pup behind
a mesh barrier.

EFFECT OF THE STRESSFUL SOCIAL ENVIRONMENT ON
ADULT NEUROGENESIS
Positive social interactions, especially interactions with deeply
rooted social bonds including sexual partners and close family
members, are important for an individual’s well-being. In contrast,
negative social interactions such as social isolation, confrontations,
disruption, and social defeat are inevitable psychosocial stressors
that induce a stress response, impair the function of multiple bio-
logical systems, and pose a risk to one’s mental and physiological
health (Steptoe, 1991; Curtis, 1995; Smith and Wang, 2011). Across
most of the animal kingdom, psychosocial stress resulting from
competition for space, shelter, food, water, or access to a potential
mate occurs regularly. Such psychosocial stress is associated with
deleterious consequences to behaviors and physiology. Here we
will focus on the effects of psychosocial and psychological stress-
induced by (1) lack/disruption of social bonds, (2) social defeat,
and (3) predator odor exposure on adult neurogenesis.

LACK OR DISRUPTION OF SOCIAL INTERACTION
The lack or disruption of social interactions are particularly dis-
tressing and can lead to various behavioral, physiological, as well
as neuronal changes (such as altering adult neurogenesis). Among
the first studies to investigate the effect of social isolation on adult
neurogenesis is a study in female prairie voles (Fowler et al., 2002).
Acute (48 h) social isolation significantly increased the number of
adult-generated cells in the SVZ, but did not affect cell prolifera-
tion in the other brain regions examined (i.e., AMY, DG, HYP, and
cingulate cortex), compared to control females (female–female
housed). In the same study, 21 days of chronic social isolation
seemed to decrease the number of adult-generated cells in the
AMY and HYP (without affecting the other brain regions), but
such changes did not reach statistical significance, indicating a
lack of effect on cell survival. The length of social isolation may
play an important role in influencing adult neurogenesis. Indeed, a
study in rats reported that sub-chronic (8 days) social isolation did

not affect hippocampal cell survival, whereas short-term chronic
(21 days) social isolation reduced cell survival in female, but not
male, Wistar rats (Westenbroek et al., 2004). Interestingly, in a dif-
ferent strain of rats, short-term chronic social isolation (15 days)
reduced cell survival in the hilus, but not the granular cell layer,
of the DG in male Sprague-Dawley rats (Spritzer et al., 2011). The
same study also reported that isolation treatment increased the
number of adult-generated hippocampal cells expressing a neu-
ronal phenotype (BrdU/NeuN double-labeled cells). The reason
for this increase in neuronal differentiation with simultaneous
decreases in cell survival is not known. Furthermore, long-term
chronic social isolation (42 days) significantly decreased cell pro-
liferation in the DG and MPOA, impaired cell survival in the AMY,
DG, and VMH, and reduced neuronal differentiation (as indicated
by BrdU/NeuN double-labeling) in the AMY and DG in female
prairie voles (Lieberwirth et al., 2012).

It is important to note that the social environment not only
directly affects cell birth/death in the adult brain but also modu-
lates the effect of other environmental factors on adult neurogen-
esis. For instance, short-term running increased hippocampal cell
proliferation in group-housed male rats (Stranahan et al., 2006)
and survival in group-housed male and female rats (Stranahan
et al., 2006; Leasure and Decker, 2009), but this effect disap-
peared in socially isolated rats. Furthermore, the effect of social
isolation does not seem to be restricted to separation from other
adults. Female rats showed a significant reduction in hippocam-
pal cell proliferation in response to repeated separation from their
offspring (6 h per day for 14 consecutive days; Sung et al., 2010).

SOCIAL DEFEAT
Social defeat (a paradigm in which an animal defends its home cage
against an unfamiliar same-sex intruder resulting in the defeat of
the intruder) is a powerful psychosocial stressor leading to dra-
matic changes in physiology (e.g., activation of the hypothalamic–
pituitary–adrenal axis; Keeney et al., 2006), neuroanatomy (e.g.,
reduction in dendritic branching and neuronal cell loss; McEwen,
2010), and behavior (e.g., deficits in social interaction and mating
behavior as well as an increase in anxiety; reviewed by Martinez
et al., 1998). Such an aversive social experience also affects adult
neurogenesis. For example, stressful interactions with dominant
and aggressive conspecifics significantly alter adult neurogenesis
in a variety of mammalian species. In male tree shrews (Tupaia
belangeri) and common marmoset monkeys (Callithrix jacchus),
the acute (1 h) social interaction with a dominant same-sex con-
specific significantly reduced cell proliferation in the DG of the
defeated individuals (Gould et al., 1997, 1998). Contrary to the
effect of acute social defeat in marmosets and tree shrews, the
acute social defeat exposure (single or three consecutive defeat
exposures) did not affect hippocampal cell proliferation in male
CFW mice (Yap et al., 2006). In rats, the 20-min exposure to a
dominant same-sex conspecific did not affect cell proliferation in
the DG, however, it significantly reduced both 1 and 4-week sur-
vival of hippocampal cells in the subordinate rats (Thomas et al.,
2007).

Similar to the effect of acute psychosocial stress, sub-chronic
social defeat also affected adult neurogenesis. For example, in
male Wistar rats, daily social defeat for 5 consecutive days reduced
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the number of adult-generated immature neurons in the DG
(van Bokhoven et al., 2011). Fewer BrdU-labeled cells were also
observed in the DG, but not in the AMY, following repeated daily
(7 consecutive days) social defeat stress in male C57BL mice (Mitra
et al., 2006). Further, in male CFW mice, 10 days of daily social
defeat significantly reduced hippocampal cell proliferation, and
interestingly, an inverse correlation between the number of adult-
generated cells and total number of received bites was observed
(Yap et al., 2006). In male Wistar rats, 18 days of daily social
defeat reduced not only cell proliferation but also cell survival in
the DG (Czeh et al., 2002). Neuronal differentiation (as assessed
by BrdU/NeuN double-labeling) was not affected by the social
defeat paradigm. Furthermore, long-term psychosocial stress has
also been shown to affect adult neurogenesis. In adult male tree
shrews, 28 or 35 consecutive days of psychosocial stress (consisting
of 1-h daily social defeat and mesh-housed with dominant-male)
significantly reduced hippocampal cell proliferation in male tree
shrews (Czeh et al., 2001; van der Hart et al., 2002). This reduc-
tion in hippocampal cell proliferation due to chronic psychosocial
stress was age-dependent, the oldest subgroup showed the great-
est vulnerability to stress (Simon et al., 2005). Long-term chronic
resident intruder stress (social defeat for 35 consecutive days) also
reduced cell proliferation in the prefrontal cortex (PFC), in addi-
tion to the DG, and impaired cell survival in the PFC and DG in
the adult rats (Czeh et al., 2007). No effect on cell proliferation
or survival was observed in the SVZ or primary motor cortex.
Finally, social interactions via a dominant–subordinate hierarchy
also altered adult neurogenesis. In a study in male Sprague-Dawley
rats, chronic exposure (14 days) to a dominance hierarchy affected
hippocampal neurogenesis differentially: it had no effect on hip-
pocampal cell proliferation and neuronal differentiation (assessed
by BrdU/NeuN and BrdU/TuJ1 double-labeling), but it facilitated
hippocampal cell survival in dominate males in comparison to
their subordinate counterparts and control males (no experience
of dominance hierarchy; Kozorovitskiy and Gould, 2004).

PREDATOR ODOR
In addition to stressful encounters with conspecifics, interac-
tions with non-conspecifics, especially if the non-conspecific
poses a threat (e.g., being a predator), can also potentially lead
to psychosocial stress, altering adult neurogenesis. For example,
trimethyl thiazoline (TMT), a major component of fox feces, rep-
resents a natural predator odor to rodents such as rats and mice
(Wallace and Rosen, 2000; Staples, 2010). Although a brief (20-
min) exposure to TMT did not significantly alter hippocampal
cell proliferation (Thomas et al., 2006), 1-h exposure to TMT sig-
nificantly reduced cell proliferation in the DG of male (Tanapat
et al., 2001; Falconer and Galea, 2003), but not female (Falconer
and Galea, 2003), rats, in comparison to exposure to saline or neu-
tral non-threatening odors (such as mint or orange). In addition,
hippocampal cell survival 1 week after the predator odor expo-
sure was significantly reduced, compared to the saline controls;
however, this group difference disappeared 3 weeks later (Tana-
pat et al., 2001). Neuronal differentiation (assessed by BrdU/TuJ1,
BrdU/NeuN, or BrdU/NSE double-labeling) was not affected by
1-h predator odor exposure (Tanapat et al., 2001; Falconer and
Galea, 2003). These data indicate that exposure to predator odor

may induce stress responses, impairing hippocampal neurogenesis
in a sex-specific manner.

HORMONAL REGULATION OF SOCIAL INTERACTIONS ON
ADULT NEUROGENESIS
A variety of hormones, neurotransmitters, and signaling mole-
cules have been implicated in the regulation of adult neurogenesis
(for review see Grote and Hannan, 2007; Fowler et al., 2008;
Pawluski et al., 2009). Social interactions, as reviewed above, have
been shown to modulate the levels of peripherally and centrally
released hormones. For example, mating behaviors are associ-
ated with alterations in peripherally released gonadal steroid
hormones including testosterone and estrogen (Valenstein and
Young, 1955; Carter et al., 1989; Ganong, 1997; Fowler et al.,
2003; Becker et al., 2005); the gestation and maternal postpar-
tum period are associated with changes in luteinizing hormone,
prolactin, and estrogen (Garland et al., 1987; Pawluski et al., 2009);
and aversive social interactions (i.e., interactions causing psy-
chosocial stress) are associated with an increased activity of the
hypothalamic–pituitary–adrenal axis leading to a greater release
of corticotrophin-releasing hormone, adrenocorticotropic hor-
mone, and glucocorticoids (reviewed in Tsigos and Chrousos,
2002; Lightman, 2008). As these peripheral released hormones
can easily cross the blood brain barrier and/or can be released in
the brain and become centrally acting factors, it is important to
note that the DG, a traditional neurogenic brain region, as well as
other non-traditional neurogenic brain regions, such as the AMY
and MPOA, have been documented to contain hormonal recep-
tors, e.g., adrenal receptors and estrogen receptors (McEwen, 1994;
Weiland et al., 1997; Tabori et al., 2005). Therefore, social interac-
tions may induce distinct patterns of hormonal release, and these
hormones can act centrally on their receptors to modulate region-
specific adult neurogenesis (e.g., Mazzucco et al., 2006). Here, we
will summarize the literature focusing on several hormones with
distinguished roles in social interactions to illustrate the hormonal
involvement in adult neurogenesis.

Levels of gonadal steroid hormones (such as estrogens and
testosterone) change depending on reproductive states as well
as during sociosexual interactions. For example, ovarian estro-
gens in female rats fluctuated across the estrous cycle (Shaikh,
1971; Pawluski et al., 2009) and the level of ovarian estrogens
was associated with female’s mating behavior (Powers, 1970). It
has been reported that hippocampal cell proliferation in female
rats was higher during proestrus (high level of estrogen) than
during estrus or diestrus (low level of estrogen) in an ovarian
cycle, indicating a positive correlation between circulating levels
of estrogen and cell proliferation in the female rat hippocampus
(Tanapat et al., 1999). Furthermore, ovariectomy reduced, whereas
estrogen replacement in ovariectomized female rats increased,
hippocampal cell proliferation in a dose- and time-dependent
manner, suggesting that estrogen facilitates hippocampal cell pro-
liferation (Tanapat et al., 1999, 2005; Ormerod et al., 2003; Barha
et al., 2009). Repeated estrogen administration (pulsatile expo-
sure) in ovariectomized female, but not gonadectomized male,
rats also increased hippocampal cell proliferation, but reduced
hippocampal cell survival (Barker and Galea, 2008). By using
pharmacological activation of estrogen receptors, a study revealed
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that the estrogen-facilitated increase in hippocampal cell prolif-
eration was likely modulated by an estrogen receptor-mediated
mechanism (Mazzucco et al., 2006). Additional evidence for the
involvement of the estrogen receptor comes from a study showing
that pharmacological blocking of estrogen receptor alpha or beta
prevented the estrogen-facilitated hippocampal cell proliferation
(Nagy et al., 2005). Furthermore, research has evaluated the effect
of androgens on hippocampal adult neurogenesis. In particular,
castration in male rats significantly decreased hippocampal cell
survival, whereas testosterone replacement in castrated male rats
prevented this reduction (Spritzer and Galea, 2007). These data
suggest that androgens also have effects on hippocampal adult neu-
rogenesis; however, it is not clear if these effects in rats are the result
of direct androgenic action or if androgens affect neurogenesis via
an aromatase-mediated pathway.

The notion that gonadal steroid hormones, both estrogens and
androgens, modulate adult neurogenesis is also supported by data
from studies in voles. It should be noted that female voles are
induced ovulators and the exposure to a male or its chemosensory
cues is necessary to induce behavioral estrus which is associated
with a dramatic rise in estrogen (Cohen-Parsons and Carter,1987).
Indeed, 48 h of cohabitation with a male were sufficient to induce
behavioral estrus and resulted in a significant increase in SVZ
cell proliferation in female prairie voles compared to females that
either cohabited with a sibling or a novel female (Smith et al.,
2001). This effect was mediated by estrogen as ovariectomy elim-
inated, whereas estrogen replacement in ovariectomized females
restored, the effect of male exposure on cell proliferation in the
SVZ of female prairie voles. Further, reproductively active male
meadow voles showed enhanced hippocampal cell survival com-
pared to reproductively inactive males (Ormerod and Galea, 2003).
Estrogen treatment also enhanced cell proliferation in the AMY of
ovariectomized female meadow voles; in particular, this increase
was observed in subnuclei of the AMY with a high density of
estrogen receptors, namely the cortical and medial AMY (Fowler
et al., 2005). Further, testosterone administration increased hip-
pocampal cell survival in castrated male meadow voles compared
to vehicle treatment (Ormerod et al., 2004). In castrated male
meadow voles, the treatment with estrogen and testosterone, but
not dihydrotestosterone, significantly increased cell proliferation
in the cortical and medial nuclei of the AMY (Fowler et al., 2003).
It is important to note, that aromatase can aromatize testos-
terone allowing it to activate estrogen receptors, while DHT is a
non-aromatizable androgen. Therefore, these data suggest that an
estrogen receptor-mediated mechanism may modulate the effects
of gonadal steroid hormones on adult neurogenesis.

In addition to the effects of gonadal steroids, glucocorti-
coids have inhibitory/suppressive effects on cell proliferation (see
reviews by Mirescu and Gould, 2006; Pawluski et al., 2009). For
example, cell proliferation varies according to the natural changes
in glucocorticoid levels across the lifespan. In particular, hip-
pocampal cell proliferation is high during the early postnatal
period (when glucocorticoid levels are low; Gould et al., 1991) and
diminishes with age (when glucocorticoid levels become elevated;
Cameron and McKay, 1999). The inhibitory effects of glucocor-
ticoids on cell proliferation are further demonstrated by studies
showing that glucocorticoid administration during the postnatal

period or in adulthood inhibited, while the experimental removal
of glucocorticoids (e.g., via adrenalectomy) increased, cell prolifer-
ation in adult as well as senescent rats (Gould et al., 1992; Cameron
and Gould, 1994; Cameron and McKay, 1999). In addition to the
aging-induced increase in glucocorticoids, stressful stimuli also
induced an increase in glucocorticoid levels, which in turn sup-
pressed hippocampal cell proliferation and survival (Tanapat et al.,
2001). Using both agonists and antagonists, research also showed
that glucocorticoids have inhibitory effects on adult neurogenesis
via both mineralocorticoid and glucocorticoid receptors (Wong
and Herbert, 2005).

Similar to gonadal steroid hormones, hormones such as
luteinizing hormone, prolactin, and oxytocin that are involved in
the regulation of reproduction (i.e., pregnancy, parturition, and
lactation) also seem to affect cell proliferation. Exposure to an
unfamiliar male significantly changed the pulsatile release pat-
tern of luteinizing hormone in female sheep and upregulated
hippocampal cell proliferation (Hawken et al., 2009). In female
mice, exposure to male pheromones or the administration of
luteinizing hormone upregulated hippocampal cell proliferation,
whereas such an increase in hippocampal cell proliferation was
not observed in luteinizing hormone receptor knockout mice
(Mak et al., 2007). Further, prolactin levels are increased in preg-
nant as well as pseudopregnant mice that show an increase in
cell proliferation in the SVZ (Shingo et al., 2003). Experimen-
tal prolactin administration in female mice or exposure to male
pheromones resulted in the upregulation of cell proliferation in the
SVZ; whereas such an effect was absent in female mice whose pro-
lactin receptors were knocked out (Mak et al., 2007). In addition,
peripheral as well as central oxytocin administration upregulates
cell proliferation in the ventral, but not dorsal, hippocampus in
male Sprague-Dawley rats (Leuner et al., 2012). Chronic periph-
eral oxytocin administration also increased cell survival in the
ventral hippocampus without affecting neuronal differentiation.

ADULT NEUROGENESIS IN HUMANS
Similar to other mammalian species, neurogenesis has also been
reported in the adult human brain. In an early study, BrdU injec-
tions with immunohistochemical detection of BrdU-labeling, a
common method used in rodent research, was utilized to study
adult neurogenesis in humans (Eriksson et al., 1998). BrdU was
injected in terminally ill cancer patients. Adult-generated cells were
found in the DG and SVZ and some of these BrdU-labeled cells
also co-labeled with a mature neuronal marker such as calbindin,
NeuN, and neuron-specific enolase (NSE). Such co-labeling indi-
cates that a proportion of these adult-generated cells expressed
a neuronal phenotype. This seminal study firmly demonstrated,
for the first time, that continuing neurogenesis exists in the adult
human brain. However, it should be noted that as ethical concerns
were raised regarding routine BrdU administration in humans
(Cooper-Kuhn and Kuhn, 2002), subsequent studies primarily
used endogenous cell proliferation markers to examine human
adult neurogenesis. These markers include Ki67, PCNA, MCM-
2, and phosphorylated histone H3 (for review see Sierra et al.,
2011). These studies further confirmed the finding that even the
healthy human brain exhibits adult neurogenesis. For example, a
portion of Dcx-labeled cells in the adult human DG, particularly in
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the subgranular zone, also expressed proliferation markers, such
as Ki67, PCNA, MCM-2, or a mature neuronal marker, NeuN,
suggesting the presence of adult-generated neurons (Knoth et al.,
2010). In addition, neuroblast-like cells were found in the human
SVZ (Weickert et al., 2000) and rostral migratory stream (Curtis
et al., 2007). Interestingly, these neuroblasts exhibited a migratory
morphology (Curtis et al., 2007; Kam et al., 2009) and co-expressed
Dcx (Wang et al., 2011), providing further evidence for adult neu-
rogenesis in the human brain. Finally, newly generated neurons
were also found in the MOB of adult human brains, wherein Ki67-,
PCNA-, and PSA-NCAM-labeled cells indicated the occurrence
of cell proliferation. Further, Dcx-labeling and TuJ1/calretinin or
TuJ1/parvalbumin co-labeling indicated that a portion of adult-
generated cells adopted a neuronal phenotype (Bedard and Parent,
2004). Recently, new methods such as 14C retrospective labeling
(Spalding et al., 2005), magnetic resonance imaging (MRI; Bulte
and Modo, 2011), and cerebral blood volume measurements (CBV;
Pereira et al., 2007) have also been applied to study adult neuro-
genesis in the human brain. However, these techniques are not yet
commonly used (reviewed by Sierra et al., 2011).

Estimating the magnitude of hippocampal neurogenesis in the
adult human brain suggests that new neurons may play a potential
role in human behavior (Snyder and Cameron, 2011). Adult-
generated neurons are vulnerable and sensitive to a variety of
endogenous and exogenous factors and it has been suggested that
disrupting the maturation and integration of these new neurons
may contribute to deficits in cognitive and behavioral functions
(Danzer, 2008). As experimentally manipulating the social envi-
ronment to examine its effects on adult neurogenesis in the human
brain is impossible, the majority of studies examining alterations
of adult neurogenesis in humans have focused on comparisons
between healthy people and those with neurodegenerative dis-
eases (Sierra et al., 2011). Following severe, acute pathological
stimuli including stroke, seizure, or trauma, adult neurogenesis
was generally increased, further illustrating the potential of the
adult human brain to generate new cells (see review by Win-
ner et al., 2011; Zheng et al., 2011). Alterations in human adult
neurogenesis have also been reported in patients with various
neurodegenerative diseases including Alzheimer’s, Huntington’s,
and Parkinson’s disease (see review by Sierra et al., 2011; Win-
ner et al., 2011). The chronic and progressive loss of neurons
and glial cells in the brain is a common characteristic of these
neurodegenerative diseases, indicating that cell birth and sur-
vival in the adult human brain can be modulated by pathological
factors. Furthermore, patients with neurodegenerative diseases
usually have deficits in cognitive and behavioral functions, sug-
gesting a potential functional role of adult-generated neurons in
the human brain. In addition, a recent study showed a signif-
icant positive correlation between the regenerative capacity of
human hippocampal tissue in vitro and memory (Coras et al.,
2010). It needs to be pointed out that although in recent years,
adult neurogenesis has become one of the hottest topics in neuro-
science research, only a small portion (about 8%) of published
studies deal with human data (Sierra et al., 2011). Therefore,
more efforts are needed to study adult neurogenesis in humans
as it may offer a greater potential for the development of neu-
ron replacement therapies for treatments of neurodegenerative
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diseases. In addition, as animal research has suggested the involve-
ment of social interactions to affect adult neurogenesis, such
studies should also be considered in examining adult neurogenesis
in humans.

CONCLUSION
Social interactions affect one’s psychological, physiological, and
behavioral functions. As reviewed above, social interactions also
modulate adult neurogenesis and this modulation varies depend-
ing on the type of social stimulus (positive versus aversive), brain
region, stage of adult neurogenesis (e.g., proliferation, survival,
and differentiation), and species. While some conflicting data exist
(see Table 2), it seems that acute and chronic sociosexual interac-
tions, as positive stimuli, facilitate cell proliferation and survival
across distinct brain regions; whereas aversive social interactions
leading to psychosocial stress impair adult neurogenesis. Interest-
ingly, the effect of parenthood may depend on the level of parental
investment. In particular, both motherhood and fatherhood in
bi-parental species are characterized by high parental investment,
which may ultimately cause the suppression in adult neurogen-
esis. In contrast, in species with low paternal investment (e.g.,
non-paternal species), fatherhood seems to facilitate adult neuro-
genesis. Hormonal changes have also been associated with social
interactions and these may underlie the differential effects of social
stimuli on adult neurogenesis. Unfortunately, there are only a lim-
ited amount of studies documenting that social interactions alter
adult neurogenesis.

Furthermore, very few studies have examined the functional
significance of adult-generated neurons in mediating physiological
and behavioral functions that change following social interac-
tions. On the contrary, several studies using various strategies have
been used to link adult neurogenesis to learning and memory.
One strategy involves the assessment of a correlative relationship
between the number of adult-generated neurons in the hippocam-
pus or olfactory system and the effect on hippocampal or olfactory
function, respectively. For example, environmental enrichment
and exercise lead to enhanced hippocampal adult neurogene-
sis which is correlated positively with performance on a spatial
task (Kempermann et al., 1997; van Praag et al., 2005); whereas
a reduction in adult neurogenesis is correlated with learning
impairments (Lemaire et al., 2000; Drapeau et al., 2003). Sim-
ilarly, an increase in the number of olfactory bulb neurons is

associated with enhanced odor memory (Rochefort et al., 2002).
Future studies should evaluate whether alterations (enhancement
or reduction) of adult neurogenesis in response to social inter-
actions modulates subsequent social behaviors. Another strategy
to examine the functional significance of adult neurogenesis uses
immunodouble-labeling for BrdU (labeling adult-generated cells)
with an immediate early gene product, such as cFos or zif268
(labeling activated neurons). The co-label indicates that adult-
generated neurons participate in a functional network. Using this
method, activation of adult-generated neurons has been repeat-
edly shown in the hippocampus in response to spatial learn-
ing and memory tasks (Kee et al., 2007; Tashiro et al., 2007).
In addition, Huang and Bittman (2002) showed the activation
of adult-generated olfactory neurons in male golden hamsters
exposed to estrous females. However, future studies are needed
to systematically evaluate whether adult-generated cells can be
activated in response to a variety of social interactions (such as
mating and parental behavior). Lastly, the direct manipulation
(i.e., suppression of adult neurogenesis) can be used to examine
the functional significance of adult-generated cells. Pharmacologi-
cally suppressing adult neurogenesis, using antimitotic agents such
as methylazoxymethanol (MAM) or DNA-alkylating agent temo-
zolomide (TMZ), has shown that adult-generated hippocampal
neurons may play a role in hippocampal learning and memory
(Shors et al., 2001; Bruel-Jungerman et al., 2005; Garthe et al.,
2009). Furthermore, suppression of olfactory bulb adult neuro-
genesis using cytosine arabinoside (AraC) prevents the display
of preference for a dominant versus a subordinate male in female
mice (Mak et al., 2007). Similarly, focal irradiation and viral-based
ablation of adult neurogenesis in the hippocampus caused deficits
in spatial tasks (Clelland et al., 2009; Jessberger et al., 2009). How-
ever, such techniques have not yet been used to examine the effects
of adult neurogenesis ablation on social behaviors. Needless to
say, additional studies are required to systematically investigate
the potential involvement of adult-generated neurons in response
to social interactions and in mediating subsequent physiological
and behavioral functions.
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