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CD28 and chemokine receptors:
Signalling amplifiers at the
immunological synapse

Barbara Molon1,2*, Cristina Liboni1,2 and Antonella Viola1,2

1Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy, 2Department of
Biomedical Sciences, University of Padova, Padova, Italy
T cells are master regulators of the immune response tuning, among others,

B cells, macrophages and NK cells. To exert their functions requiring high

sensibility and specificity, T cells need to integrate different stimuli from the

surroundingmicroenvironment. A finely tuned signalling compartmentalization

orchestrated in dynamic platforms is an essential requirement for the proper

and efficient response of these cells to distinct triggers. During years, several

studies have depicted the pivotal role of the cytoskeleton and lipid

microdomains in controlling signalling compartmentalization during T cell

activation and functions. Here, we discuss mechanisms responsible for

signalling amplification and compartmentalization in T cell activation,

focusing on the role of CD28, chemokine receptors and the actin

cytoskeleton. We also take into account the detrimental effect of mutations

carried by distinct signalling proteins giving rise to syndromes characterized by

defects in T cell functionality.
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Signalling compartmentalization: surrounding
molecules to integrate and amplify signals

Cells must be able to sense, decode and integrate a plethora of environmental stimuli.

For many years, an outstanding question for cell biologists was how different signalling

cascades, exploiting common intracellular effectors, could trigger distinct cellular

responses. It is now clear that to allow the proper progress of specific cellular

responses, signalling effectors must be locally confined in space and time, a concept

referred as signalling compartmentalization. The tight control of the location, duration

and frequency of signalling molecules indeed contributed to the relevant functional

specificity that enables receptors to encode distinct cellular responses.

Protein compartmentalization is integral to achieving effective and controlled T cell

responses, which are drivers of the adaptive branch of the immune system (1, 2). Over the
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last years, multiple studies have shed light on both the

mechanisms by which signals are compartmentalized in T cells

and the physiological role played by such compartmentalization

(3). Both lymphocyte migration and activation indeed rely on

the selective and transient segregation of signalling molecules

and membrane receptors that localized in specific cell locations

with different kinetics.

The dynamic molecular compartmentation of signalling

players in T cells is ensured by the interplay between the

plasma membrane (PM), cytoskeleton networks, and

intracellular organelles.

Collectively, such events lead to the establishment of a

morphological and molecular asymmetry know as lymphocyte

polarization which is crucial for T cell migration and activation.

In resting conditions, T lymphocytes present a spherical

shape retained by the cytoskeleton tension and, in particular, by

the intermediate filaments and the cortical actin (4, 5).

T lymphocyte surface is “decorated” with microvilli sustained

by parallel bundles of highly dynamic actin filaments (6, 7)

(Figure 1). These structures allow T cells to sense the

surrounding microenvironment and, importantly, they

promote signalling compartmentalization at their tips, leading

to the coalescence of proteins and receptors involved in T cell

adhesion and activation, as integrin a4b7-Very Late Antigen 4

(VLA-4), L-selectin, chemokines receptors as CXCR4 (8, 9) and

T cell receptor (TCR) complexes (6, 10–14). At the tip of

microvilli, proteins are found in close proximity thus

prompting an easier and more efficient “scanning” of the APC

surface in search of the peptide-major histocompatibility

complex (pMHC) and, at the same time, increasing the avidity

for subsequent interaction of the two cells. Indeed, following T

cells adhesion and activation, microvilli are resorbed and

integrin avidity is upregulated in a process mediated by ERMs

proteins (ezrin, radixin and moesin), acting as a bridge between

the PM and the actin cytoskeleton (15–17). Notably, it has been

recently proposed that membrane curvature could also promote

signalling compartmentalization within microvilli tip (18). This

topic has been extensively discussed elsewhere (19).

In this landscape, a particular focus should be made on the

actin cytoskeleton bearing a ubiquitous but fundamental role in

multiple cellular processes. As for T cells, the actin cytoskeleton

has a key importance in their activation, mainly during the

formation and maintenance of a specialized junction named the

Immunological Synapse (IS). In accordance to this, recently, it

has become clear that mechanical and biochemical signals at the

IS are integrated by actin dynamics (20).

Besides cytoskeleton, signalling compartmentalization in T

cells is orchestrated also by “small (10–200 nm), heterogeneous,

highly dynamic, sterol- and sphingolipid-enriched domains that

compartmentalize cellular processes” (21, 22), defined as lipid

rafts. Even if, due to technical issues, their description and

existence has been debated for years, it has been clear from the

beginning that their main feature is the ability to promote
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signalling via proteins juxtaposition (controlling the inclusion/

exclusion of proteins) thus generating “signalling hubs”. Giving

their limited size, lipid rafts can welcome only a limited number

of proteins which probably stand among 10-30 proteins (22, 23).

The partitioning of molecules within their structure can be

regulated by multiple factors including the intrinsic molecule

state, the signalling state of the cell and post-translational

modifications (PTMs). Interestingly, lipid rafts are not stand

alone structure by they are connected to the cytoskeleton via

actin-binding proteins as ezrin and filamin acquiring then the

definition of “floating island” or “flying kites” (21, 24).

The advancements in imaging techniques, with the

introduction of single molecule and scanning confocal

imaging, have overcome this primordial separation of these

compartments. For instance, the “Picket and Fence Model”

postulated by Kusumi and colleagues defined confinements

area within the membrane (between 30 and 700nm) where

transmembrane proteins are anchored and lined up along a

fence of cytoskeletal proteins (25). This model arises from the

evidence that transmembrane proteins can also move within

confined areas and they have to “hop” when changing it. This

concept was expanded by the definition of the “proteins island

model” in the PM. Protein islands (both rafts and non-rafts

islands) are actin-rich areas where membrane-associated

proteins are clustered (26, 27) surrounded by a “sea” on

protein-free regions. It has been observed that, in activated

membranes, rafts and non-rafts regions presented more

frequent contacts, a feature that probably shapes and

influences their functionality and morphology (26).

Interestingly, actin cytoskeleton is mandatory for their

establishment, while cholesterol depletion does not impair

proteins distribution between rafts and non-rafts regions,

implying a superior organization order (26). Even if reports in

this direction are still missing, it could not be excluded that

protein islands may also have a role in cell-cell communication,

membrane trafficking and membrane fusion.

Compelling evidence also indicates that the endocytic

compartment works as a signalling hub within the cell (Figure

1). As elegantly revised by Scita and Di Fiore (18), endosomes

sustain the signal originated by the PM and, at the same time,

allow the generation of unique signals. This is possible thanks to

their small volume which favors the coincidence of detectors, the

specific enrichment of some lipids, the rapid microtubule-

mediated transport of molecules; moreover, the endosome

acidic pH might trigger and regulate specific enzymatic

functions. Even if additional studies are required to model and

experimentally validate endosome dynamics, it is clear how

endocytosis provides a controlled spatial and temporal

dimension for distinct signaling pathways.

Overall, the spatial ordering of molecular players in distinct

cellular compartment enables the complexity of multiple

signaling events, a feature which is mandatory for a proficient

T cell migration and activation (28).
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Signalling compartmentalization in
T cells

Even if in resting conditions T cells present a round-shaped

morphology, they acquire functional polarity upon stimulation

by a variety of ligands. This is particularly evident during T cell

migration and priming, when the definition of a cellular polarity

allows the maintenance of active and distinct signalling

compartments. In the past, our laboratory has analyzed the

mechanisms responsible for signaling amplification and

compartmentalization during these two processes, focusing on

the role of CD28 and chemokine receptors governed by the actin

cytoskeleton. In this manuscript, we will focus on the

contribution of the aforementioned players in T cell migration

and activation.
CD28 at the crossroad of cytoskeleton
and lipid rafts

T cell priming starts in lymph nodes (LNs) with the

formation of a stable interaction between naive T cells and

antigen presenting dendritic cells (DCs). This represents a very

sensitive process ultimately leading to multiple cellular

responses, including T cell proliferation and the secretion of a

wide range of cytokines, chemokines and cytotoxic mediators.

By the use of two-photon microscopy, seminal studies unveiled

the kinetics of this event in vivo by proposing the 3-stage

paradigm: upon antigen encounter, T cells engaged first

transient serial interactions (phase 1) and next stable contacts

(phase 2) with antigen-loaded DCs; finally they increased their

motility, detached and proliferate (phase 3) (29). In particular,

the interactions between T cells and APCs are transient between

2 and 8h following the first encounters, stable between 8 and

24h, and again transient by 24–36h (30, 31).

The stability of T cell-DC interaction is determined by

multiple interconnected signals, from TCRs as well as

stimulatory and inhibitory receptors that are integrated in a

specialized membrane junction named the “immunological

synapse”-IS (32, 33) (Figure 1). In T lymphocytes, signalling

events occurring at this platform cause multiple downstream

effects ranging from the dynamic rearrangement of the actin

cytoskeleton, and the initiation of a gene expression cascade

ultimately leading to the generation of effector and memory T

cells (34–36). At the IS, the duration of distinct molecular signals

including the amplitude and kinetics of intracellular Ca2+ waves

ranges between few minutes to hours (37).

The formation of the IS is initiated with the extension of

filopodia and lamellipodia from the T cell toward the APC. The

interaction of the two cells leads to the establishment of a F-actin

rich interface. Then, TCR and co-stimulatory molecules,

including CD28, trigger the reorganization of the cytoskeleton
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with the recruitment of the actin polymerization machinery and

its regulatory proteins at the IS where, in a positive-feedback

loop, they promote the maintenance of the TCR signalling (38,

39). Actin segregates into radial asymmetric zones defined as the

supramolecular activation clusters (SMACs) (34, 40–42). We

can distinguish the cSMAC (central SMAC), comprising the

TCR and co-stimulation molecules; an outer ring named as

pSMAC (peripheral SMAC) containing the LFA-1 (41, 43) and a

distal SMAC (dSMAC) including the CD43 and CD45 (44, 45).

Mechanistically, several protein tyrosine kinases (PTKs),

including Src family PTKs such as Lck and Fyn and the Syk

family PTK zeta chain of TCR-associated protein 70 (ZAP-70)

are brought into proximity of the CD3 complex upon TCR

engagement (46). There, Lck or Fyn causes the phosphorylation

of the immunoreceptor tyrosine-based activation motifs (ITAM)

in the CD3 subunits. Tyrosine phosphorylation of CD3 provides

the binding site for ZAP-70 via its SH2 domain, and then Lck or

Fyn activates ZAP-70 by phosphorylation (47, 48). ZAP-70

activation in turn favored the phosphorylation of downstream

adaptors, including the linker for activation of T cells (LAT) and

SH2 domain-containing leukocyte phosphoprotein of 76 kDa

(SLP-76) acting as scaffolds to recruit additional signalling

molecules. As a consequence, multiple signalling pathways are

activated at the IS eventually leading to T-cell activation,

proliferation, and differentiation (49).

Importantly, in naïve T cells, the outcome of TCR

stimulation is regulated by costimulatory signals. Among

them, the CD28-mediated signalling strongly influences T cell

priming. At the IS, CD28 signals lower T cell activation

threshold by enabling an effective priming by few antigenic

complexes (40, 50, 51). When CD28 is recruited at the IS, it

promotes the recruitment of multiple downstream interactors at

its cytoplasmic tail. Among them, the phosphoinositide 3-kinase

(PI3K) (52), Lck (53, 54), growth factor receptor-bound protein

2 (Grb2) (55), Grb2-related adaptor protein (Gads) (56), IL2-

inducible T cell kinase (Itk), the guaninenucleotide exchange

factor Vav (57), Akt (58), protein phosphatase 2A (PP2A) (59,

60), and protein kinase C theta (PKCq) (57). With respect to

PKCq, it has been reported that CD28-mediated signals are

required for the specific localization of this kinase to the center

region of the IS through its V3 motif (61).

As well, CD28 attends the selective sorting of molecular

interactors in lipid membrane domains, acting as privileged sites

in which signals are protected and amplified. Indeed, we showed

that the CD28 co-stimulation of the TCR signaling cascade is

based on lipid rafts (62). Next, we found that the kinase Lck is

recruited into CD28-signaling rafts and directed to the IS upon

CD28 engagement by a process requiring the CD28 COOH-

terminal PxxPP motif and Vav-1, key regulator of the actin

cytoskeleton rearrangements (63). Of note, IS lipid

microdomains are also enriched in TCR signalling proteins,

including the Src-family kinase Fyn, the adapter protein LAT,

phosphoprotein associated with glycosphingolipid-enriched
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domains (PAG) or Csk-activating protein (Cbp) and Lck-

interacting molecule (LIME) (33, 64). Interestingly, the

partitioning of Lck and LAT at the IS lipid microdomains is

dictated by the post-translational modifications (PTM, including

protein S-acylation) (65–67). In this regard, a recent report

showed that S-acylation of the plasma membrane channel

ORAI1 is crucial for the selective trapping of this channel in

cholesterol-rich lipid microdomains at the IS where it controls

the local Ca2+ fluxes leading to T cell activation (68).

Furthermore, according to the protein islands theory, LAT

clusters appear to aggregate with CD3/CD28 complexes in the

activating surface of T cells (26). LAT acts a central mediator for

T cell activation dictating, once phosphorylated, the co-

cluster ing of CD2 and Lck in membrane discrete

microdomains via protein-protein interactions in a process

initiated by F-actin and actin-associated proteins. Beside this,

LAT also regulate calcium dynamics at the IS and Ras signalling

(28). As mentioned before, CD28 acts as a master regulator of

actin cytoskeleton rearrangements during T cell activation by

tuning the actin polymerization machinery. This process is

under the control of several interactors: upon TCR-

engagement, the kynase ZAP-70 phosphorylates the adaptors

SLP-76 that then binds Nck and the guanine nucleotide

exchange factor Vav-1. More, Nck constitutively associated

with WASp (69, 70) thus acting as a bridge to recruit WASp

itself to the SLP-76 signaling complex. In association with SLP-

76, Vav-1 mediates the exchange of GDP- to GTP-bound Cdc42,

Rho family GTPases that interacts with the conserved VCA

domain of WASp allowing its binding to the Arp2/3 complex.

Once bound to the VCA domain, Arp2/3 promotes the

branching of the actin polymerization and rearrangement at

the T cell-APC contact site (71). Arp2/3 cooperates with filamins

that are actin crosslinking proteins. In this landscape of

interactors, we pointed out the actin-binding protein Filamin-

A (FLNa) as the molecular partner of CD28 both in the

reshaping of the actin cytoskeleton and in the lipid rafts

recruitment at the IS (72). In this study, we showed that the

COOH-terminal PxxPP motif of CD28 is required for CD28–

FLNa association, and that FLNa has a direct role in CD28

signalling by recruiting Cdc42 at the site of Vav-1 activation.

Vav-1 plays a crucial role in the regulation of the CD28

costimulation. Indeed, it has been shown that the adaptor

molecule Cbl-b controls the CD28 dependence of T-cell

activation by selectively suppressing TCR-mediated Vav

activation (73). Cytoskeletal actin dynamics are also regulated

by the phosphatidylinositol bisphosphate (PIP2) produced by

the activity of the PIP5K enzymes. In this regard, we and other

showed that, in collaboration with PIP5Ka and Vav1, PIP5Kb
promotes actin polymerization and CD28 signaling in human T

cells (74, 75). Other reports further support the relevance of the

dynamic regulation of actin in CD28-mediated costimulation by

linking the actin-uncapping proteins Rltpr (76) and CapZIP (77)

to the CD28 costimulatory signalling.
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More recently, a phenomenological agent-based model has

been developed for assessing the contribution of actin-driven

forces to IS formation and CD28 localization. By applying this

model, authors proposed that although CD28 can reach the IS

center by passively following TCR clusters, the ring-like pattern

of CD28 at the synapse is determined by the coupling to the actin

cytoskeleton (78).

Taken together this evidence endorses the outstanding role

of CD28 as a signalling hub in T cells finely tuning cytoskeletal

dynamics and lipid rafts reorganization.

Beside CD28, which positively regulates T cell activation,

other inhibitory molecules are present on the T cell surface.

Among these, the most characterized are CTLA4 and PD1,

whose importance rapidly increased in recent years as targets

for immune-mediated therapies. These are recruited within the

cSMAC together with their downstreammediators and here they

compete with CD28 ligands (B7-1/CD80 and B7-2/CD86) for

binding, thus promoting the establishment of T cell anergy (5,

34, 79). Interestingly, most of CTLA4 seems to reside within

endocytic vesicles, a mechanism facilitating its signalling with a

fine compartmentalization (5, 79). Similarly to CTLA4, also PD-

1 presents a minimal expression in resting conditions, further

increased after T cell activation (79). Thanks to the binding to

PD-L1 and PD-L2, it abolishes IL-2 production in T cells and,

albeit only in some settings, it also induce T cells apoptosis (79).

As was recently revised, both these molecules affect T cell

motility reducing its ability to “pause” when encountering the

cognate APC thus raising the threshold for IS formation in the

“reverse-stop signal model” (80, 81). This effect seems to be

mediated by phosphatidylinositol 3-kinase, Vav-1, Cdc42, and

myosin light chain MLC kinase (82) which also affect T cell

motility to inflamed sites (80). In addition, in was reported that

PD-1 mediates the inhibition of T cell function acting mostly on

CD28 rather than on TCR (83).
Chemokine receptors

In T cells, the activation of chemokine receptor signalling

contributes to the spatial and temporal repositioning ofwfi 2

intracellular and membrane-bound players, ultimately

defining T cell polarity. During migration, polarity refers to

the ability of cells to change their morphology in response to

chemoattractants, and to maintain a stable asymmetric shape

with two poles: the leading edge, which protrudes at the cell

front, and the rear edge (termed uropod in leukocytes), at the

back (84). This process, which is initiated by chemokine receptor

signalling and adhesive interactions with the extracellular matrix

(ECM), increases the sensitivity toward chemokine gradients, by

the selective recruitment of chemokine receptors at the T cell

front (85) (Figure 1). Compartmentalization of the PM into

distinct lipid microdomains is pivotal in establishing and

maintaining leukocyte polarity and perturbation of lipid
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FIGURE 1

Mechanisms of signalling compartmentalization in T cells. From the left, relevant compartments which regulate signalling compartmentalization in T cells
(A), related T cell activities (B) andmechanisms underpinning signalling compartmentalization at these sites are outlined (C). In microvilli, parallel actin
filaments allow the sustainment of the structure which assure the concentration of proteins andmolecules and signalling compartmentalization in naïve T
cells. In the immune synapse (IS), where the formation of the couple between the T cell and the APC is assured by the specific recognition of the Ag
recognized on theMHCII molecules by the TCR, the binding of the two cells is further sustained by the CD3 and co-stimulatorymolecules (CD28/B7-1/
CD80-B7-2/CD86). Here, the compartmentalization of the signalling is mediated by the concerted action of cytoskeletal components, lipid rafts and
endocytic compartment. During T cell migration, the T cell acquires an intrinsic polarity mandatory for the definition of a leading edge and a rear pole
(uropod). The differential segregation of proteins at these two poles (cytokines and chemokines receptors at the front side whilemitochondria and integrins
of the rear one) assures the functional motility of the T cell. Mitochondria relocation within the T cell is mediated bymicrotubules in a Ca2+ dependent
fashion. This process is orchestrated by theMTOC (microtubules organizing center) which controls microtubules polymerization and thenmitochondria
localization in a Ca2+ -dependent fashion. The definition of T cell polarity is mandatory for a proficient T cell migration with, on one side, chemokine
receptors guiding themovement at the leading edgewhile, on the other side, adhesionmolecules controlling T cell adhesion hence providing an antithetic
force. Lastly, the endocytic compartment, apart from the recycling ofmolecules, promotes the fine compartmentalization and the amplification of the
signal with the juxtapositioning ofmolecules and proteins. TCR-T cell receptor; MTOC-MicroTubule Organizing Center; ATP-Adenosine TriPhosphate.
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microdomains inhibits both cell polarization and migration

(85, 86).

The spatial organization of chemokine receptors into dimers

and higher-ordered oligomers further adds to the complexity of

possible GPCR arrangements, and consequently modulation of

signaling (87). Recent studies shed light on how cholesterol

dictates the spatial organization of GPCRs within the PM. in

particular, it has been proposed that cholesterol promotes the

oligomerization of chemokine receptors at the PM that

ultimately enabling the integration of distinct signaling

pathways at the receptor-membrane interface (88). Previously,

it has been shown that the CXCR4 and CCR5 receptors associate

to GM3-enriched lipid rafts and are consequently redistributed

to the leading edge of moving cells. Interestingly, both CXCR4

and CCR5 directly interact with FLNa, that actively modulates

their signalling pathways. Indeed, the specific blockade of

CXCR4–FLNa interaction inhibited CXCL12-induced

chemotaxis in T cells. As for CXCR4, filamin-A expression did

not affect CCR5-mediated Ca2+ flux, but regulated F-actin

remodelling (89).

Chemokine receptors play a pivotal role during T cell

activation, too. Long-lasting interactions between T cells and

APCs are dependent on antigens (90, 91), but antigen-specific

interactions are preceded by antigen-independent, chemokine-

promoted adhesive contacts in the T cell-APC pair, enabling T

cells to scan the surface of their cellular partners (92–94).

Although the induction of cell polarity at the IS was thought

to be dependent on TCR triggering, we have shown that CXCR4-

induced activation of LFA-1 at the contact site with APCs starts

MTOC and mitochondria relocation towards the upcoming IS

(95). Importantly, we found that, by recruiting mitochondria to

the IS, LFA-1 sustains and amplifies the upcoming TCR-induced

Ca2+ signalling, indicating that establishment of T-cell polarity is

pivotal to a prompt and sustained T cell activation (95) (Figure

1). Interestingly, by bringing mitochondria and ORAI channels

into close proximity and by re-organizing plasma membrane

calcium ATPases (PMCAs) into discrete regions co-localizing

with mitochondria, the IS prevents Ca2+ -dependent channel

inactivation and reduce local Ca2+-dependent PMCA

modulation (96).

The tight spatial and temporal regulation of cytosolic

calcium (Ca2+) is of paramount importance for multiple T cell

effector functions as differentiation, proliferation, metabolism,

cytokine release and cytotoxicity. The IS indeed controls Ca2+

microdomains by bringing mitochondria and ORAI channels

into close proximity and favoring the segregation of PMCA into

distinct PM domains. The proteins and organelles re-

distribution allows mitochondria to rapidly take up the

inflowing Ca2+, thereby avoiding high Ca2+ microdomains

close to ORAI channels, which prevents Ca2+-dependent

channel inactivation and reduce local Ca2+-dependent PMCA

modulation. This optimizes net Ca2+ influx at the IS (96).
Frontiers in Immunology 06
The mechan i sms r e spons i b l e f o r Ca 2+ s i gna l

compartmentalization in T cells have been extensively explored

and described (97). Early recruitment of mitochondria at the T-cell

IS occurs independently of TCR stimulation and through a

mechanism requiring chemokine receptor signalling (95).

Interestingly, we had also shown that chemokine receptor signaling

induces accumulation of mitochondria at the uropode of migrating

cells, where they are required to sustain phosphorylationof theMLC,

a key step in high-speed moving cells (98).

In addition to shaping T cells for effective signaling,

chemokine receptors directly support the IS stabilization and

indeed and T cell activation. We had demonstrated that CXCR4

and CCR5 are stably recruited into the IS by APC-secreted

chemokines (70). In this context, chemokine receptors

contribute to the amplification of the TCR signalling acting as

powerful costimulatory molecules (99). Indeed, their recruitment

at the IS prolong the duration of the T cell–APC interaction and

strengthen T cell–APC pair attraction ultimately avoiding

premature splitting due to chemoattractant sources (99).

Of note, TCR engagement significantly impacts on

chemokine receptor signaling properties by favoring the

selective triggering of distinct downstream players (79).

Canonically, chemokine signaling, initiated following ligand

binding, causes the dissociation of the Gai and Gbg subunits

of the heterotrimeric G proteins, leading to calcium flux, PI3K

triggering and the activation of the small Rho GTPases signaling.

However, alternative signalling pathways resulting from the

coupling with other G proteins have also been reported for

these receptors (100). Importantly, we showed that at the IS

chemokines promote the preferential association of the receptor

CCR5 with the Gq/11 subunit instead of Gi one (99).

The functional versatility of chemokine receptors in the

context of T cell activation may depend on their ability to

heterodimerize with other GPCRs. For example, we showed

that CXCR4/CCR5-mediated costimulation grounded on their

ability to form heterodimers at the IS (101).

In addition, inhibitory molecules (as CTLA4) have been

demonstrated to alter the motility both via the up-regulation of

chemokine receptors (CCR5 and CCR7) and by the increase in the

sensitivity to their respective chemokines (CCL4 (MIP-1b),
CXCL12 (SDF1a) and CCL19). This evidence leads to the

proposal of a model for chemotaxis integrating CD28 and CTLA-

4 signals via the G protein-coupled receptor kinase GRK. CD28

triggers CCR5 phosphorylation via GRK, while CTLA-4

engagement inactivates GRK2 counteracting this mechanism (80).

More recently, an additional mechanism elucidating

CXCL12-induced T cell co-stimulation has been proposed.

Smith and colleagues showed that the chemokine enhances the

number, stability, and phosphorylation of SLP-76 microclusters

formed in response to stimulation of the TCR. This results in

proximity of SLP-76 and ZAP-70 clusters and in enhanced TCR-

dependent gene expression (102).
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Multiple studies worked to clarify whether other chemokines

preferentially act as co-stimulatory partners for the TCR

ultimately promoting T-cell activation. Recently, it has been

proposed that CCR7, which drives T cell and DC migration and

trafficking in LNs, colocalizes with the TCR at the IS, within sub-

synaptic vesicles. There, CCR7 promotes and prolongs ZAP70

activity, resulting in T cell costimulation (103).

All these data, together with many more that we could not

include in our discussion, suggest that T cell priming results

from a timely and spatially regulated interplay between adhesive

and chemoattractant forces mainly occurring in LNs, enabling T

cell scanning for the cognate antigen and the formation of long-

lasting interaction upon recognition (104).
Congenital defects in cytoskeletal
proteins lead to impairment of T cell
activation

Perturbations in the equilibrium between adhesive and

chemotactic forces leads to defects in the formation of a

productive IS, due to the instability of the T cell-APC mating

(105). Of note, different inborn errors in genes encoding for

proteins controlling these functions, lead to syndromes linked to

defects in T cell motility and/or activation (106).

The Warts, Hypogammaglobulinemia, Infections, and

Myelokathexis (WHIM) syndrome is a primary immunodeficiency

disorder inwhich a geneticmutation impairs CXCR4 internalization

and enhances its responsiveness to CXCL12. WHIM patients

experience a wide range of symptoms, including recurring

infections, human papillomavirus (HPV)-induced warts, reduced

long-term immunoglobulin G (IgG) titers, myelokathexis, and

leukopenia (107). The dominant mutations in the chemokine

receptor CXCR4 lead to the truncation of its carboxy-terminal

domain, ultimately resulting in a defective ability of the receptor to

internalize after binding its ligand. As a consequence, immune cells

bearing theWHIM-mutant receptor display increased signalling and

enhancedmigration in response to chemokine stimulation (108).We

observed that, in contrast to the wild-type CXCR4, the WHIM-

mutant CXCR4 failed to be recruited into the IS and impaired the

formation of long-lasting T-APC interactions, thus limiting T cell

priming and immune responses to antigens (109). Thus, the

hyperfunctional WHIM-mutant CXCR4 favors motility over

formation of stable IS, resulting in aberrant T cell activation (109).

The Wiskott-Aldrich syndrome (WAS) is a primary

immunodeficiency determined by mutations in the WAS-protein

(WASp), a member of a larger family of proteins (WASP family)

that functions as nucleation-promoting factors for the Arp2/3

complex, which drives the generation of branched actin filaments

(110).WASp is exclusively expressed in cells of the haematopoietic

lineage and its loss-of-function mutations cause a syndrome

characterized by a broad range of clinical signs, with patients
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eczema and different autoimmune disorders (111). Upon TCR

engagement, WASP is recruited to the IS where it interacts with

VAV, RAC and Cdc42 and is activated by VAV effectors (6, 112,

113). WAS patients present alterations in T cell actin cytoskeleton

dynamics (114, 115). WASp-/- T cells fail to polymerize actin in

response to anti-CD3 stimulation, and show defective IS. The

disorganized signaling platforms of WASp-/- T cells do not allow

complete and efficient cellular activation and, consequently, T cells

from WAS patients show decreased cell proliferation and cell

survival (111). Interestingly, this is linked with a severe

impairment in CD28 internalization possibly caused by the

formation of the functional complex WASp/SNX9/p85/

CD28 (116).

Mutations in the WASp-interacting protein (WIP) can also

determine a syndrome with clinical signs similar toWAS. WIP is

involved in the regulation of WASp activity by promoting its

stability, activation and localization to sites of active actin

polymerization. Moreover, independently from WASp, WIP

regulates actin cytoskeleton in lymphocytes affecting the

homing of T cells to infected tissues (117).

Additional immunodeficiencies caused by defects in actin-

binding proteins and leading to T cell synapse instability have

been described. Among them, the deficiency of the ARPC1B

protein, part of the Arp2/3 complex, caused the emission of

aberrant actin-rich structures, including spikes and long

filopodia-like structures, both in the context of 2D IS and contact

with APC (118). Thus, patients suffering of ARPC1B deficiency

show defects in T cell proliferation and cytotoxic activity.

Interestingly, ARPC1B also contributes to the recycling of the

TCR, CD8 and GLUT1 (119), thus causing reduced expression of

thesemolecules inARPC1B-deficientCD8+Tcells. Inaddition, as a

result of an impaired endosome-to-membrane recycling processes

caused by a deficient actin remodeling, T cells lacking the Arp2/3

activator WASH also fail to maintain surface levels of the TCR,

CD28, LFA-1 and GLUT1 molecules (120).

Although relevant for T cell activity, other defects, including

HEM1 and WDR1 deficiencies, might not be solely explained by

defective IS and have been reviewed elsewhere (121). Further

investigations are needed to mechanistically explore the role of

CD28 and other costimulatory molecules in these disorders.

Future directions

Although here we focused our discussion on chemical

signaling, it must be noted that mechanical signals control T

cell functions and are required for cell polarization, migration

and activation. In particular, membrane curvature seems to initiate

signaling events resulting in the organization of larger signaling

platforms (122, 123). In both neutrophils and CD8+ T cells, cell

polarizationwas shown tobedependent on local increase of plasma

membrane curvature induced by initial adhesion (122). The curved
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membrane can orchestrate the formation of signaling platforms

through the Bin-Amphiphysin-Rvs (BAR) superfamily. BAR

proteins induce, regulate and detect membrane curvature (124)

and recruit to the curved membrane other proteins, including

regulators of actin dynamics.

While the N-BAR and the F-BAR proteins are generally

associated with membrane invaginations, the I-BAR are present

in various membrane protrusions (125) and involved in

microvilli formation (126). Little is known about the role of

BAR proteins in T cell functions. The I-BAR IRSp53 is expressed

in T cells and essential for the release of HIV particles through a

pathway involving Rac1, Wave2 and Arp2/3 (127, 128), but its

role in microvilli formation and TCR signaling is unknown. On

the other hand, sorting nexin 9 (SNX9), which belongs to the N-

BAR subfamily but regulates filopodia formation (129), forms a

signaling complex on endocytic vesicles with CD28, WASp and

p85 in T cells triggered by CD3/CD28 antibodies (116). In a

feed-forward fashion, SNX9 itself was recently shown, once

recruited to the IS, to generate membrane tubulation out of

CD28 clusters with these dynamic structures regulating both

CD28 phosphorylation status and IL-2 production (130).

Further studies will be required to shed light on the role of BAR

domain proteins and the membrane curvature in signaling

compartmentalization and T cell functions. However, it seems

conceivable that cells employ a combination of physical and

biochemical forces to tune the formation of structures and

domains on the plasma membrane (131). How the integration of

the different forces occurred in T cells will be an interesting subject

for future investigations.

In addition, accumulating evidence suggests that mechanical

forces are key determinants in initiating signaling through the

TCR that clearly acts as a membrane mechanoreceptor. In this

regard, very recently a new model for TCR triggering has been

proposed (132). Indeed, the TCR Bending Mechanosignal

(TBM) model predicts that mechanical forces might cause

membrane curvature around engaged pMHC/TCR complexes;

such mechanical cue is necessary to reach the energy threshold

required for the triggering of the signalling cascade ultimately

activating T responses (132).

Of note, the investigation of whether and how mechanical

signals control costimulatory molecules, as CD28 and
Frontiers in Immunology 08
chemokine receptors, would be an interesting advancement in

this field.

Signalling compartmentalization is essential for immune

cells to respond with high specificity and sensitivity. Thus,

achieving a deeper understanding of the mechanisms

regulating the generation of signalling compartments during

T cell migration and activation will be important to modulate

immune responses with future therapeutics and will be vital to

design effective CAR-T cells.
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Baranda S, et al. Segregation of leading-edge and uropod components into specific
lipid rafts during T cell polarization. Proc Natl Acad Sci USA (2001) 98(17):9642–7.
doi: 10.1073/pnas.171160298
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87. Mellado M, Martıńez-A C, Rodrıǵuez-Frade JM. Analysis of G-protein-
coupled receptor dimerization following chemokine signaling. Methods (2002) 27
(4):111–24. doi: 10.1016/s1046-2023(02)00093-2

88. Legler DF, Matti C, Laufer JM, Jakobs BD, Purvanov V, Uetz-von Allmen E,
et al. Modulation of chemokine receptor function by cholesterol: New prospects for
pharmacological intervention. Mol Pharmacol (2017) 91(4):331–8. doi: 10.1124/
mol.116.107151
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