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Data-driven analysis and forecasting of highway
traffic dynamics
A. M. Avila 1✉ & I. Mezić1✉

The unpredictable elements involved in a vehicular traffic system, like human interaction and

weather, lead to a very complicated, high-dimensional, nonlinear dynamical system. There-

fore, it is difficult to develop a mathematical or artificial intelligence model that describes the

time evolution of traffic systems. All the while, the ever-increasing demands on transpor-

tation systems has left traffic agencies in dire need of a robust method for analyzing and

forecasting traffic. Here we demonstrate how the Koopman mode decomposition can offer a

model-free, data-driven approach for analyzing and forecasting traffic dynamics. By obtaining

a decomposition of data sets collected by the Federal Highway Administration and the

California Department of Transportation, we are able to reconstruct observed data, distin-

guish any growing or decaying patterns, and obtain a hierarchy of previously identified and

never before identified spatiotemporal patterns. Furthermore, it is demonstrated how this

methodology can be utilized to forecast highway network conditions.
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H ighway traffic congestion in 2013 cost Americans $124
billion in direct and indirect losses1. This number is
higher for some European countries1 and is only expected

to rise without the development of intelligent transportation
systems (ITS) and the accurate forecasting of traffic conditions
that ITS rely on to mitigate traffic. Traditionally, the analyzing
and forecasting of highway traffic was performed via simulations
of mathematical models2,3. However, the combination of data
availability, modern processing capabilities, and development of
machine learning (ML) algorithms has enabled an enormous
amount of research into empirical data-driven algorithms4–13.
The first class of data-driven algorithms were primarily para-
metric models that rely on the user’s ability of accurately esti-
mating the model’s parameters. Historically, this point of view
led to the use of linear and nonlinear regression techniques6,9,
Kalman filtering7 and time-series models8,10. Recently there has
been a large and growing interest in non-parametric models that
rely on historical training data to estimate its own parameters.
Among the most popular of these methods include the neural and
deep neural network models (NN,DNN)11,14–16, K-nearest
neighbors12,13, Bayesian networks17, and (parametric/non-para-
metric) hybrid models4. Nevertheless, describing and forecasting
the time evolution of traffic systems remains a challenging
problem2,18–24.

A majority of the published literature in this field has focused
on primarily testing and validating the ability of a particular
method to accurately describe real-world traffic data. However,
the issue discussed much less than accuracy is that of a model or
algorithm’s capability of generalizing to a real-world
implementation2,21. Many of the traditional mathematical mod-
els are known to be unfeasible for real-time implementation,
tedious to solve numerically and depend on parameter accuracy2.
The modern ML-based methods also depend heavily on accurate
parameters and typically require large amounts of training
data4,5,11,21, which is usually limited and costly to collect19,21.
Therefore, even if the state-of-the-art traffic models were accu-
rate, typically they would require an unrealistic amount of data
collection and parameter tuning to function across differing
highways5,21,25. The first attempts at empirically characterizing
the country-specific differences of highway traffic can be found in
ref. 25, where traffic data from the US, UK, and Germany were
empirically analyzed and compared. This international compar-
ison was motivated by the fact that different countries have dif-
ferent infrastructure, vehicle class mix, driving rules, and even
different driver behavior. Indeed, the works of ref. 25 confirm key
differences in the periods of oscillation and speeds of propagation
of traffic jams between the three countries. It is further stated how
this country-specific dynamics of traffic will require the re-
calibration of current models or the development of more general
models. The findings of ref. 25 validate our view, in that some of
the shortcomings of previous research approaches are not pri-
marily their lack of accuracy but more so their heavy dependence
on parameters and large amounts of training data. This renders
many state-of-the-art techniques being developed today unfea-
sible for a large scale global implementation across differing
highways21.

In addition to the stochastic features of traffic, wave-like pat-
terns have also been identified within traffic data3,19,20,26–30. The
exact cause of such traffic waves is still an open topic, although
several mechanisms have been proposed20,31,32. A common
theme across many of these proposed mechanisms is the effect
that lane changing can have on a highway system. The empirical
works of Ahn27,29 and Laval33 provide evidence showing that lane
changing maneuvers are key in the development of traffic waves.
Unfortunately, research into multi-lane traffic dynamics has
proven to be an even more challenging task27,31,32,34. The

complex lane changing dynamics and human interaction that
occurs within a multi-lane highway has restricted many state-of-
the-art techniques to analyze and forecast traffic at the highway
corridor scale and generalizing to the multi-lane scenario is often
very difficult2,31,32,34. Ultimately, traffic management is generally
applied at the network level21. However, an accurate and efficient
method for the analysis and forecasting of multi-lane highway
network conditions is perhaps the most difficult and strongly
lacking component of modern ITS2,14,22–24. Furthermore, many
state-of-the-art techniques often times require extensive para-
meter tuning and the proper pre-processing of raw data to per-
form adequately21. This has lead to the common practice of
removing previously computed seasonal averages, aggregating
and smoothing raw data2,20,35,36. Additionally, the differing
dynamics between weekday, weekend, holiday, and adverse
weather conditioned traffic has led to the common practice of
utilizing case-specific training data to forecast only case-specific
data4,21,37,38. Lastly, the challenge in forecasting multiple detector
data typically results in verifying methods over only a single or
possibly few detectors4,11,30,37. Therefore, many state-of-the-art
benchmarks have been obtained at the highway corridor (single
lane) level, over a limited number of sensor locations and are
incapable of generalizing to handle the multi-lane network sce-
nario without extensive re-training.

Overall, a systematic and accurate method for identifying,
analyzing and forecasting spatiotemporal traffic features from
data is still an open and challenging issue2,18–20. In this work, we
demonstrate how the spectral properties of the Koopman
operator, specifically the Koopman mode decomposition (KMD),
can offer a model-free, parameter-free, data-driven approach for
accurately identifying, analyzing and forecasting spatiotemporal
traffic patterns. The methods we develop allow one to distinguish
any growing or decaying phenomena and obtain a hierarchy of
coherent spatiotemporal patterns hidden within the data. Fur-
thermore, the forecasting scheme we propose readily generalizes
to the much-needed scenario of multi-lane highway networks
without any loss to its performance or efficiency. We do not rely
on large historical training data nor do we distinguish between
weekday, weekend, holiday, or adverse weather conditions. Our
method’s performance does not rely on parameter tuning or
selection., Thereby providing a completely efficient and accurate
method of analyzing and forecasting traffic patterns at the levels
required by modern ITS.

Results
The Koopman mode decomposition. The Koopman family of
operators of a dynamical system is a group of infinite-dimen-
sional, linear operators that describe the time evolution of an
observable (measurable quantity) under the dynamics of the
system39,40. From this viewpoint measurements and data can be
used to interpret the underlying dynamics of a complex system
via the spectral properties of the associated Koopman operator.
The spectrum of the Koopman operator leads to a “triple
decomposition” of a nonlinear and non-stationary dynamical
system into its mean, periodic, growing or decaying, and fluctu-
ating components41–43. Part of the discrete spectrum (eigenvalues
and eigenfunctions) of this linear operator accurately describes
the mean (period zero) and periodic components of a nonlinear
dynamical system. The continuous spectrum (spectral measure)
of the operator captures the stochastic or chaotic dynamics of the
system. In systems with purely discrete spectrum the Koopman
modes, corresponding to a particular choice of observable, allow
one to reconstruct and forecast the observed quantity41–44.
Together, the Koopman eigenvalues, eigenfunctions, and modes
yield the Koopman mode decomposition KMD of a purely
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discrete spectrum observable41–43. With the KMD in hand, one
can decompose the observed quantity into a hierarchy of simpler,
yet dynamically important, sub-patterns which describe the
behavior of the complex system. Koopman modes describe the
shape of dynamically important spatiotemporal patterns found
within the data and the eigenvalues describe how these modes
evolve (repeat, grow or decay) in time. The real part of a Koop-
man eigenvalue yields the growth or decay rate of a mode and, in
the case of decay, is a measure of how long the pattern persists
within the data. Similarly, the imaginary part of the Koopman
eigenvalue is used to compute the period of oscillation of the
mode and is a measure of how frequently the pattern repeats
within the data. An appealing feature of the KMD is its ability
to be directly computed from real-world data41–43,45–48 via sev-
eral numerical algorithms that have been developed. A large
portion of these methods belong to the class of algorithms known
as dynamic mode decomposition (DMD)45,48–54. In this work,
we have utilized the Hankel dynamic mode decomposition
algorithm (Hankel-DMD)49,55 to approximate the Koopman
modes and eigenvalues of traffic data. In what follows we
demonstrate how the KMD can decompose the Next Generation
Simulation (NGSIM) traffic data into dynamically important sub-
patterns, hidden within the data, and identify their temporal
characteristics.

Koopman mode analysis of spatiotemporal traffic data. We
begin by studying the NGSIM data set collected by the US Federal
Highway Administration. The NGSIM data set provides the
precise location of every vehicle, its lane position and location
relative to other vehicles for every one-tenth of a second on 2100
and 1640 ft segments of the southbound US-101 and eastbound I-
80 highways, respectively. Overall, the NGSIM data provides a
microscopic description of traffic in that, it is the individual
vehicles that are tracked and not the velocity or density of the
bulk, macroscopic flow. However, in this work, we are interested
in identifying macroscopic spatiotemporal patterns and therefore
the NGSIM trajectory data is converted into spatiotemporal
coarse grained data via the binning method developed in ref. 56

and utilized by the authors in refs. 57,58. This procedure allows the
construction of macroscopic velocity and density profiles from
vehicle trajectory data. The resulting spatiotemporal data is a
matrix whose columns correspond to time, its rows correspond to
a position along the highway and the entries contain the velocity,
density or flow at that location and time. The resulting spatio-
temporal data for the US-101 highway is shown in Fig. 1, and the
I-80 highway data can be referenced in Supplementary Figs. 1 and
2. A more detailed discussion on the binning method and for-
mulas can be referenced in the Methods section and access to the
spatiotemporal data is also made available.

In this work, we categorize traffic patterns according to
ref. 20. In addition to the well-known free-flowing and
congested traffic states some of the various patterns identified
in ref. 20 are the pinned localized cluster (PLC), moving
localized cluster (MLC), stop and go waves (SGW), and
oscillating congested traffic (OCT). PLC type traffic oscillations
do not propagate along the highway but are instead pinned or
localized at a certain spatial location. On the other hand, MLC
type phenomena, also called traffic jams, do propagate back-
ward along the highway, affect the entire highway and their
amplitudes are not perturbed by on or off-ramps. The SGW and
the OCT according to ref. 20 are almost indistinguishable
without the proper data filtering technique and thus, in this
work, we simply refer to both as SGW or traffic waves. The
presence of such patterns for the US-101 highway data can be
seen in Fig. 1a.

By applying a KMD to the velocity data in Fig. 1a, we seek to
uncover traffic patterns that may be hidden within the data.
Patterns uncovered by the KMD for the US-101 highway density
and flow as well as for the I-80 highway can be referenced in
Supplementary Figs. 4–12. In our works, we sort the resulting
Koopman modes according to their period of oscillation.
Therefore, the slowest evolving pattern is what we refer to as
the “first” mode and so on. A table listing the exact periods of
oscillation of the modes discussed can be referenced in
Supplementary Table 1. By plotting some of the leading
Koopman modes in Figs. 2 and 3, we find, that the first three
modes (Fig. 2a–c), modes 5 (Fig. 2e), 10 (Fig. 3d), 11, 18, 19
(Supplementary Fig. 3a, d, e), and 13 (Fig. 2e) all share the
common structure of a PLC. Specifically, their amplitude is
entirely localized around the post-off-ramp (1280–2100 ft)
section of the highway. However, mode 5 is also spatially
localized about the mid-ramp section of the highway. The double-
peaked structure of mode 5 strongly resembles a sort of spatial
harmonic feature of modes 1–3. Interestingly, mode 5 along with
modes 8 (Fig. 3b), 9 (Fig. 3c), and 13 (Fig. 3e) display a standing
wave node at precisely the on and off-ramp locations, which have
been labeled with dark orange dotted lines. Modes 16 (Fig. 3f), 20,
21, 25, and 28 (Supplementary Figs. 3f and 4a, d, f) differ from the
other PLC waves in that their amplitudes appear to grow or decay
in time. The ability to uncover such growing and decaying
patterns is a strongly distinguishing feature between the KMD
and a Fourier analysis. It is also clear to see how the amplitudes of
modes 7 (Fig. 3a) and 26 (Supplementary Fig. 4e) are
unperturbed as they travel along the highway, indicating that
they correspond to traffic jams that affect the entire highway as
they propagate by. Several modes within Figs. 2 and 3 are
harmonics of the first mode, which corresponds well with the
known fact that harmonics of eigenvalues are also eigenvalues of
the Koopman operator41–43. A complete list containing the
periods of oscillation of the modes we discussed can be referenced
in Supplementary Table 1.

We now demonstrate how the patterns we identify relate to
previous research efforts and offer new insight. The empirical
findings of Ahn26 demonstrate how the amplitude of a traffic
wave decreases when it propagates upstream past an on-ramp.
Similarly, it was postulated that the amplitude should increase
when propagating past an off-ramp. However, no validation for
the off-ramp scenario is found in refs. 25,26. This phenomenon
was referred to as the “pumping effect”25–27. Evidence of this
effect is clearly displayed by Figs. 2d, f and 3c. However, Fig. 3b
seems to display a decrease in amplitude followed by another
decrease when propagating past the off and on-ramp respectively.
This phenomenon to the author’s knowledge has not been
reported by other empirical studies. Furthermore, analyzing time-
series data from multiple sensors across large distances is
regarded as a more challenging problem than a single or local
group of sensor data37. The works of ref. 37 confirm that similar
frequencies are usually detected across nearby sensors and distant
sensors usually detect differing frequencies. It is believed that the
difference in frequencies across distant sensors is due to the effect
that on and off-ramps have on the volume of cars that flow by a
specific group of detectors4. We emphasize that the Koopman
modes we obtain disprove this notion by uncovering patterns that
are defined across all detector locations, yet oscillate with a single
frequency regardless of the presence of on and off-ramps.

The works of Kim59 postulate that high-frequency oscillations
are more likely to decay in time. Evidence for such a phenomenon
can be found by plotting the eigenvalues over the unit circle in the
complex plane (Fig. 4a). Eigenvalues whose magnitudes are
within a very narrow threshold (0.001) of the unit circle are
labeled neutral and correspond to persistent sub-patterns that
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neither decay nor grow in time. Likewise, eigenvalues with
magnitude larger (or smaller) than this threshold fall outside (or
inside) the unit circle and have been labeled as unstable (or
stable). What can be seen from Fig. 4a is a cluster of neutral
eigenvalues on the far right side (within the dark-gray box) of the
unit circle corresponding to the slowest frequencies. This
confirms the works of ref. 59 in that the slowest evolving patterns
persist in time. Furthermore, the works of Gartner60 find that
patterns associated with longer periods of oscillation are typically
accompanied by larger amplitudes. We find evidence for this
trend by plotting the average amplitude of each Koopman mode
against its period (Fig. 4b). Indeed, one can clearly see a drop in
amplitude for decreasing periods of oscillation.

In addition to the daily and weekly cycles, the works of
Dendrinos61 demonstrate the existence of intra-day (less than
24 h) patterns61. Plotting the periods of oscillation for the first 15
modes (Fig. 4c) clearly verifies this phenomenon. Further
evidence of the existence of intra-day as well as intra-week
patterns can be referenced in Supplementary Figs. 13–15.
Furthermore, the periods of oscillation we identify are stable

across various choices of observation such as velocity, density,
flow, or a concatenation of them all. Lastly, we demonstrate that
the modes we recover are indeed physically relevant to the
dynamics by plotting the modes corresponding to the stable,
unstable and neutral eigenvalues separately (Fig. 4d–f) and then
superimposing them (Fig. 4g–h) along with the previously
removed average (Fig. 4i) to reconstruct the original data. This
demonstrates that the modes we have uncovered are dynamically
important sub-patterns and when superimposed together recon-
struct the data.

Koopman mode analysis of multi-lane traffic data. We
demonstrate how the KMD readily generalizes to the multi-lane
scenario by analyzing multi-lane spatiotemporal density data for
the US-101 highway. The multi-lane data was generated by bin-
ning the individual lanes of the NGSIM data. With the addition of
an extra spatial coordinate (Lane #), the Koopman modes are now
two-dimensional spatiotemporal patterns and best visualized as a
video which can be referenced in Supplementary Videos 1–14.
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Fig. 1 Spatiotemporal data for the US-101 highway obtained from binning the NGSIM trajectory data. a Plot of the trajectory data for the first 15 min. The
data was collected between the hours of 7:50 am and 8:35 am, during the onset of congestion. The section of the highway studied consists of five main
lanes, a single on and off-ramp and an auxiliary lane between the on and off-ramp. Every colored line corresponds to a unique vehicle. b Spatiotemporal
velocity data. The locations of the ramps have been labeled with dark-orange dotted lines. During the first 12 min, the post-off-ramp section of the highway
experiences a period of free-flowing traffic. However, during this same time, the mid and pre-on-ramp sections of the highway are experiencing stop and go
wave traffic, labeled as SGW. During the last 30min of the study, the highway experiences a series of moving localized clusters labeled MLC, which
correspond to traffic jams. c Spatiotemporal flow data. The flow data is obtained as the product of the velocity and density data sets. d Spatiotemporal
density data. As expected, the density appears to be related to the inverse of the velocity profile. Specifically, one can observe that periods corresponding
to free-flowing traffic have smaller density and periods corresponding to traffic jams are a result of high density. The source data underlying (b–d) are
provided in the Source Data file.
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However, we have also provided figures containing snapshots of
the videos over an entire cycle in Supplementary Figs. 16–22. The
first multi-lane mode (Supplementary Fig. 16) is a spatially
localized PLC about the post-off-ramp section of the highway
similar to the first mode of the corridor-wide (single lane) ana-
lysis. The second and the third mode (Supplementary Figs. 17 and
18) are again harmonics of the first. Interestingly, modes 4, 5, and
10 (Supplementary Figs. 19–21) display a dynamic lane-changing
(zig-zag) motion within the mid-ramp section where lane-
changing maneuvers are highest due to merging/diverging vehi-
cles. The seventh mode is plotted in Fig. 5. From top-left (Fig. 5a)
to bottom-right (Fig. 5f) one can clearly observe how the seventh
mode corresponds to an MLC that affects the entire highway.
However, the MLC’s travel is out of phase across the different
lanes, giving the jam an apparent top-left to the bottom-right
direction of travel. We encourage the reader to reference Sup-
plementary Videos 1–14, available online, to properly visualize
the results of the multi-lane modes.

Lastly, one can see how the merging on-ramp densities
(multiplied by 5 for visual purposes) and highway densities are
out of phase. This indicates a successful timing of the ramp
metering by verifying that incoming vehicles are not allowed to
merge while the highway is jammed. The proper implementation
of ramp metering algorithms has been shown to significantly
improve traffic congestion, reduce travel times, and reduce
accidents between merging and flowing traffic62–64. However, the
proper tuning of the control algorithm’s parameters and

identification of congestion patterns is critical for a successful
implementation. Figure 5 and Supplementary Figs. 6–12
demonstrate how our analysis can identify multi-lane and on-
ramp congestion patterns along with their associated time-
scales, indicating how a multi-lane KMD analysis can be utilized
to verify the proper timing of static ramp meters and
incorporated into the development of dynamic ramp metering
algorithms.

Forecasting the California performance measurement system.
The California Department of Transportation (Caltrans) Perfor-
mance Measurement System (PeMs) data set is a real-time
monitoring system for hundreds of highways across the state of
California. This measurement system processes 2 GB of real-time
data per day and provides access to years of historical data. The
historic and real-time nature of the PeMs repository has led to its
widespread use for implementing and verifying forecasting
methodologies5,36. We have developed a moving horizon Hankel
dynamic mode decomposition (MH-HDMD) algorithm which
utilizes a subset of s data vectors (sampling window) to forecast
the next f data vectors (forecast window) updated every h time
steps (horizon window). The specific highways we study are as
follows. First, we forecast a week and month’s worth of data for
100 and 300-mile sections of the eastbound Interstate 10 highway
(I-10) and northbound Interstate 5 highway (I-5), respectively.
Next, a network of the 10 largest highways connecting Los

Koopman mode #1

5

a

0

–5

2000

1000

0 0
10

20

Time [minutes]

Position along highway [feet]

30

6

Feet per
second

4

2

0

–2

–4

–6

4

2

0

–4

–6

–2

2000

1000

0 0
10

20

Time [minutes]

Position along highway [feet]

30

4

3

2

1

0

–2

–1

–4

–3

–5

2

0

–2

2000

1000

0 0
10

20

Time [minutes]

Position along highway [feet]

30

1

0

0.5

–0.5

–1

–1.5
2000

1000

0 0
10

20

Time [minutes]

Position along highway [feet]

30

1

3

2

1

0

–1

–2

0.5

0

–0.5

–1

1

0

–1

2
2000

1000

0 0
10

20

Time [minutes]

Position along highway [feet]

30

4

2

0

–2

–4

6
2000

1000

0 0
10

20

Time [minutes]

Position along highway [feet]

30

4

5

3

2

1

0

–2

–1

–4

–3

Feet per
second

Feet per
second

Feet per
second

Feet per
second

Feet per
second

1

1.5

0.5

0

–0.5

–1.5

–1

Koopman mode #4 Koopman mode #5 Koopman mode #6

Koopman mode #3Koopman mode #2b c

fed

Fig. 2 Koopman modes demonstrating our method’s ability to uncover patterns hidden within traffic velocity data. The on/off-ramp locations have
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pinned localized clusters (PLC). Furthermore, it is evident that the first three modes capture the general transition from high to low velocities that occurs
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of the highway. Modes 4 and 6 provide clear evidence for the pumping effect, where an apparent increase in amplitude followed by a decrease can be seen
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that are hidden within traffic data. Furthermore, every mode oscillates with a single known frequency, according to the imaginary part of its corresponding
eigenvalue. This can be contrasted to a Fourier analysis which would yield modes and frequencies specific to the positions along the highway. A complete
list containing the periods of oscillation of the modes we discussed can be referenced in Supplementary Table 1.
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Angeles to the greater southern California area is forecasted for
the week of Christmas 12/21–12/26 of 2016. Additionally, we
forecast 100 miles of the northbound US-101 highway during the
deadly65 southern California rainstorm that occurred on February
17, 2017. The data for this example was collected for the days of
February 16–17, 2017. In all cases, we utilize the last 15 min to
forecast the next 15 min updating our forecasts every 15 min. The
original and forecasted data for the weekly and Christmas holiday
network data sets are shown in Fig. 6. The original and forecasted
data for the I-5 and US-101 data sets can be referenced in Sup-
plementary Figs. 23 and 24.

We quantify the performance of our method by computing the
mean absolute error (MAE), mean relative error (MRE), root
mean squared error (RMSE), the spatial and temporal averages of
the mean absolute error (SMAE and TMAE) and the spatial and
temporal correlations (SCorr and TCorr) according to formulas
(18)–(22) described within the Methods section. The SMAE and
TMAE for the 1-week I-10E, 1-month I-5N, and holiday network
data sets are plotted in Fig. 7a–f. It is evident that our method
obtains an average MAE between 1 and 2 miles per hour across
all detectors, for weeks/months data, across differing highways
and network of highways. Furthermore, since the unpredictability
of highway traffic renders an absolutely perfect forecast
impossible we plot, in Fig. 7g–i, the probability distributions of

the original and forecasted velocities. It is clear to see the near-
perfect matches between the statistics of the raw traffic data with
our forecasted data. Furthermore, It is evident that we are able to
match the distribution of higher velocities with much more
accuracy than lower velocities. Nevertheless, the subplots of the
lower velocity distributions demonstrate that although states of
congestion are inherently more unpredictable21 our forecasts
match the statistics of the data. This indicates that despite the
higher variability that is believed to exist within congested traffic
there are wave-like patterns that account for a majority of the
system dynamics. A similar error analysis for the US-101 highway
data set can be referenced in Supplementary Fig. 25 and a
complete summary of our error analysis for all highways studied
can be referenced in Supplementary Table 1.

We can further investigate how the mean absolute error varies
for different choices of (s, f), by producing forecasts for various
values of sampling and forecasting windows that are multiples of
15 minutes. For every choice of (s, f, f) we record the MAE and
generate a colormap for the I-10 highway (Fig. 8a) and the US-
101 (Fig. 8b). It is intuitive that for a fixed sampling rate our error
should increase with longer forecast windows, a phenomenon
previously observed by others21. The counter-intuitive aspect of
Fig. 8a–d is that for a fixed forecasting window increasing the size
of the sampling window hinders our forecasts. This is best seen by
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Fig. 3 Koopman modes demonstrating the ability to uncover growing or decaying patterns. The on/off-ramp locations have been labeled with dark
orange dotted lines. Mode 7 propagates across the entire highway without disturbances to its amplitude and thus corresponds to a highway wide traffic
jam also known as a moving localized cluster (MLC). Mode 9 provides further evidence for the pumping effect, where an apparent increase in amplitude
followed by a decrease can be seen as the mode propagates past the off and on-ramps respectively. However, mode 8 seems to display a decrease in
amplitude followed by another decrease when propagating past the off and on-ramp respectively. This phenomenon to the author’s knowledge has not
been reported by other empirical studies. Modes 10 and 16 demonstrate our method’s ability to uncover growing or decaying patterns. Specifically, mode 16
appears to contain its amplitude almost entirely during the first 10–15 minutes and concentrated in the pre-on-ramp location of the highway. This indicates
that mode 16 corresponds to the stop and go waves (SGW) present during the exact same region of the spatiotemporal data in Fig. 1a. The exact growth or
decay rate of the mode is dictated by the real part of its corresponding eigenvalue. This again is a distinguishing feature of our methodology from a Fourier
analysis in that Fourier modes do not capture growing or decaying features. Lastly, mode 13 also demonstrates a double-peaked structure resembling a
spatial harmonic feature of Fig. 2a–c. A complete list containing the periods of oscillation of the modes we discussed can be referenced in Supplementary
Table 1.
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looking across rows and observing how the error increases. The
results in Fig. 8 suggest that the accurate forecasting of traffic is
dependent on the most current traffic conditions and not
necessarily on the historical past. Indicating that costly training
over extensive amounts of historical data is not necessary and in
fact, may hinder the ability to forecast. Although this is directly
contrary to what many researchers believe21, it is, in fact,
beneficial as it indicates that accurate forecasts can be obtained
efficiently with limited data.

Forecasting and analysis of multi-lane network traffic data. In
this section, we demonstrate how the KMD can be utilized to
analyze and forecast highway traffic at the multi-lane network
scale. We do so by applying the KMD to highway occupancy data
for a network of highways within Los Angeles. The highway
occupancy is a normalization of the highway density by the
maximum density of the highway. We plot in Fig. 9a a map, taken
from Map data ©2019 Google, of Los Angeles with the highways
studied highlighted, a plot of the 24-hour Koopman modes

(Fig. 9b) along with the average phase and magnitude (Fig. 9c, d).
The red horizontal lines in Fig. 9d serve to visually divide the data
corresponding to differing highways. From the 24-hour mode
itself, we can immediately observe that the onset of congestion
occurs in a certain order within the network. Specifically, the I-
105W, I-10W, and I-405N are congested first then the I-710N
followed by the I-110N. One can conclude this by observing that
the (green) areas of congestion for every highway are staggered,
the order of their staggering reveals the order in which they are
congested. The order of congestion indicated corresponds with
the well-known fact that morning traffic travels in the direction of
Los Angeles from San Bernardino County (east to west) and from
Orange county (southeast to northwest). This is further verified
by observing the near equal phases for the west and northbound
directions coming into LA (Fig. 9c) and the near equal, but
opposite, phases for the east and southbound directions leaving
LA (Fig. 9i). Furthermore, Fig. 9d clearly displays the highest level
of magnitude within the I-10E and I-105E highways indicating
that, on a 24-h basis, traffic congestion is heaviest along these
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highways than all others within the network. This is also in line
with the fact that the I-10E and I-105E highways connect LA to
Orange and San Bernardino County. Interestingly, it is the east-
bound direction corresponding to the afternoon rushes that are
most heavily congested. This suggests that there are more vehicles
traveling in the outbound direction of LA in the afternoon than
the original amount of morning commuters that came into LA.

Lastly, we forecast the highway occupancy data for the above-
mentioned multi-lane network of highways within Los Angeles.
Again, we utilize the last 15 min to forecast the next 15 min and
visualize our results as a video, which can be referenced in the
Supplementary Video 15. We plot snapshots from the multi-lane
network forecast video for the morning (Fig. 10a, b) and
afternoon (Fig. 10c, d) rush hours. The forecasted and true
traffic conditions at 5:45 am and 6:00 pm are shown. For every
plot within Fig. 10, the top and bottom horizontal highways
correspond to the (I-10E, I-10W), and (I-105E, I-105W),
respectively. The left, center, and right vertical highways
correspond to the (I-405S, I-405N), (US-110S, US-110N), and
the (I-710S, I-710N), all of these highways are highlighted within
Fig. 9a. Both morning and afternoon forecasts demonstrate a high
level of similarity with the true conditions. However, the forecasts
were available between 5 and 15 min prior to the actual
conditions occurring. The corresponding error analysis, shown
in Fig. 10e–g, validates that our forecasts remain accurate over the
entire day. We encourage the reader to view the entire video of
the forecasting results for the Los Angeles multi-lane network
which is available online in Supplementary Video 15.

Discussion
We have proposed a data-driven method, based on the spectral
properties of the Koopman operator, which provides a

platform for the identification and analysis of spatiotemporal
traffic patterns. We were able to distinguish between the var-
ious types of patterns previously proposed by Ahn, Laval, and
others20,26,27 (MLC, PLC, SGW, “pumping effect”). We iden-
tify new patterns with standing wave node-like features, spatial
harmonic features, growing/decaying patterns, multi-lane MLC
patterns, multi-lane PLC patterns, multi-lane patterns with
combined lateral and longitudinal (zig-zag) travel, multi-lane
patterns associated with the merging effects of on-ramps and
novel patterns that exist within a network of highways. We
show that network mode analysis can reveal the order of
congestion, synchrony of congestion, and which highways are
occupied the most. Every pattern we uncovered is global
(across all detectors) and oscillates with a single corresponding
frequency, in contrast to Fourier transform methods that
would detect different frequencies for different sensors. Fur-
thermore, via Koopman eigenvalue analysis, we provide
objective means for extracting temporal characteristics of
traffic patterns and further analyze the eigenvalues to provide
evidence for the works of Kim, Gartner, Dendrinos30,37,59–61,
and others. In addition to the well-known daily and weekly
cycles, we have demonstrated the existence of intra-week
(Supplementary Figs. 14 and 15) and intra-day patterns within
traffic. Lastly, we have demonstrated how superimposing the
modes accordingly can yield a decomposition of the data into
the corresponding decaying, growing and persisting sub-
patterns.

We have also developed an accurate and efficient platform for
the real-time forecasting of highway traffic conditions. Our
method demonstrates that the wave-like trends account for a
majority of the dynamics and yield accurate forecasts, despite the
unpredictability involved in a traffic system. As opposed to
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Fig. 5 Video snapshots of the seventh multi-lane Koopman mode. The mode has a period of approximately 6minutes and the time for each figure is given
in minutes:seconds. Mode 7 clearly captures the dynamics of a highway wide traffic jam. It is interesting to note how the moving localized cluster’s (MLC)
travel can be out of phase across differing lanes. This results in the apparent top-left to a bottom-right direction of travel and is a feature impossible to
recover from a single-lane analysis. Lastly, one can observe that the on-ramp density of vehicles is not merging at the time of peak congestion. Specifically,
the on-ramp is most heavily congested during (c and d) at which point the MLC has already propagated by. However, mode 14, a harmonic of this mode,
clearly displays the opposite effect. This demonstrates how our multi-lane analysis can be utilized to verify the successful timing of static ramp metering
algorithms and identify the correct timescales for dynamic ramp metering algorithms. Mode 14 can be referenced in Supplementary Fig. 22.
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previous approaches we have not filtered, smoothed or aggregated
our data, we have not distinguished between weekday/weekend or
adverse weather conditioned traffic, nor have we limited our
analysis to single or few detectors. Our method’s performance
does not rely on large historical training nor parameter tuning or
selection. We showed the capability of the method to generalize to
the challenging scenario of multi-lane highways and multi-lane
networks of highways, without any loss to its performance or
efficiency. The robustness, efficiency, and versatility of the algo-
rithm make it capable of implementation with real-time mon-
itoring systems to provide cost-efficient forecasts. This is in
strong contrast to many state-of-the-art benchmarks that depend
heavily on the proper pre-processing of data, tuning of para-
meters and training over large historical data only to produce
case-specific (weekday/weekend/holiday), location-specific and
limited (single-lane, single highway) forecasts. The information
uncovered by the KMD can be relayed to autonomous vehicle
control units as well as dynamic on-ramp metering algorithms to
mitigate traffic. Future work will utilize the KMD to develop such

dynamic traffic control algorithms as well as extending the cur-
rent results to quarterly, yearly, decennial time scales and to
urban traffic networks.

Lastly, we emphasize that our methodology makes no
assumptions on the physical nature of the underlying system. We
only assume to have time-ordered data arising from observations
of a linear or nonlinear dynamical system. The forecasting
methodology we have developed is in fact quite general and can
be applied across different fields of study beyond highway traffic.

Methods
Spatiotemporal binning method. We describe in more detail the binning method
utilized in converting the NGSIM vehicle trajectory data. The motivation behind
this is that we are interested in identifying spatiotemporal patterns and must
construct macroscopic data from the NGSIM trajectory data. To do this we
implement the same binning methods developed by ref. 56 and divide the spatio-
temporal domain [0, L] × [0, T] into individual bins of size ΔX × ΔT. L represents
the total length of the highway, T the total time the data was collected for, ΔX is the
spatial step size, and ΔT is the temporal step size. Therefore, a single bin is given by
the following formula shown in Eq. (1), where nx ¼ L

ΔX and nt ¼ T
Δt are the number
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Fig. 6 Comparison of the true and forecasted data for the I-5 and LA network. a, b Raw data collected from PeMs for the I-10E and southern California
network. The data was collected for a week and 5 days respectively. The I-10 highway seems to be mostly congested throughout the week until Sunday. As
expected, all highways within the network seem to be congested on the days leading up to Christmas eve (12/21–12/22). Interestingly, there appears to be
drastic relief in congestion during and after the actual holiday dates of 12/24–12/26. c, d Forecasted data generated by the MH-HDMD utilizing the last
15 min of data to forecast the next 15 min. The network was forecasted by concatenating data obtained for individual highways and applying the MH-
HDMD algorithm to the concatenated data. By visual inspection alone the raw and forecasted data sets are indistinguishable, indicating an accurate
forecast. Nevertheless, there is some error present within our forecasts which can be referenced in Fig. 7. The source data underlying Fig. 7a, b are provided
in the Source Data file.
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of bins in space and time.

Bini;j ¼ iΔX; iþ 1ð ÞΔX½ � ´ jΔT; jþ 1ð ÞΔT½ �i2 0¼ nxð Þ;j2 0¼ ntð Þ ð1Þ

For every bin the quantities of interest (velocity, density, or flow) are assumed
constant. This assumption allows one to use the number of traces (footprints) of
vehicles left within a bin to estimate the macroscopic speed, density, and flow.
Specifically, the speed is computed as the average of all velocity traces left within a
bin according to Eq. (2), where tracei,j= {trace|trace ∈ Bini,j} which represents the
vehicles traces left within Bini,j and Vtracei;j

represents the velocity of those traces.

V̂i;j ¼ Mean Vtracei;j

� �
ð2Þ

The density is directly related to the amount of time vehicles spend within a
given bin normalized by the size of the bin56–58. Therefore, the density is computed

according to Eq. (3).

ρ̂i;j ¼
Cardðtracei;jÞSampling Rate

ΔXΔT
ð3Þ

where Card is the cardinality of a set. Our estimate for the flow is computed
according to Eq. (4) and has been shown in ref. 58 to be a reasonable estimate for
the flow.

Q̂i;j ¼ V̂i;jρ̂i;j ð4Þ
As mentioned, the data collected for the US-101 highway was taken for a total

of 45 min between 7:50 am and 8:35 am, however, the data for the I80 highway was
collected for a 15-min interval between 4:00 pm and 4:15 pm and again for 30 min
between 5:00 pm and 5:30 pm. This leads to the construction of three separate data
sets corresponding to the US-101 highway, 4 pm I-80 highway, and 5 pm I-80
highway. Supplementary Figures 1 and 2 demonstrate the resulting velocity, density
and flow data sets for both highways for ΔX= 20 feet per bin and ΔT= 5 s per bin.
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Fig. 7 Forecasting error analysis indicating that accurate forecasts are generated by the MH-HDMD algorithm. a–c Spatial MAE across detector
locations and its average across all detectors for the I-10, I-5, and Los Angeles network. The SMAE is evidently stable across different highways and
networks of highways and is on average between 1 and 2 miles per hour. d–f Temporal MAE and its time average. Again, it is evident that our method is not
only stable across differing highways and spatial scales but also stable across a wide range of time scales (days, week, month). g–i Normalized histograms
of highway velocities for both true and forecasted data sets. The near-perfect matches for low and high speeds indicate that despite the unpredictability
present in a highway system the statistics of our forecasts are nearly identical with the real physical system. A complete summary of the error analysis for
all highways can be referenced in Supplementary Table 2.
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Lastly, we alert the reader that the NGSIM data is provided in 15-min intervals. For
example, the 45 min of the US-101 data was provided in three separate 15-min
interval data sets. Unfortunately, this leads to missing data within the NGSIM data
sets. This required us to bin the individual data sets, concatenate the resulting
spatiotemporal data and interpolate any missing information. The source code for
the binning method and the interpolation has been made available as well as our
resulting spatiotemporal data sets. Therefore whether the reader wishes to
download the raw trajectory data or our binned spatiotemporal data our results can
be reproduced in either situation. A flow scheme demonstrating the binning
method outlined in this section can be referenced in Supplementary Fig. 26.

Koopman mode decomposition of highway traffic dynamics. In this section, we
outline the general theory and setting of the Koopman mode decomposition and its
data-driven implementation to highway traffic data. The value versus time point of
view of dynamical systems requires one to identify and solve the appropriate
differential equation that models the system of interest. The result is a solution of
the dynamical systemʼs behavior as a function of time. Although this procedure
yields a precise description of the system completely in terms of the initial con-
ditions, it is well known that many differential equations do not admit closed-form
analytic solutions. The state-space, point of view of dynamical systems reformulates
the underlying differential equations in terms of a vector field defined over an
appropriate state space. It happens to be that properties of the vector field and
geometrical objects of the state space can reveal an enormous amount of infor-
mation of the dynamics without needing to solve the equations. While this point of
view has been very fruitful for over a century, oftentimes one is interested in
studying very high dimensional complex and nonlinear systems where the

equations of motion are not known to begin with. In these situations, one only has
access to data or observations of the dynamical system rather than knowledge of
the equations that govern the process. The spectral operator point of view provides
a means for extracting information of the dynamics strictly from observations or
data. This point of view was pioneered by Bernard Koopman whose name has been
attributed to the specific operator describing the evolution of observables. The
Koopman operator is linear and its spectrum allows one to study nonlinear,
complex and high-dimensional systems via linear, although, infinite-dimensional
techniques. The epitome of this situation can be taken as highway traffic systems, in
which decades of research has been devoted towards deriving the correct governing
equations to no avail. The difficulty in deriving such equations and the advent of
technology has dramatically shifted the attention of researchers towards data-
driven techniques. This has lead to the deployment of a plethora of statistical and
machine learning methodologies to analyze and forecast traffic patterns. Unfor-
tunately, many of these methodologies pay no attention to any underlying
dynamics but rather seek to simply fit or learn traffic from data. On the other hand,
the KMD seeks to uncover the dynamical features hidden within traffic data via the
spectrum of a linear operator.

We now explain in detail the mathematical setting of the Koopman operator by
considering a continuous-time dynamical system whose state space is an N-
dimensional smooth manifold M, subject to the dynamics of some vector field F.
We could consider a general state-space, which is not necessarily a manifold,
however, for ease of exposition we consider the previously mentioned situation.
The dynamical system F, is assumed to generate a continuous group of invertible
flow maps St : M 7!M, t 2 R which represent the solution of the system.
Therefore, for any initial condition a0 2 M its evolution under the dynamics at
some later time t is given by at= St(a0). Let H be a Hilbert space of functions and
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Fig. 8 Mean absolute error for various choices of (s, f). a, b The top row was generated utilizing the MH-DMD algorithm. c, d The bottom row was
generated utilizing the DMD algorithm. It is evident that the Hankel-DMD can provide greater accuracy than a standard DMD analysis. This is best seen by
observing the increase of blue-colored squares in (a, b) versus (c, d). In both cases, the results suggest that the forecasting of traffic is a temporally local
task and that current and future conditions depend very little on the historical past. Furthermore, increasing the amount of historical data utilized can hinder
the accuracy of forecasts. This demonstrates the need for intelligent transportation systems to have sufficient analytic capabilities of detecting dynamic
traffic patterns in real-time and that training over extensive amounts of historical data is not necessary.
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let Ut be the Koopman semigroup of operators, parameterized by time t, which
compose the functions in H with the flow St. Hence, for any function f 2 H and
time t the action of the time-t Koopman operator on f can be expressed as follows
refs. 39,40

Utf ða0Þ ¼ f � Stða0Þ ¼ f ðatÞ: ð5Þ

Note that since the Koopman operator is infinite-dimensional, its spectrum may
contain a continuous spectrum in addition to the traditional point spectrum of
finite-dimensional operators. Assuming that the Koopman operator of a given
dynamical system contains only a point spectrum we have that for any ϕ 2 H that
is an eigenfunction of Ut, at eigenvalue eλt for λ 2 C, its evolution in time is as
follows refs. 41–43

Utϕ a0ð Þ ¼ ϕ � St a0ð Þ ¼ eλtϕ a0ð Þ: ð6Þ

Furthermore, a subspace A � H is invariant to the dynamics if for any f 2 A,
its image under the flow, Utf 2 A for all time t. If the Koopman eigenfunctions or
a subset of them, form a basis for an invariant subspace of H, then we can
represent any function that lies in the invariant subspace with the eigenfunction
basis41–43. Formally speaking, let Φ ¼ fϕig; i 2 N be a set of Koopman
eigenfunctions, Λ= {λi} the set of corresponding eigenvalues and let EΦ ¼ span Φð Þ
be the Koopman eigenspace associated with the basis of eigenfunctions. Then the
Koopman mode decomposition of any observable f 2 A is given by the following

expression41–43

Utf a0ð Þ ¼ f � St a0ð Þ ¼
X1
i¼1

ϕi a0ð Þeλi t vi; ð7Þ

where vi ¼ f ;ϕ*i
� �

is the skew-projection of f onto EΦ , obtained via the inner
product of f and the dual eigenfunction ϕ*, and is called a Koopman mode41–43.
Although, together the triplet (Φ, Λ, V) yield the KMD of an observable, it is
important to note that (Φ, Λ) are intrinsic to the dynamical system however, the
Koopman modes V= {νi} are not. Namely, they depend on the choice of f and will
change according to that choice.

We now discuss the details of how the Koopman mode decomposition can be
applied to highway traffic data. Formally, we have a time-ordered data matrix X
which contains a total of m data vectors. Typically, the velocity or density profile
along the highway, at an instant in time i ∈ {1, …, m}, constitutes a single data
vector labeled xi and corresponds to the ith column of the data matrix X. The
number of rows in X, labeled by k, is dictated by the number of locations along the
highway at which the velocity or density is measured (number of sensors). Hence
the data matrix has the following form shown in Eq. (8).

X ¼ x1 x2 ¼ xm½ � ð8Þ
Again, in Eq. (8) m is the number of data snapshots acquired, xi 2 Rk; is a

single data vector at time i and X is a k ×m matrix. As previously mentioned,
several algorithms for approximating the eigenfunctions, eigenvalues, and modes of
the Koopman operator have been developed. In our work we begin by computing
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Fig. 9 Map of the Los Angeles multi-lane network and the resulting 24-hour Koopman. aMap of the multi-lane network obtained from Map © data 2019
Google. The highways studied are highlighted and data for three lanes of both north–south and east–west directions are collected for the entire day of
December 20th, 2018. b The 24-hour Koopman mode revealing the order of congestion within the network. Specifically, by observing the staggering of the
amplitude one can see that during the morning rush the westbound I-105 and I-10 along with the northbound I-405 and I-110 jam first. In the afternoon
traffic switches directions and it is the eastbound and southbound directions of the previously mentioned highways which are jammed. This corresponds
with the well-known fact the morning commuters generally travel from San Bernardino (east to west) and Orange County (southeast to northwest) into
Los Angeles. c A plot of the average phase of the mode sorted by highway confirming the previously mentioned synchrony of congestion. Specifically, the
north and west directions seem to be in phase with each other and likewise for the south and east directions. d The magnitude of the 24-hour mode along
with magenta-colored lines used to visually divide the differing highways. The magnitude of the mode reveals that the eastbound I-10 and I-105 highways
are more occupied than the other highways.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15582-5

12 NATURE COMMUNICATIONS |         (2020) 11:2090 | https://doi.org/10.1038/s41467-020-15582-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the mean subtracted data matrix X̂ according to Eq. (9).

X̂ ¼ x1 �
1
m

Xm
i¼1

xi x2 �
1
m

Xm
i¼1

xi ¼ xm � 1
m

Xm
i¼1

xi

" #
ð9Þ

It is clear to see that X̂ is obtained by computing the time averages of the
original data and subtracting the computed average from the data. This is
motivated by the fact that λ= 1 is an eigenvalue of the Koopman operator and
corresponds to the time averages of the system41–43 and hence we pre-compute this
quantity. The mean-subtracted data matrix is then fed to the Hankel-DMD
algorithm49,66 which is a combination of a time-delay (Hankel matrix) embedding
that is followed by an exact dynamic mode decomposition algorithm51 (Exact-
DMD). The method of delay embedding is a state-space reconstruction technique

that has been shown to recover the attractor (structure) of the original dynamical
system generating the data67,68. Hence, a delay embedding d is chosen and the
mean subtracted data is embedded as shown in Eq. (10).

X ¼ x1 � � � xm½ � ! H ¼

x1 x2 x3 � � � xm�d

x2 x3 x4 � � � xm�dþ1

..

. ..
. ..

. . .
. ..

.

xd xdþ1 xdþ2 � � � xm

2
66664

3
77775 ¼ h1 � � � hl½ �

ð10Þ
Now, what the Exact-DMD seeks to approximate is a finite-dimensional

representation of the Koopman operator which must satisfy the following relation
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shown in (11).

H2 ¼ KH1 þ r ð11Þ
where K is a finite matrix representation of the Koopman operator and r is a
residual error term due to the fact that we only have a finite-dimensional
approximation of a possibly infinite expansion. H1 and H2 are time-shifted
matrices as shown in Eqs. (12) and (13)

H1 ¼ h1 h2 ¼ hl�1½ � ð12Þ

H2 ¼ h2 h3 ¼ hl½ � ð13Þ
The Exact-DMD obtains this approximation by minimizing the residual term in

a least squares sense. Therefore, by utilizing the singular value decomposition
(SVD) of H1=UΣW* to rewrite (11) as shown in Eq. (14).

H2 ¼ KH1 þ r ¼ KUΣW* þ r ð14Þ
Multiplying both sides of (14) with U*, and recalling that minimizing the

residual term requires it be orthogonal to U we obtain the following expression in
Eq. (15).

U*H2 ¼ U*KUΣW* þ U*r ¼ U*KUΣW* ð15Þ
Rearranging the above equation we can obtain a matrix S that is related to K via

a similarity transformation as shown in (16).

U*H2WΣ�1 ¼ U*KU � S ð16Þ
Since K and S are related they share common eigenvalues and the eigenvectors

are the same up to the similarity transformation. Hence if (λI, wi) are an eigen-pair
of S then (λI, vi=Uwi) is an eigen-pair of K. Furthermore, since the sampled data
produced a discrete time description of an originally continuous time process, the
eigenvalues {λi} we obtained lie on the unit circle. Therefore, the continuous time

eigenvalues are given by ωi ¼ ln λið Þ
T , where T is the sampling rate. Finally, we can use

the KMD to obtain a description of the observed data points xi via the following
equation:

xkmd tð Þ ¼
Xl

i¼1

b0ivie
ωi t ¼ Veωtb0 ð17Þ

where V is a matrix whose columns are the eigenvectors vi and b0 is a vector of
coefficients associated with the initial data snapshot x1, specifically b0=V†x1.
Where † represents the Moore–Penrose pseudoinverse of a matrix and eωt

represents a diagonal matrix whose elements are eωi t .
Therefore a pair (vi, ωi) of Koopman modes and eigenvalues are obtained from the

Hankel-DMD algorithm. The modes and eigenvalues can then be evolved in time via
Eq. (17) for m time steps to reconstruct the data and by iterating past m time steps
one can begin to forecast the future state of the system. A flow scheme of the
procedure we outlined can be referenced in Supplementary Fig. 27. Lastly, the works
of ref. 69 have shown that applying a DMD algorithm to mean subtracted data reduces
to a standard discrete Fourier transform of the data. We emphasize that this is not the
case in our situation due to the time-delay embedding. In our works, we first subtract
the mean and then embed before applying Exact-DMD. One can check the structure
of the Hankel matrix in Eq. (10) and confirm that although the mean was subtracted
from the rows of the original data the mean of the rows of the Hankel matrix is not
zero. This is due to the rearranging of the elements that takes place when embedding
and forming the Hankel matrix. Indeed, had we first embedded and then subtracted
the mean, in that situation, we would be applying DMD to a mean subtracted data.
Essentially, the order in which one mean subtracts and embeds is crucial. For further
discussion on the Koopman operator, dynamic mode decomposition, Hankel
matrices, and time-delay methods, refer to refs. 46,49,50,55,67,68,70. A detailed discussion
on how we select the number of delays can be referenced in the following section.
Pseudocode of the Hankel-DMD algorithm can be referenced in Supplementary
Note 1 and the corresponding source code is made available according to the code
availability statement.

Choice of hyperparameters. We emphasize that the spatiotemporal bin size ΔX
and ΔT used to convert the Lagrangian NGSIM data into Eulerian data is not
relevant to our methodology but specific to how the data was provided. For
example, the Caltrans PeMs data was provided as Eulerian data, to begin with, and
therefore no binning was necessary. Therefore, there is only one hyper-parameter
in all of our work that our methodology depends on, that is the number of delays
used in constructing the Hankel matrix, which we discuss in this section.

Typically, fat (more columns than rows) matrices are rank deficient and have been
known to cause instabilities within DMD algorithms51. Additionally, applying DMD
to a fat data matrix involves solving an underdetermined system which in general
does not have a unique solution. Thus, one can expect that choices of (ΔX, ΔT)
leading to substantially more columns than rows (ΔT >ΔX) can potentially be
unstable for a DMD algorithm. Indeed, our choice of ΔX= 20 feet and ΔT= 5 s
yielded a rather fat (104, 540) sized data matrix for the US-101 highway data. The
reason for the stability in our results is due to the choice of delay d= 7 which implies
that our embedded matrix is actually of size (728, 536) and hence a tall matrix (more

rows than columns). In this situation, one is solving an overdetermined system which
usually has a unique solution in the least-squares sense. Furthermore, upon inspecting
the eigenvalues we obtain with d= 5 and d= 6 we still find a purely real eigenvalue of
λ= 1. This should not be the case since we previously subtracted the average. A delay
of d= 7 yielded a decomposition without an eigenvalue of one while ensuring that the
resulting data matrix was tall and hence our choice for analyzing the US-101 highway
data. Therefore, the matrix size dilemma led to a lower bound on the number of
delays to use and the appearance of the spurious eigenvalue λ= 1 guided our upper
bound on the number of delays.

In general, the optimal number of delays to use is still an open topic within
Koopman operator theory. However, we confirm that our procedure for selecting the
number of delays always yielded a near optimal delay by plotting, on a log-log scale,
the mean absolute reconstruction error (MAE) against the number of delays d which
can be referenced in Supplementary Fig. 28. One can immediately observe from
Supplementary Fig. 28 a substantial decrease in MAE that occurs when the embedded
data matrix is at least tall. Furthermore, the green dots within Supplementary Fig.
25a–c correspond to our choices of delay determined according to our systematic
procedure and confirm that our procedure always yielded reasonable choices. Most
importantly, our procedure for determining the number of delays does not require the
costly computation of the MAE for every possible value of delay.

Error metrics. To quantify the performance of our method the mean absolute
error (MAE), mean relative error (MRE), and root mean squared error (RMSE) are
computed according to formulas (18)–(20).

MAE ¼ 1
N

Xn;m
i;j¼1

jTi;j � Fi;jj ð18Þ

MRE ¼ 1
N

Xn;m
i;j¼1

jTi;j � Fi;jj
jTi;jj ð19Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn;m
i;j¼1

jTi;j � Fi;jj2
vuut ð20Þ

In the above formulas, T is the true data matrix, F the forecasted data matrix, n
is the number of rows in T (number of sensor locations), m the number of columns
in T (number of time points), and N= n · m is the total number of elements in T.
The spatial and temporal averages of the absolute error (SMAE) and (TMAE) as
well as the spatial and temporal correlations (SCorr) and (TCorr) are computed
according to formulas (21) and (22). Here E= |T − F| is the absolute error matrix.
The average value of correlation coefficients across different detectors (rows of T) is
used to compute what we refer to as the spatial correlation. The temporal
correlation is computed by reshaping (vectorizing) T and F into a single vector
time series and computing their corresponding correlations.

TMAE ¼ 1
m

Xm
j¼1

Ei;j; SMAE ¼ 1
n

Xn
i¼1

Ei;j ð21Þ

SCorr ¼ 1
n

Xm
j¼1

CorrðTi;j; Fi;jÞ; TCorr ¼ CorrðTi;j;Fi;jÞ ð22Þ

Data availability
The raw NGSIM trajectory data is publicly available at https://data.transportation.gov/
Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj. The
PeMs database can be accessed at http://pems.dot.ca.gov. All data utilized within this
study is made available at https://github.com/Allan-Avila/Highway-Traffic-Dynamics-
KMD-Code.git or from the authors upon request. The source data underlying Figs. 1b–d,
6a, c and Supplementary Figs. 1a–c, 2a–c, 23a, and 24a are provided as a source data file
and at the above-mentioned Github repository.

Code availability
All codes used in this study are available at: https://github.com/Allan-Avila/Highway-
Traffic-Dynamics-KMD-Code.git or available from the author’s upon request.
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