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Abnormal corticostriatal resting-state functional connectivity (rsFC) has been implicated 
in the neuropathology of multiple sclerosis. The striatum, a component of the basal gan-
glia, is involved in diverse functions including movement, cognition, emotion, and limbic 
information processing. However, the brain circuits of the striatal subregions contributing 
to the changes in rsFC in relapsing–remitting multiple sclerosis (RRMS) patients remain 
unknown. We used six subdivisions of the striatum in each hemisphere as seeds to 
investigate the rsFC of striatal subregions between RRMS patients and matched healthy 
controls (HCs). In addition, we also scanned a subcohort of RRMS patients after an 
average of 7 months to test the reliability of our findings. Compared to HCs, we found 
significantly increased dorsal caudal putamen (DCP) connectivity with the premotor 
area, dorsal lateral prefrontal cortex (DLPFC), insula, precuneus, and superior parietal 
lobule, and significantly increased connectivity between the superior ventral striatum and 
posterior cingulate cortex (PCC) in RRMS patients following both scans. Furthermore, 
we found significant associations between the Expanded Disability Status Scale and 
the rsFC of the left DCP with the DLPFC and parietal areas in RRMS patients. Our 
results suggest that the DCP may be a critical striatal subregion in the pathophysiology 
of RRMS.

Keywords: relapsing–remitting multiple sclerosis, resting-state functional connectivity, striatal subregions, dorsal 
caudal putamen, pathophysiology

inTrODUcTiOn

The striatum is a component of the basal ganglia and is composed of the caudate nucleus, putamen, 
and nucleus accumbens. These regions are involved in sensorimotor function, cognition, and emo-
tional information processing (1–3). Previous studies have demonstrated that the striatum interacts 
with other cortical regions to plan and execute goal-directed behavior (4–6), as well as motor activity 
(7). The striatum also receives projections from specific, remote cortical areas and projects them to 
the thalamus and brainstem via the pallidum and then back to the cortex. This pathway is known as 
the corticostriatal network (5).

Multiple sclerosis (MS) is characterized by multiple lesions in the brain and/or spinal cord, result-
ing in various nervous system impairments (8). In recent years, corticostriatal resting-state func-
tional connectivity (rsFC) has been implicated in the pathophysiology of MS (9, 10). For example, 
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using voxelwise analysis, Sbardella and colleagues found that 
MS patients showed reduced basal ganglia-related rsFC when 
compared with healthy controls (HCs) (11). In other studies, 
investigators found that MS patients had significantly reduced 
functional connectivity within the corticostriatal motor loop 
(12) and revealed a spatial expansion of motor resting-state con-
nectivity in subcortical nuclei (13, 14). Furthermore, Finke et al. 
found that MS patients were associated with altered functional 
connectivity of the striatum with the frontal gyrus, prefrontal 
cortex, motor area, and parietal cortex (15).

Although abnormal corticostriatal functional connectivity has 
been detected in MS patients, the precise role of the striatal sub-
divisions in MS remains unclear. Individual striatal subregions 
are believed to connect to specific functional cortical networks 
(9, 16, 17). More specifically, the inferior ventral striatum is posi-
tively connected with the orbital frontal cortex and the arterial 
cingulate cortex, the dorsal caudate (DC) is positively connected 
with the superior and middle frontal gyri, and the dorsal caudal 
putamen is positively connected with the precentral gyrus.

Previous studies have also found that portions of the striatal 
subregions, such as the superior ventral striatum (VSs) and DC, 
demonstrate abnormal rsFC with reward-related brain regions in 
depression patients (18, 19). In children with autism, nearly all 
striatal subregions showed increased rsFC with the limbic cortex 
(20), and in patients with obsessive-compulsive disorder, there is 
a clear functional distinction in the corticostriatal axis between 
the dorsal and ventral striatal regions (21). Similarly, exploring 
rsFC changes in striatal subregions in MS patients may shed light 
on neural plasticity changes in MS patients.

In this study, we used six subdivisions of the striatum as seeds 
to investigate the rsFC of patients with relapsing–remitting mul-
tiple sclerosis (RRMS), as well as the association between rsFC 
and patients’ symptoms, as indicated by the Expanded Dis ability 
Status Scale (EDSS). We hypothesized that compared to HCs, 
RRMS patients would have altered corticostriatal functional 
connectivity of striatal subregions, particularly subregions of the 
putamen due to its important role in the corticostriatal motor 
loop. Additionally, in order to test the reliability of the corticos-
triatal rsFC changes in RRMS patients, we scanned a subcohort of 
the RRMS patients a second time in the fMRI scanner.

MaTerials anD MeThODs

Participants
Twenty patients with a primary diagnosis of RRMS were 
recruited for this study at Dongzhimen Hospital, Beijing, China. 
All patients met the revised McDonald criteria (22) and classifica-
tion standards for MS. Fifteen age and sex-matched right-handed 
healthy subjects were used as a control group. Healthy subjects 
had no history of neurological or psychiatric disease.

The inclusion criteria for RRMS patients were: (1) patients 
were in the remission stage of RRMS with no acute attack or exac-
erbation of MS during the last month; (2) patients were not taking 
any glucocorticoid medications; (3) patients’ medication and 
treatment had no significant recent adjustments; (4) patients had 
no history of serious psychiatric illness or neurological disease 

other than MS; (5) Chinese was their primary language; (6) 
patients were right-handed according to the modified Edinburgh 
Handedness Questionnaire (23); and (7) patients did not have 
any contraindications to MRI. Patients who had contraindica-
tions to MRI, poor quality MRI images, or showed one or more 
gadolinium-enhancing lesions during their baseline MRI were 
excluded.

A neurologist assessed patients’ disability using the EDSS  
(24) on the day of the neuropsychological assessment.

fMri scan
Twenty RRMS patients (RRMS1 group) and 15 HCs received 
the first fMRI scan. In order to investigate the reliability of our 
findings, 12 RRMS patients received a second fMRI scan (RRMS2 
group) approximately 7 months apart.

fMri Data acquisition
In this study, all fMRI data and structural data were acquired using 
two-pulse sequences on a 3-T scanner (Siemens AG, Erlangen, 
Germany) with an 8-channel head coil. The functional data were 
collected using EPI sequences oriented parallel to the AC-PC 
line (repetition time: 2,000  ms, echo time: 30  ms, flip angle: 
90°, matrix: 64 mm × 64 mm, field of view: 225 mm × 225 mm, 
slice thickness: 3.5  mm, 36 slices, no gap, 306 time points). A 
T1-weighted 3D magnetization-prepared rapid acquisition 
gradient echo sequence (repetition time: 2,700  ms, echo time: 
2.97 ms, flip angle: 7°, matrix: 256 mm × 256 mm, field of view: 
250  mm  ×  250  mm, slice thickness: 1  mm, 176 sagittal slices 
covering the whole brain, no gap, acquisition voxel size: 1 mm3) 
was also applied. Participants were instructed to lie still with their 
eyes closed while staying awake.

fMri Data analysis
We examined six subregions of the striatum. These six subregions 
were widely used in previous studies (18, 20, 21). The six seeds 
included the inferior [Montreal Neurological Institute (MNI) 
peak coordinate x y z: ±9 9 −8] and superior (±10 15 0) ventral 
striata (inferior ventral striatum (VSi) and VSs), DC (±13 15 9), 
dorsal caudal putamen (DCP) (±28 1 3), dorsal rostral putamen 
(DRP) (±25 8 6), and ventral rostral putamen (VRP) (±20 12 −3)  
(16). Each striatal subregion was extracted as a 3  mm radial 
sphere using WFU-Pick Atlas software (25). The rsFC measures 
were computed between each seed and every voxel in the brain.

The preprocessing of fMRI data was performed with statisti-
cal parametric mapping (Wellcome Department of Cognitive 
Neurology, University College, London, UK) in MATLAB 8.2 
(Mathworks, Inc., Natick, MA, USA). The preprocessing steps 
included realignment and coregistration of fMRI data to the 
structural images, normalization to the MNI standard template, 
and finally, smoothing of the data with an 8-mm full width at half 
maximum (FWHM) kernel. Band-pass filtering was performed 
with a frequency window of 0.008–0.09 Hz. In addition to our 
signals of interest, we employed segmentation of white matter 
and cerebrospinal fluid areas to remove confounding factors 
(26). Finally, time points were marked as outliers if the global 
mean intensity exceeded three SDs or if composite movement 
from a preceding image exceeded a 0.5  mm deviation using 
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Table 1 | Demographics and clinical characteristics of  
relapsing–remitting multiple sclerosis (rrMs) patients and  
healthy controls (hcs).

hc, n = 15 rrMs1, n = 20 rrMs2, n = 12

Age (years)
36.7 (12.6) 37.2 (11.9) 36.4 (13.1)Mean (SD)

Gender
11/4 14/6 10/2Female/male

Expanded disability  
status scale score NA 1.9 (1.4) 1.8 (1.6)
Mean (SD)

FigUre 1 | connectivity of caudate, putamen, and ventral striatum seeds in healthy controls (hcs) and rrMs1 and rrMs2 patients.
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the artifact detection toolbox (http://www.nitrc.org/projects/
artifact_detect/). Outlier time points were also included as regres-
sors in the first-level general linear model along with motion 
parameters.

Functional connectivity analysis was carried out using a seed-
based approach in the CONN toolbox v15.p (26). First-level 
correlation maps were produced by extracting the residual BOLD 
time course from each striatal seed region and by computing 
Pearson’s correlation coefficients between that time course and 
the time courses of whole-brain voxels. Correlation coefficients 
were Fisher transformed into “Z” scores, which increased nor-
mality and allowed for improved second-level general linear 
model analyses.

The second-level group analysis was applied using two-sample 
t-tests to compare the functional connectivity changes between 
the first scans of MS patients and HCs. Voxelwise linear regres-
sion analysis in CONN was also performed to investigate the 
association between the potential relationships between patients’ 
disability symptoms (EDSS) and the rsFC of each striatal subre-
gion in the first and second scans of the MS patients. Age and 
gender were included in the analysis as covariates of non-interest.

A threshold of voxelwise p < 0.005 uncorrected and cluster-
level p  <  0.05 false discovery rate correction was applied for 
within and between-group fMRI data analyses.

behavioral statistical analysis
Behavioral analysis was performed using SPSS 18.0 Software 
(SPSS Inc., Chicago, IL, USA). Two-sample t-tests were applied 
to compare the baseline characteristics between the two RRMS 
patient cohorts and HCs.

resUlTs

Patient characteristics
Demographics and clinical characteristics are reported in 
Table  1. No significant differences were found between the 
RRMS1 patients and HCs in terms of age (p = 0.899) and gender 
(p = 0.835), and between the RRMS2 patients and HCs in terms 
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Table 2 | brain regions showing significant striatal connectivity differences between relapsing–remitting multiple sclerosis (rrMs) patients and healthy 
controls (hcs).

contrast seed connected regions X, Y, Z cluster size Z-score

HC > RRMS1

DC_L

Supplementary motor area (SMA), L −38, 16, 46 213 2.95

Cerebellum, R 44, −54, -48 477 4.43
3.85

DC_R
Thalamus, R 16, −18, 2

278
3.98

Putamen, R 28, -20, 0 3.51

VRP_R

SMA, L −54, 10, 42
313

3.72
Precentral, L −46, 0, 46 3.31

Middle frontal gyrus, R 60, 24, 24 223 2.95

Precental, R 42, 6, 34 259 3.53

Premotor, L −14, 14, 66 306 2.8

VSs_L
Middle temporal, L −52, −38, −12 321 3.03

SMA, L −54, 12, 42 263 2.96

VSs_R Orbital frontal cortex, R 46, 48, −2 282 3.32
3.22

RRMS1 > HC

DC_L

Paracentral lobule, L −10, −48, 78
804

3.39
Precuneus −2, −50, 52 2.82
Lateral parietal lobule 20, −46, 58 2.79

Parahippocampal, L −36, −36, −20
255

4.29
Cerebellum, L −40, −44, −24 3.37

Middle temporal, R 52, −64, 20 268 3.5
Occipital cortex, L −40, −86, 18 247 3.96

DCP_L

Premotor, R 26, 8, 66 168 3.67

Dorsal lateral prefrontal cortex (DLPFC), L −40, 32, 22
342

3.44
Insula, L −52, 40, 24 3.34

Precuneus, L −16, −58, 52
185

3.3
Superior parietal lobule, L −16, −70, 42 2.93

Postcentral, R 58, −24, 36
185

3.38
Inferior parietal lobule, R 58, −32, 40 3.31

Cerebellum, L −44, −48, 38 288 −4.33

VSs_L Middle temporal gyrus, R 52, −68, 10 439 4.08

VSs_R

Cerebellum, R 2, −46, 2
318

4.17
PCC, R 16, −56, 8 2.81

Parahippocampal, L −24, −30, −6
283

3.72
Thalamus, L −20, −30, 0 3.25

Overlap of RRMS1 > HC and RRMS2 > HC

DCP_L

Premotor, R 28, 4, 62 74 3.81

DLPFC, L
Insula, L

−40, 20, 10
−52, 40, 24
−30, 20, 12

257
4.38
3.27
3.48

Precuneus, L
Superior parietal lobule, L

−18, −68, 46
−12, −66, 56

171
5.12
4.61

VSs_R PCC, R 6, −54, 6 175 3.92
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of age (p = 0.960) and gender (p = 0.553). There were no signifi-
cant differences (p = 0.903) between the first and second EDSS 
scores of the 12 RRMS2 patients.

rsFc results
A one-sample t-test was used to investigate rsFC patterns in 
RRMS patients and HCs (Figure  1). The results demonstrated 
that rsFC patterns in the RRMS patients and the controls were 
consistent with previous studies (9, 16).

comparison between rrMs Patients  
and hcs
Dorsal Caudal Putamen
The left DCP region showed significantly increased rsFC with 
the right premotor cortex, left dorsal lateral prefrontal cortex 
(DLPFC), left insula, left precuneus, left superior parietal lobule, 
left cerebellum, right postcentral gyrus, and right inferior parietal 
lobule in RRMS1 patients (n = 20) compared with HCs (n = 15) 
(Table 2; Figure 2).
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FigUre 2 | (a) In both RRMS1 and RRMS2 cohorts, the left dorsal caudal putamen (DCP) showed significantly increased FC with the left premotor cortex, dorsal 
lateral prefrontal cortex (DLPFC), insula, precuneus, and superior parietal lobule compared to healthy controls (HCs). (b) Overlapping regions of between-group 
comparisons and associations between the Expanded Disability Status Scale (EDSS) and left DCP FC at the DLPFC in the RRMS1 cohort. (c) Overlapping  
regions of between-group comparisons and associations between the EDSS and left DCP FC at the DLPFC and parietal areas in the RRMS2 cohort.
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Regression analysis showed that there were significant positive 
associations between the EDSS scores and the rsFC of the left DCP 
with the left DLPFC, bilateral inferior parietal lobule, left superior 
parietal lobule, left precuneus, left premotor cortex, and right 
angular gyrus in RRMS1 patients (Table  3; Figure  3). Similar 
findings were also observed in the association analysis between 
EDSS scores and the rsFC of the left DCP in RRMS2 patients 
(Table 3; Figure 3).

Interestingly, there were overlapping regions at the DLPFC 
and parietal areas for both group comparisons and regression 
analyses (Figures 2B,C).

Dorsal Rostral Putamen
There was no significant difference in DRP rsFC between the 
RRMS1 patients and HCs.

Regression analyses showed that there were significant posi-
tive associations between the EDSS scores and the rsFC of the 
right DRP with the left precuneus, left superior parietal lobule, 
left middle frontal gyrus, and left precentral gyrus, and the left 
DRP with the right uncus and right brainstem in the RRMS1 
patients (Table 3; Figure 3). There was also a negative association 
between EDSS scores and the rsFC of the right DRP with the 
bilateral anterior cingulate cortex, premotor area, left amygdala, 

and paracentral lobule (Table 4; Figure 4) in RRMS1 patients. 
Similar findings were also observed in RRMS2 patients (Tables 3 
and 4; Figures 3 and 4).

Ventral Rostral Putamen
There was decreased rsFC of the VRP with the left premotor 
area, bilateral precentral gyrus, left supplementary motor area 
(SMA), and right DLPFC in RRMS patients compared to HCs 
(Table 2).

Regression analyses showed there were no significant asso-
ciations between EDSS scores and rsFC in both RRMS1 and 
RRMS2 patients.

Dorsal Caudate
RRMS patients showed significantly reduced rsFC of the left 
DC with the left SMA and right cerebellum, and the right DC 
with the right thalamus and right putamen compared to HCs. 
Additionally, RRMS patients showed increased rsFC between the 
left DC and the left paracentral lobule, left precuneus, right lat-
eral parietal lobule, left parahippocampal gyrus, left cerebellum, 
left occipital cortex, and right middle temporal gyrus compared 
to HCs (Table 2).

Regression analyses showed negative associations between EDSS 
scores and the functional connectivity of the bilateral DC with the 
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Table 3 | brain regions showing significant positive associations between expanded Disability status scale scores and striatal connectivity  
in relapsing–remitting multiple sclerosis (rrMs) patients.

seeds associated regions X, Y, Z cluster size Z-score X, Y, Z cluster size Z-score

rrMs1 rrMs2

DCP_L
Dorsal lateral prefrontal cortex (DLPFC), L

−40, 30, 26
−34, 26, 32

960
4.9
4.01

−52, 8, 36
−38, 18, 32

348
3.55
3.53

Superior parietal lobule, L
Inferior parietal lobule, L
Precuneous, L

−22, −60, 36
−34, −56, 52
−46, −42, 44

659
4.05
3.94
3.32

−22, −60, 38
−34, −54, 50
−42, −32, 34

892
4.28
4.05
3.22

Premotor, L
−22, 10, 66
−20, 2, 54

295
3.85
3.09

−22, 10, 66
−28, 10, 70

208
4.02
3.57

Inferior parietal lobule, R
Angular, R

42, −52, 58
38, −50, 54

280
3.67
3.63

42, −52, 58
38, −50, 54

494
3.65
3.61

Supplementary motor area, L – – –
−38, 30, 24
−40, 32, 40

245
4.27
2.68

DLPFC, R – – –
44, 34, 36
38, 36, 34

184
3.96
3.93

DRP_L Uncus, R
Brainstem, R

18, −10, −32
22, −8, −30

288
3.90
3.69

14, −24, −32
18, −10, −32

629
4.67
3.43

DRP_R Precuneus, L
Superior parietal lobule, L

−20, −68, 28
−34, −66, 34

960
4.27
3.82

−20, −68, 28
−28, −64, 44

958
4.07
3.23

Middle frontal gyrus, L
Precentral, L

−46, 14, 34
−54, 0, 44

308
3.39
3.26

– – –

VSs_R
PCC, R/L
Occipital cortex, L
Precuneus, R/L

−18, −64, 14
10, −56, 2

−22, −64, 16
−10, −62, 8

1,014

3.84
3.83
3.8
3.58

−14, −64, 12
8, −56, 6

6, −58, 58
783

3.55
3.18
3.25

VSi_L
Precuneus, R/L
Postcentral gyrus, L

22, −46, 68
−6, −72, 48
46, −70, 36

1,066
3.32
2.82
3.26

12, −66, 46
12, −74, 50

456
2.92
2.84

Superior occipital gyrus, L
Middle temporal gyrus, L

−40, −64, 24
−36, −82, 34

277
3.60
3.45

– – –

Superior parietal lobule, L
Precuneus, L

−16, −58, 46
−16, −62, 58

273
3.38
3.30

– – –

VSi_R
Precuneus, R/L
PCC, R/L

−16, −74, 34
12, −68, 28
6, −52, 8

5,732
4.09
4.08
3.91

−14, −74, 28
6, −52, 8

−16, −74, 34
6,019

4.10
4.03
3.93
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right cerebellum and left DC with the left SMA and premotor area 
in both RRMS1 and RRMS2 patients (Table 4; Figure 4).

Superior Ventral Striatum (VSs)
Compared with HCs, RRMS1 patients showed increased rsFC 
between the right VSs and the right posterior cingulate cortex 
(PCC) and right cerebellum; increased rsFC between the left VSs 
and the right middle temporal gyrus; decreased rsFC between the 
left VSs and the left middle temporal gyrus, premotor cortex and 
left SMA; and decreased rsFC between the right VSs and the right 
orbital frontal cortex (Table 2; Figure 5).

Regression analyses showed that there were significantly posi-
tive associations between EDSS scores and the rsFC of the right 
VSs with the bilateral precuneus, posterior cingulate cortex, and 
left occipital cortex (Table 3; Figure 3), and negative associations 
between EDSS scores and the rsFC of the left VSs with the right 
premotor area, insula, pallidus, putamen, thalamus, left lingual 
gyrus, and occipital lobe in RRMS1 patients (Table 4; Figure 4). 

Similar findings were also observed RRMS2 patients (Tables 3 
and 4; Figures 3 and 4).

Inferior Ventral Striatum (VSi)
There were no significant differences in the rsFC of the VSi 
between RRMS patients and HCs.

Regression analyses showed a strong positive association 
between EDSS scores and the rsFC of the VSi with the precuneus, 
posterior cingulate cortex, left postcentral gyrus, left parietal lob-
ule, and superior parietal lobule (Table 3; Figure 3). Similar find-
ings were also observed in RRMS2 patients (Table 3; Figure 3).

We also explored the association between rsFC and EDSS 
scores between RRMS1 patients and HCs. First, we extracted 
and designated the significantly changed clusters between the 
RRMS1 patients and HCs as the ROIs, and then extracted the “Z” 
scores of each RRMS1 cluster. Finally, we performed a regression 
analysis to explore the association between the EDSS scores and 
“Z” scores of each RRMS1 cluster. Age and gender were included 
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FigUre 3 | regression analyses showed significant positive associations between expanded Disability status scale and (a) connectivity of the left 
DcP with the premotor cortex, DlPFc, inferior and superior parietal lobules, precuneus, and angular gyrus; (b) connectivity of the right dorsal 
rostral putamen (DrP) with the precuneus, superior parietal lobule, middle frontal gyrus, and precentral gyrus; (c) connectivity of the left DrP with 
the uncus and brainstem; (D) connectivity of the Vss with the precuneus, posterior cingulate cortex, and left occipital cortex; (e) connectivity of the 
left Vsi with the precuneus, postcentral gyrus, superior parietal lobule, superior occipital gyrus, and middle temporal gyrus; (F) connectivity of the 
right Vsi with the precuneus and Pcc in rrMs1. Similar associations were observed in RRMS2.

Table 4 | brain regions showing significant negative associations between expanded Disability status scale scores and striatal connectivity  
in relapsing–remitting multiple sclerosis (rrMs) patients.

seeds associated regions X, Y, Z cluster size Z-score X, Y, Z cluster size Z-score

rrMs1 rrMs2

DC_L Cerebellum, R 16, −64, −32
14, −84, −46

992
4.56
4.53

16, −64, −32
6, −70, −24

1,027
4.66
3.56

SMA, L
Premotor, L

−4, 42, 50
−4, 38, 36

670
3.26
2.97

−4, −46, 44
−4, 38, 36

632
3.4
3.01

DC_R Cerebellum, R −24, −68, −38 792 4.34 −24, −66, −36 712 4.14

DRP_R
ACC, R/L
Amygdala, L

4, 10, −8
−16, 4, −14

−22, −2, −14
448

3.76
3.18
3.09

−18, 10, −14
2, 10, −6

−24, −2, −14
299

3.46
3.22
2.85

Paracentral lobule, L
Premotor, L/R

−6, −20, 46
8, −12, 48

−6, −12, 50
243

3.65
3.22
3.21

8, −10, 50
−8, −24, 50
−2, −14, 46

559
3.92
3.75
3.39

VSS_L Premotor, R 6, −10, 50 770 2.87 6, −10, 46 824 2.9

Insula, R
Pallidus, R
Thalamus, R
Putamen, R

38, −6, 14
32, −4, −2
26, −10, 0
16, −14, 6

436

3.81
3.66
3.57
3.56

38, −6, 14
26, −10, 0
16, −14, 6

28, 0, 2

466

3.91
3.61
3.59
3.40

Lingual gyrus, L −22, −106, −10
513

3.61 −20, −96, −12
559

3.53
Occipital lobe, L −10, −100, −6 2.95 −10, −100, −6 3.01
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as covariates of non-interest. The results showed that there was 
a significant positive correlation between the EDSS scores and 
the connectivity of the left DCP with the left DLPFC (p = 0.031), 
which is a region of overlap between RRMS1 and RRMS2 patients 
and HCs (Figure 6).

Overlap regions between rrMs1 and 
rrMs2 Patients and hcs
Twelve RRMS patients were scanned twice and then compared 
with HCs. We found significantly increased connectivity in both 
comparisons including (1) increased rsFC of the left DCP with 
the left premotor cortex, DLPFC, insula, precuneus, and superior 
parietal lobule (Table 2; Figures 2A and 7) and (2) increased rsFC 
between the right VSs and the right posterior cingulate gyrus 
(Table 2; Figure 7).

comparison between the First and second 
scans of the 12 rrMs2 Patients
In the second scan, RRMS patients showed increased rsFC 
between (1) the left DCP and the left thalamus; (2) the left VRP 

and the right orbital frontal cortex and left paracingulate gyrus; 
(3) the right VRP and the right cerebellum; (4) the left VSi and the 
left orbital frontal cortex; and (5) the right DRP and the right pre-
central gyrus and angular and superior parietal lobules (Table 5).

DiscUssiOn

In this study, we used seed-based resting-state fMRI to explore 
the corticostriatal circuitry in RRMS patients and the associa-
tion between symptoms and functional connectivity. We found 
enhanced rsFC between the left DCP and the left premotor 
cortex, left DLPFC, insula, and parietal areas, and between the 
right VSs and the right posterior cingulate cortex in RRMS 
patients compared to HCs. We also found a positive association 
between corticostriatal rsFC and EDSS scores in RRMS patients. 
Specifically, after comparing RRMS1 patients with HCs and 
performing a regression between clinical outcomes and connec-
tivity, we found overlapping results at the DLPFC and parietal 
areas when using the DCP as a seed. This result highlights the 
importance of the DCP in MS. In addition, a subcohort of RRMS 
patients was scanned twice in order to test the reliability of our 
findings. We found similar results after comparing both scans. 
Our results demonstrate the involvement of the striatum, particu-
larly the DCP, in the pathophysiology of RRMS.

Previous studies have indicated that extensive lesions (8) 
might be the cause of the dysregulation of movement and the 
reduced connectivity of the motor network in the corticalsub-
cortical network in RRMS patients (13, 14, 27, 28). The basal 
ganglia interacts with other cortical regions to play a key role in 
contextually based motor decision making (7). More specifically, 
the striatum is thought to play a critical role in the storage and 
retention of motor programs (29). Within the striatum, the dorsal 
lateral putamen receives projections from the motor and motor 
association cortices (5, 30, 31), the main domain connected to 
the putamen seeds in healthy subjects (9, 16). Previous studies 
have found that the putamen is also connected to the DLPFC  
(17, 32–34) and the cingulate cortex (35), which implies that it is 
also involved in cognition and emotion.

In this study, we found increased rsFC between the DCP and 
the premotor cortex, insula, DLPFC, precuneous, and superior 
parietal lobule in both RRMS1 and RRMS2 patients when com-
pared to HCs. We also found increased rsFC of the DCP with the 
DLPFC and parietal cortex. This increase was positively associ-
ated with EDSS scores in RRMS patients.

The test-retest findings indicate the important role of the 
rsFC of the DCP with the DLPFC and parietal gyrus in the 
pathophysiology of RRMS. The results are consistent with find-
ings from previous studies indicating the involvement of the 
striatum in MS (13–15, 36). The DLPFC has diffuse connectivity 
with the rostral and caudal components of both the putamen and 
caudate, which project extensively to the central striatum and 
bridges the ventral and dorsal areas of the striatum (1). Studies 
suggest that the DLPFC plays an important role in motor and 
sensory information processing (37, 38), maintenance of sensory 
stimuli and motor execution (37), and pre-movement processes 
(39). Furthermore, the DLPFC is characterized as a part of the 
executive control network, which monitors motor performance 

FigUre 4 | regression analyses showed significant negative 
associations between expanded Disability status scale scores and  
(a) connectivity of the dorsal rostral putamen (DrP) with the bilateral 
anterior cingulate cortex, premotor area, left amydala, and 
paracentral lobule; (b) connectivity of right dorsal caudate (Dc) with 
the cerebellum; (c) connectivity of the left Dc with the supplementary 
motor area, premotor cortex, and cerebellum; (D) connectivity of the 
left Vss with the premotor cortex, insula, pallidus, putamen, 
thalamus, lingual gyrus, and occipital lobe in rrMs1. Similar 
associations were observed in RRMS2.

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FigUre 5 | in both rrMs1 and rrMs2, the right Vss had significantly increased connectivity with the right Pcc compared to healthy controls 
(hcs).

9

Cui et al. Altered Striatal Connectivity in MS

Frontiers in Neurology | www.frontiersin.org April 2017 | Volume 8 | Article 129

FigUre 6 | regression analysis between the resting-state functional connectivity (rsFc) of the left dorsal caudal putamen (DcP) and left dorsal 
lateral prefrontal cortex (DlPFc) in rrMs1 patients.

(40) and integrates motor information and sensorimotor trans-
formations (41).

The executive control network interacts with memory, 
motor, and sensory structures to direct thought and action (42). 

Dys function of the prefrontal cortex has been shown to cause 
deficits in executive function (43), and in studies of stroke patients, 
disruption of the executive control network has been shown to  
result in motor response deficits (44). We speculate that enhanced 
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FigUre 7 | The connectivity Z-scores of the main findings in rrMs1 patients and healthy controls (hcs), which were overlapped in the findings of 
the comparison between rrMs2 and hcs. (a–c) Z-scores of connectivity between the left dorsal caudal putamen (DCP) and right premotor area/left dorsal 
lateral prefrontal cortex (DLPFC)/left precuneus in HC and RRM1 groups. (D) Z-scores of connectivity between the right ventral striatum (VSs) and right posterior 
cingulate cortex (PCC) in HC and RRMS1 groups.

Table 5 | brain regions showing significant differences between the first and second scans in 12 relapsing–remitting multiple sclerosis (rrMs) 
patients.

contrast seed connected regions X, Y, Z cluster size Z-score

RRMS2 (n = 12) > RRMS1 (n = 12) DCP_L Thalamus, L −12, −22, 14 292 3.66

VRP_L
Orbital frontal cortex, R
Paracingulate gyrus, L

6, −26, 18
−10, 32, −20

808 4.26

VRP_R Cerebellum, R 42, −46, −32 438 4.12

DRP_R

Precentral, R 14, −16, 76 227 4.04

Angular, R
Superior parietal lobule, R

38, −38, 36
40, −48, 42

290 4.02

VSi_L Orbital frontal cortex, L −20, 32, 4 445 4.57

rsFC between the DCP and DLPFC may result in enhanced 
monitoring of motor performance (40) and enhanced integration 
of information and sensorimotor transformations (41).

Compared to HCs, RRMS patients showed increased rsFC 
of the left DCP with the parietal cortex, including the left pre-
cuneus, left superior parietal lobule, and right inferior parietal 
lobule. The superior parietal lobe is associated with the ability 
to produce purposeful and skilled movements and participates 
in complex motor programming. Studies have shown that motor 
execution requires coherent representations of neural composi-
tion and that the movement of a limb may cause activity changes 
in the left posterior parietal cortex (45). Previous studies found 

that, during the execution phase, patients with brain injuries 
showed enhanced activation in the superior and inferior parietal 
lobes, precuneus, and DLPFC compared with HCs. The superior 
parietal lobule and DLPFC, key regions in the frontoparietal con-
trol network, are known to have reciprocal circuit connectivity 
(46, 47) and play a role in changing spatial coordinates and body 
posture (45). It was also found that the functional connectivity 
of the parietal and frontal cortex can be altered by motor learn-
ing (48). Studies suggest that functional plasticity may occur 
following motor rehabilitation in patients with MS (49), and 
disrupted rsFC has been associated with disability progression 
in MS patients (50).
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Previous studies showed that MS patients may need to activate 
more widespread sensorimotor networks compared to HCs dur-
ing a sequential finger-to-thumb opposition task, as well as in 
other motor-related tasks (51, 52). Considering the dysfunction  
in movement, sensation, and cognition in RRMS (8), the increased 
rsFC of the dorsal putamen with the motor associated cortex 
and the positive association with clinical disability suggests that 
there is a compensatory modulation of the movement system in 
response to axonal injury (49). Taken together with these findings, 
our results suggest that the increased rsFC of the dorsal putamen 
with the DLPFC and parietal areas in RRMS patients may signal 
a compensatory connection for maintaining the function of the 
executive network or may adjust information resources for the 
motor processes involved in cognitive function.

We also found increased rsFC of the right VSs with the right 
PCC in RRMS1 and RRMS2 patients compared to HCs. The PCC 
is one of the primary nodes of the default mode network (DMN) 
(53, 54) and is implicated in memory processing and emotion 
generation (55). In a previous study, we found increased rsFC 
between the ventral striatum and the DMN in subthreshold 
depression patients compared with HCs, which may reflect a 
self-compensation mechanism to ameliorate the patient’s lower 
reward function (56). The PCC is shared between both the 
DMN and the sensorimotor network and, therefore, serves as an 
important interaction hub (57). The rsFC between the bilateral 
PCC and the ACC was increased following cognition and motor 
recovery after treatment in stroke patients (58). The PCC was 
also identified as the area involved in preparatory motor execu-
tion during rest (59) and directing the segregation of motor input 
(4). We thus speculate that the increased rsFC of the ventral 
striatum in RRMS patients may be due to the multiple neuro-
logical impairments of the motor and cognition system and may 
represent a complex modulatory interaction of the corticostriatal 
networks.

Finally, RRMS2 patients showed increased rsFC between the 
putamen and the primary motor cortex, thalamus, cerebellum, 
orbital frontal cortex, and parietal area compared with RRMS1 
patients. The increased rsFC of the putamen confirmed the prior 
findings that displayed the functional coupling of the dorsal 
putamen and motor cerebral networks (9, 16). Previous rs-fMRI 
studies suggest the presence of functional plasticity following 
motor rehabilitation in MS (60). Based on this previous research, 
we speculate that the increased rsFC of the dorsal putamen with 

the motor cortex may be due to cortical reorganization accompa-
nying the progression of RRMS.

One limitation of our study is the difference in lesion location 
among RRMS patients. MS lesions can be widespread across the 
brain and vary from patient to patient. We acknowledge that 
different lesion distributions may alter rsFC differently. Further 
studies with larger sample sizes are needed to further validate our 
findings.

cOnclUsiOn

We observed a number of intriguing and significant changes in 
rsFC in striatal subregions between RRMS patients and HCs. 
Specifically, we found that the dorsal caudal putamen demon-
strated increased and reliable rsFC with the DLPFC and parietal 
areas in RRMS patients. These rsFC results were significantly 
associated with the clinical symptoms. Our results demonstrate 
that the dorsal caudal putamen may be a key striatal subregion in 
the pathophysiology of RRMS.
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