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Abstract
Purpose of Review Clonal hematopoiesis of indeterminate potential (CHIP) has been identified as a novel cardiovascular 
risk factor. Here we review the relationship of lifestyle and environmental risk factors predisposing to somatic mutations 
and CHIP and provide an overview on age-related cardiovascular outcomes.
Recent Findings CHIP has been associated with accelerated atherosclerosis and cardiovascular disease in both epidemiologi-
cal and experimental studies. The most commonly mutated candidate driver genes are DNMT3A, TET2, JAK2, and ASXL1. 
The underlying mechanisms appear predominantly related to inflammatory pathways. Although age is the dominant risk 
factor for developing CHIP, emerging evidence suggests that other factors such as smoking, obesity/type 2 diabetes, or an 
unhealthy diet play a role in the occurrence of somatic mutations.
Summary Evidence suggests a strong link between vascular risk factors, somatic hematopoietic mutations, and age-related 
cardiovascular disease. Further studies on CHIP biology are required to identify targeted interventions for risk reduction in 
patients with CHIP and inform the utility of screening strategies.

Keywords Somatic mutations · Clonal hematopoiesis of indeterminate potential · Age-related cardiovascular risk · 
Preventive cardiology

Introduction

The human immune system relies upon hematopoietic stem 
cells (HSCs), which are precursors to erythroid, lymphoid, 
and myeloid cells and platelets that regulate immunity and 
inflammation.

Due to a combination of genetic predisposition, environ-
mental exposures, and random chance, some HSCs acquire 
specific somatic mutations with leukemogenic potential, 
which result in cellular survival advantages and clonal 
expansion of cells in that lineage. This phenomenon, the 
clonal expansion of HSCs harboring leukemogenic muta-
tions in the absence of other criteria for hematologic neopla-
sia, dysplasia, or cytopenia, is termed clonal hematopoiesis 
of indeterminate potential (CHIP) [1, 2].

Human aging is associated with an increased frequency 
of somatic mutations in HSCs over the lifetime. The preva-
lence of CHIP in peripheral blood is low (< 0.5%) from birth 
until 50 years of age after which it begins to rise, affecting 
10% of persons aged 70 to 80 years [3]. Most patients with 
CHIP have somatic mutations in regulator or DNA repair 
genes such as DNMT3A, TET2, or ASXL1, which increase 
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in frequency with age [4••, 5]. Although such somatic muta-
tions greatly increase the risk of acquiring additional driver 
mutations resulting in a 10- to 100-fold increased relative 
risk of hematologic malignancy, the main cause of death in 
individuals with CHIP is atherosclerotic cardiovascular dis-
ease (CVD). The absolute risk for acquiring a hematologic 
malignancy remains modest (0.5 to 1% per year) [6].

In this review, we first address the relationship of selected 
cardiovascular risk factors with CHIP and describe the most 
commonly found somatic mutations. Second, we provide an 
overview on age-related cardiovascular outcomes related to 
the presence of CHIP. Finally, we provide our perspective 
on the potential clinical utility of screening for CHIP for 
CVD prevention. 

Cardiovascular Risk Factors and CHIP

Age is the dominant risk factor for CHIP, which parallels 
other chronic diseases of aging [6]. Emerging evidence 
suggests that certain environmental factors and lifestyle 

exposures may play a role in the induction of somatic muta-
tions and the development of CHIP [6–8] (Fig. 1). Adher-
ence to a healthy lifestyle is a major approach to controlling 
CVD, associated with more favorable CVD risk factor pro-
files and with lower CVD incidence and mortality [9–12]. 
Because many CVD risk factors are influenced by lifestyle, 
modifiable behavioral factors may also be associated with a 
lower presence of CHIP. Although research is still limited 
on which CVD risk factors are related to CHIP, we briefly 
summarize the available evidence below.

Smoking and Chronic Obstructive Lung Disease

Smoking has been positively associated with presence of 
CHIP, although findings have not been uniform. [5, 13–16]. 
Prior inconsistencies are most likely explained by active as 
compared to former smoking status. Using data from the UK 
Biobank, a smoking history was significantly associated with 
CHIP [17]. However, this association was largely driven by 
those who were current smokers rather than former smok-
ers. Interestingly, among specific CHIP mutations, ASXL1 

Fig. 1  Induction of somatic mutations, clonal hematopoiesis, and cardiovascular risk

 1050 Current Cardiology Reports (2022) 24:1049–1058



1 3

mutations seem to be particularly enriched with current and 
past smokers [17]. In line with these findings, individuals 
with CHIP were recently shown to be at significantly higher 
risk of compared to non-carriers [18]. Moreover, smoking 
exposure was found to be associated with a small but signifi-
cantly increased risk of having CHIP. Detailed analysis fur-
ther showed that inactivation of TET2 was associated with 
the development of emphysema and inflammation in models 
using cigarette smoke exposure [18]. Most recent evidence 
stems from two-sample Mendelian randomization analyses 
[16], showing that smoking is strongly associated with mosaic 
chromosomal alterations but not with CHIP. These recent find-
ings support a causal association between smoking and mosaic 
chromosomal alterations and suggest that smoking may varia-
bly shape the fitness of clones bearing somatic mutations [16].

Diet

The relationship between diet quality and presence of CHIP 
has yielded conflicting results [19, 20]. While some authors 
did not find any association, other results suggest that an 
unhealthy diet may be associated with a higher prevalence 
of CHIP [19, 20]. In an analysis using data from a large 
cohort of postmenopausal women, Haring et al. did not find 
a relationship between adherence to a healthy diet (assessed 
by the Alternative Healthy Eating Index-2010) and preven-
tion of major chronic diseases and presence of CHIP [19]. 
On the other hand, recent evidence stemming from the UK 
Biobank suggests that an unhealthy diet quality as defined by 
intake of fruits and vegetables, red meat, processed food, and 
added salt is associated with a higher prevalence of CHIP 
and higher rates of adverse CVD events and death inde-
pendent of CHIP status [20]. Differences may be explained 
by study population characteristics, measurement errors, or 
other factors and warrant further clarification.

Obesity and Type 2 Diabetes

Adipose tissue can synthesize cytokines such as TNF-α and 
IL-6 and has been shown to promote inflammation and athero-
genesis independent of effects on insulin resistance or lipo-
proteins [21]. Having a normal body mass index compared to 
being obese is associated with lower frequency of CHIP in 
postmenopausal women [19]. Jaiswal et al. reported a 1.3-fold 
increased odds of CHIP in diabetes patients [22]. Obesity, 
diabetes, and CHIP may be related to one another through 
increased activation of pro-inflammatory pathways [21]. In 
fact, DNMT3A and TET2 may mediate atherosclerotic cardio-
vascular risk through regulating lipid and glucose metabolism 
[15, 23].

DNMT3A is significantly increased in adipose tissue–derived 
macrophages in mice fed with high-fat diet [24]. Similarly, a 
recent report by Fuster et al. indicates that clonal expansion in 

TET2 deficient cells can aggravate insulin resistance, obesity, 
and aging in mice [25]. Thus, a combination of aging, adipose 
tissue accumulation, and CHIP-associated mutations might acti-
vate the production of inflammatory cytokines. In agreement 
with this hypothesis, TET2-deficient HSCs have been shown 
to produce increased levels of monocytes and inflammatory 
cytokines such as IL-1β and IL-6 [26, 27]. In fact, serum levels 
of IL-6 are generally high in people with CHIP, paralleling the 
observation that obesity or aging also induce an inflammatory 
response in the bone marrow by promoting accumulation of 
adipocytes [4••, 28, 29].

A positive feedback loop between self-renewal of HSCs 
and progression of inflammation in TET2-mutated CHIP 
has been proposed [25, 27]. TET2-mutated HSCs preferen-
tially produce myeloid progenitors. As a result, monocytes 
and macrophages are increased. In macrophages with TET2 
mutations, the NLRP3 inflammasome pathway is activated 
and IL-1β is increasingly secreted. This eventually leads to 
an overproduction of IL-1β in the adipose tissue explaining 
a relationship between CHIP and type 2 diabetes mellitus as 
the IL-1β-mediated autoinflammatory process is regarded as 
a major factor in the loss of beta-cell mass in type 2 diabetes 
[25, 30]. In turn, IL-1β promotes the self-renewal of HSCs 
with TET2 mutations. This positive feedback loop would be 
responsible for the pathogenesis of diabetes and atheroscle-
rosis in TET2-mutated CHIP [27].

Hyperlipidemia

Chronic elevation of blood lipid levels in conjunction with 
immune cell recruitment and inflammation accelerates the 
development of atherosclerotic plaques. Interestingly, how-
ever, CHIP mutations have not been not associated with lipid 
levels apart from the association with JAK2 CHIP, which 
is correlated with a decrease in total cholesterol and LDL 
despite an increased risk for coronary heart disease [4••, 8]. 
The lack of a clear relationship between most CHIP muta-
tions and hyperlipidemia has been a surprising finding. 
Insights were recently provided by Heyde et al. who demon-
strated that mild hypercholesterolemia in non-atherosclerotic 
wild-type mice did not induce clonal expansion, suggesting 
that in the absence of inflammation, elevated cholesterol 
alone is not sufficient to drive clonal hematopoiesis [31••].

Premature Menopause

A history of premature menopause was found to be indepen-
dently associated with increased odds of CHIP in two large 
cohorts of postmenopausal women [32]. Moreover, in gene-
specific analyses, only DNMT3A was significantly associated 
with premature menopause. Interestingly, the risks of devel-
oping CHIP appeared to differ in women with natural versus 
surgical premature menopause, implying that postmenopausal 
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reductions in estrogen and other sex steroid hormones alone 
may not explain the relationship between premature meno-
pause and CHIP. Independent of established CHIP risk factors, 
premature menopause was associated with 1.4-fold odds—and 
natural premature menopause with 1.7-fold odds—of CHIP 
[32].

HIV and Chronic Infection

HIV infection is associated with greater risk for hemato-
logic malignancy and coronary artery disease is a major  
cause of morbidity. Bick et al. showed that in individuals 
living with HIV, the prevalence of CHIP is increased twofold 
compared to matched controls. Interestingly, ASXL1 was the  
most commonly implicated mutated CHIP gene [33].

Cancer Treatment and Radiation

Bolton et al. examined the effects of different cancer ther-
apies on CHIP [34]. Those most associated with CHIP 
prevalence were external beam radiation therapy, cytotoxic 
chemotherapy, and radionuclide therapy. Within cytotoxic 
chemotherapy, topoisomerase II inhibitors (e.g., doxoru-
bicin) had the strongest association along with platinum 
agent carboplatin. CHIP has also been associated with 
environmental radiation. Recently presented analyses from 
WHI suggest ambient exposure to radon was associated 
with CHIP prevalence [35]. Furthering the work on ambi-
ent radiation and CHIP, Mencia-Trinchant et al. conducted 
a unique study on a pair of twin astronauts using data from 
the NASA Twins Study [36•]. These astronauts exhibited 
CHIP almost two decades prior to the mean age at which it 
is typically detected and showed larger shifts in clone size 
than age-matched controls or radiotherapy patients.

Somatic Mutations and CHIP

The most commonly mutated candidate driver genes in CHIP 
are DNMT3A, TET2, and ASXL1 (Table 1) [8, 15]. These 
three somatic mutations account for 75% of all CHIP cases 
[4••]. Additional mutations are seen in JAK2, which is par-
ticularly associated with increased rates of thrombosis, as 
well as the DNA damage response pathway genes PPM1D 
and TP53, and mRNA splicing factors SRSF2 and SF3B1. 
Early analysis found mutations in DNMT3A, TET2, and 
ASXL1 to be associated with a 1.7-fold to 2.0-fold increased 
risk of incident coronary heart disease, while the JAK2 
V617F mutation was associated with a 12-fold increased 
risk [15]. The vast majority of individuals (approximately 
90%) with CHIP driver mutations have only one identified 
mutation. Across age groups, JAK2 CHIP carriers are the 
youngest. Relative to JAK2, ASXL1, and TET2 carriers are 
3.3 and 3.9 years older, while PPM1D, SF3B1, and SRSF2 
carriers are 5.0, 6.9, and 7.7 years older, respectively [4••].

DNMT3A

With a frequency of approximately 50% in all CHIP cases, 
DNA methyltransferase 3a (DNMT3A) is considered to be 
the most commonly mutated gene in CHIP [4••]. DNMT3A 
represents an epigenetic regulator of gene expression and 
encodes a methyltransferase enzyme that catalyzes DNA 
methylation. Pathogenic mutations of DNMT3A promote 
HSC self-renewal and the expression of multipotency genes 
while suppressing differentiation factor expression. This 
enables DNMT3A mutations to affect all hematopoietic lin-
eages, inducing pro-inflammatory T-cell polarization and 
activating the inflammasome complex.

Table 1  Common CHIP driver 
mutations by cardiovascular risk 
factor or outcome event

Common CHIP driver mutations

TET2 DNMT3A ASXL1 JAK2 Reference

Cardiovascular risk factor
Smoking x [5, 16–19, 53]
Obesity and/or diabetes x x [14, 19, 23]
Unhealthy diet x x [19, 20]
Hypercholesterolemia x x [4••, 31••, 76]
Premature menopause x [32]
HIV infection x [33, 77]
Cardiovascular outcome event
Coronary heart disease x x x x [15]
Heart failure x x x x [13, 63, 78]
Stroke x [58]
Aortic valve stenosis x x [57]
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Using CRISPR gene technology, it was possible to 
show in mouse models that DNMT3A CHIP can both cause 
inflammation and be promoted by inflammation itself [37]. 
Murine macrophages carrying DNMT3A mutations showed 
increased expression of several cytokines. On the other hand, 
interferon-gamma is sufficient to drive clonal expansion of 
DNMT3A mutant HSCs, in which via increased resistance 
to stress-induced apoptosis and differentiation, defects can 
easily outcompete wild-type HSCs in peripheral blood.

TET 2

With a presence of approximately 20% in all CHIP cases, 
TET2 is the second most frequently mutated gene in CHIP. 
TET2 acts in antagonistic fashion to DNMT3A by catalyz-
ing the oxidation of the DNA-methyl group (demethylation) 
and also affects transcription by recruiting histone modifiers. 
TET2 loss-of-function mutations cause epigenetic dysregu-
lation, promote HSC self-renewal, and preferentially lead 
towards myeloid lineage differentiation [38].

Analyses of macrophages from mice that received bone 
marrow with TET2 deficient cells showed elevated expres-
sion of several chemokine and cytokine genes that contrib-
ute to a pro-inflammatory state and accelerated atheroscle-
rosis [15]. TET2 deficient carriers showed an increased 
level of circulating IL-1ß due to NLRP3-inflammasome 
induction and an accelerated cardiac fibrosis. The athero-
protective effect of NLRP3 inflammasome inhibitors, as 
well as their protection against the development of heart 
failure in TET2-deficient mice, supports these findings 
[26, 39].

ASXL1

ASXL1 (additional sex combs-like 1) is the third most 
mutated gene in CHIP (approximately 5 to 10%), leading to 
altered histone modification [4••]. ASXL1 deletion facili-
tates aberrant gene expression and results in myeloid trans-
formation, but the mechanisms by which ASXL1 mutations 
lead to increased inflammation are not entirely clear [27, 
40]. Observational studies point to a link between ASXL1 
mutations in blood cells with smoking and among patients 
with HIV. Dawoud et al. utilized whole-exome sequencing 
data of the UK Biobank and found a significantly higher 
risk of having CHIP for those who were current or former 
smokers [17]. The majority of participants (69%) with an 
ASXL1 CHIP were current or former smokers confirming 
that mutations in ASXL1 and genes coding for spliceosomes 
are strongly associated with exposure to DNA-damaging 
agents such as smoking [17].

JAK2

JAK2 (activated janus kinase 2) is a non-receptor tyrosine 
kinase that transmits intracellular signals downstream of 
cytokine receptors and accounts for a small percentage of all 
CHIP, which do not only appear in older age groups. JAK2 
tyrosine phosphorylates and activates TET2 in response 
to cytokines, linking extracellular signals with epigenetic 
changes in hematopoiesis. JAK2 mutations in CHIP tend 
to occur at a younger age and carry the strongest risk of 
premature cardiac disease among CHIP variants [4••, 15]. 
The presence of JAK2 CHIP carrier status is associated with 
higher levels of IL-18, and downstream increases in IL-6 
production. Inflammation and atherosclerotic disease have  
been shown to occur in JAK2 CHIP carriers even in the  
presence of reduced LDL cholesterol [4••, 8].

The JAK2V617F mutation is commonly linked to myelo-
proliferative neoplasms, and in these diseases, it is associ-
ated with thromboembolic complications, increased blood 
viscosity, and platelet adhesion, as well as reduced venous 
blood return [41, 42]. Indeed, the JAK2-gain-of-function 
mutation has been shown to promote the risk of venous and 
coronary thrombosis and pulmonary embolus, due to its 
enhanced formation of neutrophil extracellular traps, com-
ponents of innate immunity [43] Importantly, however, the 
JAK2V617F mutation was also found to be associated with 
thrombosis in patients without the presence of myelopro-
liferative neoplasms or other hematologic disorders [43]. 
Moreover, Wang et al. showed that the JAK2V617F muta-
tion expression promotes neutrophil infiltration and early 
atherosclerotic lesion formation and plaque instability in a 
mouse model of hypercholesterolemia [44]. Edelmann et al.  
further evaluated the role of JAK2V617F mutation in throm-
bus formation and found that the mutation upregulates β1 and 
β2 integrin expression, which are both essential regulators 
for attachment of leukocytes to endothelial cells [45]. Col-
lectively, current evidence suggests that JAK2 mutations in 
CHIP can promote CVD by altering hematopoiesis-boosting  
innate immunity responses, and promoting thrombotic dis-
eases [46].

TP53, PPM1D, SF3B1, SRSF2

Mutations in DNA damage repair genes such as TP53 or 
PPM1D are less frequent than other CHIP mutations [4••]. 
In case of a detected DNA damage, the activated tumor sup-
pressor p53 induces the expression of PPM1D protein phos-
phatase  (Mn2+/Mg2+-dependent 1D) which leads to dephos-
phorylation of p53 and ultimately to apoptosis. Hematopoietic 
cell lines with PPM1D loss-of-function mutations outcompete 

Current Cardiology Reports (2022) 24:1049–1058 1053



1 3

normal cells by increased resistance to apoptosis and are 
strongly associated with CHIP after prior exposure to cyto-
toxic chemotherapies such as cisplatin, etoposide, and doxo-
rubicin [47]. Thus, especially in the case of chemotherapy 
treatment of solid tumors, hematopoietic mutations in TP53 
and PPM1D appear to promote the outgrowth of clones that 
can lead to subsequent malignancy and risk for leukemic 
transformation [47, 48].

Mutations of the mRNA spliceosome complex compo-
nents SF3B1 and SRSF2 are not well studied yet, but seem 
to be the most common genetic alterations in patients with 
myelodysplastic syndrome [49, 50]. Mutations in the splic-
ing factors SF3B1 and SRSF2 have been reported to share 
convergent effects on aberrant splicing of mRNAs that pro-
mote nuclear factor κB signaling [50].

CHIP Without Driver Mutations

CHIP is commonly defined as somatic mutation with variant 
allele frequency > 2% in peripheral blood of individuals with 
no evidence of hematologic disease.47, 48 Thus, CHIP with-
out known candidate driver mutations is technically excluded 
from this classification [51, 52]. Nonetheless, clonal hemat-
opoiesis without driver mutations carries increased risk of 
hematologic cancers and all-cause mortality, although its 
links to CVD are poorly understood [5, 53]. In fact, in a 
significant proportion of cases of clonal hematopoiesis, no 
clear candidate driver mutation is identified [4••, 5]. Mosaic 
chromosomal alteration represents one presentation of CHIP 
without driver mutations. It includes larger structural somatic 
alterations such as deletions, duplications, or copy number 
neutral loss of heterozygosity [54, 55]. Similar to candidate 
driver mutations, mosaic chromosomal laterations are com-
mon at very old age and have been related to lymphoid malig-
nancies like CLL [56]. Interestingly, cardiovascular risk is 
not altered in cases of mosaic chromosomal alteration, even 
when associated with DNMT3A or TET2 loss (with the nota-
ble exception of JAK2) [8, 54, 55].

Genotypic Associations with CHIP

While CHIP driver mutations are acquired somatic mutations, 
certain germline variation may predispose to the development 
of CHIP during life course. Using whole-genome sequencing 

data from a large cohort unselected for candidate driver muta-
tion, Bick et al. could identify three germline risk loci associ-
ated with a predilection to TET2 CHIP [4••, 8] One set of loci 
involved genes that maintain genome integrity (e.g., TERT and 
CHEK2) and which have been implicated in stem cell mainte-
nance/self-renewal and the risk of neoplasm in multiple organ 
systems; other germline loci are associated with increased 
hematopoietic stem cell self-renewal (e.g., TET2) and only 
associated with hematologic malignancies; finally, a third set 
of germline loci are associated with the acquisition of CHIP 
mutations in specific driver genes. Specifically, variations at 
the TCL1A promoter were associated with increased risk of 
DNMT3A CHIP, but not other CHIP subsets [4••, 8].

CHIP and Age‑Related Cardiovascular Risk

In a seminal paper on “Clonal Hematopoiesis and Risk of  
Atherosclerotic Cardiovascular Disease,” Jaiswal et al. showed 
that presence of CHIP in peripheral blood cells was associated 
with accelerated atherosclerosis and coronary heart disease  
[15, 22]. Subsequent studies have expanded our understanding 
on CHIP carrier status and CVD (Table 2). Reports on associa-
tions of CHIP with multiple other age-related cardiovascular  
conditions such as heart failure, stroke, or aortic valve stenosis 
have been published to this point [13, 57, 58] (Fig. 1).

Coronary Heart Disease

There is now consistent evidence for an epidemiological asso-
ciation between presence of CHIP and myocardial infarction 
or coronary revascularization procedures [15]. In experimental 
analysis, it could be further shown that clonal hematopoiesis 
associated with TET2 deficiency leads to accelerated atheroscle-
rosis mainly driven by interactions between clonal monocytes-
macrophages and the endothelium and an increased expression 
of pro-inflammatory genes [15, 39, 59, 60]. Moreover, RNA 
sequencing of cells with loss-of-function mutations in TET2 
showed augmented expression of pro-inflammatory media-
tors implicated in the pathogenesis of atherosclerosis including  
IL-1β and IL-6 [15].

Heart Failure

In addition to the relationship between CHIP and coro-
nary heart disease, CHIP has been recently associated with 

Table 2  Key message
Clonal Hematopoiesis of Indeterminate Potential (CHIP) is related to age-related cardiovascular disease.
Age, germline variants, environmental factors and lifestyle exposures have been shown to induce somatic 

mutations and the development of CHIP.
The most commonly mutated candidate driver genes are DNMT3A, TET2, ASXL1 and JAK2 which are 

related to inflammatory pathways.
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ischemic heart failure and reduced left ventricular ejec-
tion fraction [13, 61]. However, even outside the context 
of ischemic events, CHIP was found to be associated with 
deteriorating cardiac function. In fact, the presence of CHIP 
mutations in patients with chronic heart failure has been 
identified as an independent predictor of mortality [62]. 
Interestingly, current evidence suggests that heart failure 
patients carrying more than one CHIP mutation have a worse 
prognosis; higher cumulative clone size is also an adverse 
prognostic factor, supporting a dose–response relationship 
[63, 64].

The underlying mechanisms by which CHIP and its 
mutations in ASXL1, DNMT3A, TET2, or JAK2 are related 
to heart failure development and progression are not well 
understood. It appears that different CHIP mutations may 
exert this effect through different signaling pathways and 
inflammatory profiles. ASXL1, TET2, and JAK2 sequence 
variations have been each associated with an increased risk 
of heart failure, whereas the association of DNMT3A with 
heart failure shows inconsistent results across studies.

Additional information on the pathways by which the 
DNMT3A or TET2 mutations alter cardiac function came from 
Sano et al. who investigated the potential mechanisms in a 
murine model using a CRISPR/Cas9 system [37]. The research-
ers used a lentiviral vector to deliver Cas9 and guide RNA, 
introducing inactivating mutations in TET2 and DNMT3A in 
bone marrow cells using a model of hypertensive heart fail-
ure. Interestingly, only mice with inactivating mutations in 
TET2 had expanded mutant hematopoietic cells and increased 
expression of IL-1B and IL-6, whereas mice with inactivat-
ing mutations in DNMT3A did not demonstrate expansion 
of hematopoietic cells. Other data showed that circulating 
monocytes of patients with heart failure carrying DNMT3A 
mutations demonstrated a pro-inflammatory transcriptome 
with significantly increased expression of inflammatory genes 
compared with monocytes derived from patients with heart 
failure without DNMT3A mutations, especially inflammatory 
interleukin IL-1β, IL6, IL8, the inflammasome NLRP3, and the 
macrophage inflammatory proteins CCL3, CCL4, and resistin, 
of which the latter mediates monocyte-endothelial adhesion and 
may all together contribute to an aggravation of chronic heart 
failure [65].

Aortic Valve Stenosis

Mas-Peiro et al. examined the incidence of CHIP in patients 
with severe degenerative aortic valve stenosis [57]. It 
appeared that CHIP prevalence was enriched among patients 
with severe aortic stenosis, as somatic DNMT3A or TET2 
driver mutations were detected in a third of patients. CHIP 
carriers had an increased mortality rate following TAVI pro-
cedure, were found to have increased inflammatory activa-
tion of T-cells and demonstrated higher circulating levels 

of non-classical monocytes that secrete pro-inflammatory 
cytokines, including TNF-α, IL-1β, and IL-8.

Stroke

CHIP was recently found to be associated with a 14% increased 
odds of incident stroke when analyzed across eight cohorts 
[58]. Interestingly and unexpectedly, this relationship was pri-
marily driven by 24% increased odds of hemorrhagic stroke. 
Unselected subtypes of ischemic stroke were not associated 
with CHIP. However, in further analyses of ischemic stroke 
subtypes, CHIP was strongly associated with small vessel 
stroke, with stronger relationships with mutations in TET2. 
The mechanisms linking CHIP to hemorrhagic stroke are not 
clear, but again inflammatory signaling pathways linked to 
aneurysm formation, accelerated arteriosclerosis, blood ves-
sel fragility, and cerebral amyloid angiopathy are potentially 
involved [58, 66–68].

CHIP Implications: a New Target 
for Cardiovascular Disease Prevention

CHIP has been identified as a major, non-lipid/non-traditional 
mediator of cardiovascular risk. It has been linked to multiple  
cardiovascular outcomes including coronary heart disease, 
heart failure, stroke, and aortic valve disease. The underly-
ing pathophysiological mechanisms are most likely related to 
inflammatory pathways. These exciting findings raise several 
questions:

Should cardiovascular risk assessment and management 
include screening for CHIP in light of recent CHIP findings? 
Diagnosing CHIP requires deep sequencing of peripheral 
blood and it is not yet a routine clinical test. However, as 
methods for assaying CHIP become more accessible and 
cost-efficient and as additional treatments targeting CHIP 
become available, screening for CHIP status may become 
a routine part of clinical care. Assessing CHIP status offers 
promise for advancing individualized precision medicine, 
with the ultimate aim of preventing the accumulation of 
acquired somatic mutations, atherosclerotic lesion devel-
opment, and progression. Research on CHIP represents an 
extension of the study of cardiovascular genetics and athero-
sclerosis biology beyond inherited germline mutations [6, 
69]. Clinical management of individuals with CHIP remains 
limited, with few treatment strategies beyond traditional risk 
factor modification. As new data emerge, international rec-
ommendations for diagnosis, management algorithms, and 
treatment options for CHIP can be promulgated.

How may clinicians be able to leverage CHIP data in 
the future and what treatment strategies may be indicated 
? Screening for CHIP and its major driver mutations can 
help clinicians to identify patients at high-cardiovascular 
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risk warranting more intensified lifestyle-related or even 
pharmacologic interventions. One potential intervention in 
patients with CHIP could be to specifically target certain 
inflammatory pathways. Modulation of IL-1β in the CAN-
TOS trial and IL-1 and Il-8 with colchicine in COLCOT may 
therefore provide potential tools and stimulate the develop-
ment of future targeted interventions [40, 70, 71]. Geneti-
cally reduced IL-6 signaling in DNMT3A and TET2 CHIP 
carriers has been shown to substantially reduce CVD risk 
[72]. Additionally, most recent data from the CANTOS trial 
raise the possibility that in individuals with established CVD 
and elevated high-sensitivity C-reactive protein level above 
2.0 mg/L, those with TET2 variants may respond better to 
Canakinumab, an anti-IL-1β antibody, with respect to CVD 
event reduction than those without CHIP [73•]. Other sug-
gested therapeutic approaches involve inhibition of JAK2 or 
downstream integrins, which may reduce thrombotic CVD 
complications in CHIP patients carrying JAK2 mutations, 
or tight control of glucose levels to mitigate CVD risk in 
patients with TET2-driven CHIP [43, 46, 74, 75].

In conclusion, the recognition of a strong link between 
somatic mutations, clonal hematopoiesis, and age-related 
cardiovascular risk provides new insights into the patho-
physiology of atherothrombotic cardiovascular conditions 
and novel approaches to prevention and treatment. This 
exciting field may have future implications for clinical prac-
tice and population health.
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