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Microarray gene expression datasets has concerned great awareness among molecular biologist, statisticians, and computer
scientists. Data mining that extracts the hidden and usual information from datasets fails to identify the most significant biological
associations between genes. A search made with heuristic for standard biological process measures only the gene expression level,
threshold, and response time. Heuristic search identifies and mines the best biological solution, but the association process was not
efficiently addressed. To monitor higher rate of expression levels between genes, a hierarchical clustering model was proposed,
where the biological association between genes is measured simultaneously using proximity measure of improved Pearson’s
correlation (PCPHC). Additionally, the Seed Augment algorithm adopts average linkage methods on rows and columns in order to
expand a seed PCPHCmodel into a maximal global PCPHC (GL-PCPHC) model and to identify association between the clusters.
Moreover, a GL-PCPHC applies pattern growing method to mine the PCPHC patterns. Compared to existing gene expression
analysis, the PCPHC model achieves better performance. Experimental evaluations are conducted for GL-PCPHC model with
standard benchmark gene expression datasets extracted from UCI repository and GenBank database in terms of execution time,
size of pattern, significance level, biological association efficiency, and pattern quality.

1. Introduction

The adoption of microarray technology provides the biol-
ogists to be competent at monitoring thousands of genes
expression in a solitary experiment on a small chip with
the existence of several microarray gene expression datasets
that openly exist on the Internet. The dataset in it comprises
huge count of gene expression values and emphasizes a
precise method to differentiate between the knowledge and
useful information from these microarray gene expression
datasets. The application of support vector machines (SVM)
has been shown to be of superior performance during the
analysis of microarray gene expression data when compared
to the other classification algorithms such as decision trees

and linear discrimination. The top ranked informative genes
using a filtering algorithm in [1] with respect to structural
risk minimization used the support vector machine. But the
SVM as the base classifier failed in dealing with overfitting
problems owed to the boosting approach.

On the other hand, the DNA microarray technology
evaluates the expression level of thousands of genes at the
same time. With this evaluation, certain genes could be
related to an exact type of cancer, whereas many of them
consist of irrelevant or redundant features that result in a high
influential factor on the speed and accuracy of classification.
Developing predictive and prognostic classifiers to recognize
the patient highly requires action and forms as themost excel-
lent candidate form for specific treatments. As microarrays
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construct as much of data from every specimen, [2] the
method provides with the greater opportunity for discover-
ing huge dangers on misleading claims. DNA microarrays
provide enormous occasion for discovery and progress of
predictive oncology but with a greater tradeoff value between
the opportunity and mounting false claims.

Moreover, the connections between morphometry and
molecular characterization in the TCGA and REMBRANDT
datasets as shown in [3] failed in investigating the morphol-
ogy of blood vessels within the context of tumor progression.
Themain focus was concentrated on the portion of pathology
image investigation and illustrates the challenges associated
with analyzing and integrating large-scale image datasets
with molecular characterizations.

Based on the gene expression profiles, the selection of
gene with the recognition of the optimal subset of rel-
evant genes is one of the foremost challenges in cancer
classification. Genomic regulation forecast single-peaked
distributions method of expression value decays according
to power laws in [4] with the feature exponent inversely
associatedwith the product of the connectivity of the network
times the regulatory strength of bound transcription factors.
Information on structural properties and on the interactions
of regulatory elements was at the same time used to build up
a framework of basic characteristics of expression spectra. It
helped in progressing of classification accuracy, minimizing
the computational cost, and maximizing the insight into the
inherent cancer mechanisms. SC3 [5], the author presented
spectral clustering for performing clustering on the gene
and cancer sample dimension and finally partitioned the
consensus matrix from multiple clustering solutions. But the
flaw was that this method was suitable for only cancer gene
expression profiles.

Kidney paired donation (KPD) programs as presented
in [6] provide an innovative approach for increasing the
number of accessible kidneys. But KPD failed to focus on the
incorporation of additional KPD allocation algorithms. Also,
KPD failed to develop modeling of certain significant system
parameters as functions of practical donor or candidate
characteristics and evaluate the differences and relation-
ships. CMOS integrated circuit technology is leveraged for
biotechnology applications as presented in [7], in the form
of affinity-based assays, in which the conventional passive
solid supports were restored by active integrated circuit
chips. Direct use of the chip as a solid support allowed
further complicated task on surface chemistry. In [8], the
author designed an evolutionary algorithm (EA) to evolve
top-scoring pairs called EvoTSP that allowed identifying
the more advanced gene relations. The major variants of
relative expression algorithms were balanced using EA by
introducing weights to the top-scoring pairs. A differential
network-based framework [9] was designed to detect the
cancer-related genes using boosting regressionmethod based
on likelihood score. But the biological data applied to the
framework was limited which remained an open issue to be
solved.

Gene expression was caused by O
3
in [10], with the

combination of CO
2
. O
3
induced new type of reaction that

oxidative pressure and previous leaf senescence, seen as

decrease appearance of photosynthesis and carbon fixation-
related genes, increases expression of senescence-associated
genes. Biclustering technique is capable of detecting posi-
tively and unenthusiastically coregulated genes in [11]. These
biclustering technique measures MSR, Euclidean proxim-
ity, and also correlation using pattern-based approach for
identifying the comparison between the genes. Moreover,
it deterministically identifies all possible biclusters using a
nongreedy method in addition to the application of the pol-
ynomial time.

The methods involved in gene selection are classified
into filter and wrapper approaches. The filter approach of
gene selection selects the top ranked genes on the basis of
their individual discriminative power without concentrating
on and including any induction algorithm. Also, genes are
evaluated using different types of common individuality
measures in data, and the performance of filter-based gene
selection is measured efficiently. It is highly advantageous
for high-dimensional data outstanding to its linear time
complexity, but it cannot find out the synergy result or
suppressible in the middle of genes. The wrapper method, in
contrast, assesses applicant gene subsets using an induction
algorithm. Since the predictive accuracy of the induction
algorithm determines the integrity of the selected subsets, it
is competent to allow correlations among genes but is often
computationally expensive.

The temporal and spatial correlations and the reliability in
the trajectory of datasets of moving objects as shown in [12]
are repeatedly modelled as sequential patterns for use in data
mining. Distributed mining algorithm is comprised of local
groupmovement pattern mining (GMPMine) algorithm that
removes local group information and cluster ensembling
(CE) algorithm that merges and improves the local grouping
results. An automated approach for activity tracking as
illustrated in [13] identified frequent activities that naturally
occur in an individual’s routine. But the automated approach
fails to automatically select the number based on the resident’s
lifestyle. Seeding the clusters based on smart environment
information incrementally modifies the patterns, clusters,
and models as activities alter in excess of time.

Method for trajectory segmentation and sampling based
on the representativeness of the (sub)trajectories in the
MOD as shown in [14] failed to hold each subtrajectory
of the sampling set by different subtrajectories. The most
representative subtrajectories under the minimization of the
objective function were not achieved. Hybrid particle swarm
optimization (PSO) and tabu search (HPSOTS) approach for
gene selection for tumor classification were shown in [15].
The incorporation of tabu search (TS) as a local improvement
procedure emphasizes the algorithm HPSOTS to overleap
restricted optima and demonstrate acceptable performance.

The problem of mining based on heuristic search viewed
as a biclustering problem has been lengthily studied in the
area of gene expression analysis. The concept of gene expres-
sion analysis follows dissimilar formulations of biclustering
problems in the circumstance in order to detain various
biological associations in the middle of correlated genes
and experiment conditions. Classifying trajectories on road
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networks was not efficient and effective methods for pattern-
based classification were discussed in [16].

On the basis of the aforementioned techniques andmeth-
ods applied, the proposed work uses improved Pearson’s cor-
relation proximity-based hierarchical clustering (PCPHC)
model to develop biological associations between genes.
PCPHC model captures the biological fact that follows a
hierarchical clustering model for identifying the biological
analysis between genes. To identify the biological association
of genes, genes comprising of similar expression patterns are
organized using the improved Pearson’s correlation proximity
model. An efficient pattern growing method GL-PCPHC
adopts Seed Augment algorithm which uses average linkage
method on rows and columns in order to mine sufficient
patterns by growing seed into maximal level.

The PCPHC model makes use of a Seed Augment
framework and adopts an average linkage method to mine
patterns. Experiments using both synthetic and genuine
datasets confirm that the PCPHC model facilitates higher
level of quality and also the mining method is considerably
efficient. Empirical studies show that the adoption of the
PCPHC model improves the quality of the mined patterns
compared to the significantly more efficient state-of-the-art
heuristic search when it is used to mine strict patterns.
The contribution of mining biological association between
genes using improved Pearson’s correlation proximity-based
hierarchical clustering (PCPHC) for gene expression data
analysis includes the following:

(1) to discover the significant biological association
between the genes using improved Pearson’s correla-
tion proximity-based hierarchical clustering,

(2) to exhaustively mine the gene data analysis using
similarity diversion analysis,

(3) to adopt global PCPHC model to mine GL-PCPHC
patterns,

(4) to expand maximal GL-PCPHC pattern that adapts
average linkage methods on rows and columns using
Seed Augment algorithm.

The rest of the paper is structured as follows. Section 2
describes the improved Pearson’s correlation proximity-
based hierarchical clustering model based on the matrices
model based on the gene expression data. Section 3 presents
the effective results on the simulation parameter to attain the
significance level. Section 4 evaluated the performance with
the table values and graph form. The final section provides
the valuable solution with improved quality of the associated
patterns.

2. Method

2.1. Improved Pearson’s Correlation Proximity-Based Hierarch-
ical ClusteringModel. Mining biological association between
genes using improved Pearson’s correlation proximity-based
hierarchical clustering (PCPHC) for gene expression data
analysis is divided into two parts with the illustrative frame-
work of PCPHC as shown in Figure 1.

Gene 
dataset

PCPHC

Pearson’s 
correlation
proximity

Seed Augment
algorithm

Average 
linkage 
method

GL-PCPHC

Identify similar 
gene expression 

pattern

Measure biological association 
between genes

Figure 1: Framework of improved Pearson’s correlation proximity-
based hierarchical clustering.

The first part involved in PCPHC is to apply the hier-
archical clustering model to the input gene dataset with
the similarity between two genes expression pattern being
measured using the improved Pearson’s correlation proxim-
ity. The second part in PCPHC is to address the pattern
growingmethod by applying Seed Augment algorithmwhich
uses average linkage method on rows and columns to obtain
maximal GL-PCPHC model with genes consisting of similar
expression patterns being constructed and the biological
association between genes being measured.

Figure 1 shows the architecture diagram of PCPHC
model. Gene expression data consists of process by which
information from a gene is utilized in the separation of an
efficient gene product. The PCPHC model uses microarray
initially to estimate the expression level of gene. The identifi-
cation of biological process for the physiological data present
in the gene expression datasets is performed using heuristic
search. A heuristic search algorithm provides a collection of
genes as the candidate’s subjective genes and a division of
samples as candidates of gene expression datasets.

2.2. Preliminaries. Therepresentation of gene expression data
is in the form of an expression matrix. The expression matrix
consists of rows “𝑅” and columns “𝐶” with the intersection of
rows and columns being a log ratio factor. Each row denotes
the expression of a gene across all experiments whereas
each column representing the gene expression levels from a
single experiment with the intersection is denoted by a log
ratio factor. The log ratio factor for gene expression data is
defined as log

2
(𝐶/𝑅), where 𝐶 is the gene expression level

observed for the testing sample of gene dataset and 𝑅 is
the gene expression level observed for the training sample.
A gene expression dataset from a microarray experiment is
symbolized by a real-valued expression matrix:

EM = {𝑅𝐶𝑤
𝑖,𝑗
, 1 ≤ 𝑖 ≤ 𝑛, 𝑖 ≤ 𝑗} , (1)
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where the rows 𝑅 = {𝑟
1
, . . . , 𝑟

𝑛
} form the expression patterns

of genes and the columns 𝐶 = {𝑐
1
, . . . , 𝑐

𝑛
} represent the

expression profiles of samples with log ratio factor denoted
by 𝑤
𝑖𝑗
being the measured expression level of gene 𝑖 in

sample 𝑗. The similarity diversion analysis is present with a
novel GL-PCPHC model. The PCPHC model requires that
all the genes in a PCPHC model should support the pattern
growing method, in the sense that the condition values
of a gene in different genes should maintain the ordering
relationship between the genes with the conditional values
in the similar gene being similar enough. Seed Augment
algorithm performs the biological association between the
genes.

An efficient and improvedPearson’s correlation proximity
mines the PCPHC patterns and adopts the average linkage
method on rows and columns to mine PCPHC patterns.
Then, a new GL-PCPHC mining method using Seed Aug-
ment algorithm extracts the PCPHC patterns as seeds and
expands them into maximal GL-PCPHC.

2.3. Identification of Similar Gene Expression Pattern. Due
to the significant characteristics of gene expression data,
gene-based clustering presents several new challenges. With
the application of improved Pearson’s correlation proximity-
based heuristic clustering, the challenges are addressed using
twofold.

First, with the introduction of gene-based hierarchical
clustering algorithm, minimum dependence on prior knowl-
edge is required, which usually is not available before the
cluster analysis using gene expression data. Second, due
to the experimental complexity involved in the expression
matrix, gene expression data comprises a huge amount of
noise. Therefore, with the application of improved Pearson’s
correlation proximity-based heuristic clustering for gene
expression data, it significantly extracts relevant information
by removing certain level of noise.

Gene-based hierarchical clustering for gene expression
dataset produces a hierarchical series of clusters which
is illustrated by a tree, called dendrogram. The leaves of
dendrogram for gene-based hierarchical clustering not only
generate the format ion of the clusters but also record the
similarity between the clusters. By removing the dendrogram
at certain level, a specific number of clusters for gene dataset
are obtained. In improved Pearson’s correlation proximity-
based hierarchical clustering, each log ratio factor of the
gene expression matrix is colored on the basis of the ratio of
fluorescencemeasurewhereas the rows of the gene expression
matrix are reordered on the basis of the hierarchical dendro-
gram structure with the help of a constant node-ordering.
Once the cluster is being formed, the original gene expression
matrix is transformed into a colored table, where higher
patches of color denote the genes sharing similar expression
patterns.

Given an expression matrix EM = (𝑅, 𝐶) with 𝑅 repre-
senting rows and 𝐶 denoting the columns, the methodology
followed to mine PCPHC patterns is carried out as follows.

The gene expression datasets are represented as vectors as
given below:

𝑉
𝑖
= {V
𝑖,𝑗
| where 𝑗 lies between 1 and 𝑓} , (2)

where V
𝑖,𝑗

represents the value of 𝑗th feature 𝑓 for the 𝑖th
gene value and 𝑓 denotes the features. The proximity level
between the two gene values V

𝑖
and V

𝑗
is obtained with the

corresponding vectors V󸀠
𝑖
and V󸀠
𝑗
using the improved Pearson’s

coefficient for a measurable dimension dim, where dim 𝑖 =
1, 2, . . . , 𝑛 is given below:

Σ =

1 (V
𝑖 dim − 𝜇V𝑖) (V𝑗 dim − 𝜇V𝑗)

√V
𝑖 dim − 𝜇V𝑖√V𝑗 dim − 𝜇V𝑗

, (3)

where 𝜇V𝑖 and 𝜇V𝑗 are the average values of two vectors V
󸀠

𝑖
and

V󸀠
𝑗
, respectively.
The proximity level between two gene values using

improved Pearson’s correlation views each value of gene
as a dynamic value with 𝑛 observations and measures the
similarity between two genes by evaluating the exponential
relationship between the distributions of the two dynamic
gene variables. Using the hierarchical clustering algorithm to
measure the similar gene expression pattern using the prox-
imity, Pearson’s correlation is given above (in Algorithm 1).

2.4. Biological Association between Genes. The second part
involved in PCPHC is to measure the biological association
between genes using the Seed Augment algorithm.Moreover,
the Seed Augment algorithm applies average linkage method
on rows and columns to expand seed PHC model into GL-
PCPHC model and to identify association between the clus-
ters.This as a result helps in the efficientmeasure of biological
association between the genes.The distance between the two-
gene expression data is defined as the mean distance between
all genes of one group with all the genes of another group:

Dist (Gen1,Gen2) = 1

(𝑁Gen1 ∗ 𝑁Gen2) (∑∑ dist (V
𝑖
, V
𝑗
))

,

(4)

where V
𝑖
∈ Gen1 and V

𝑗
∈ Gen2, 𝑖 = 1, 2, . . ., 𝑁Gen1 and

𝑗 = 1, 2, . . . , 𝑁Gen2.
Algorithm 2 expands a seedPCPHCby rows and columns

which takes the best possible column to associate the current
pattern. The row expansion procedure scans the remaining
rows that are not incorporated in the current pattern and
associates the pattern by those rows that support the best
order. Procedures in different orders lead to different pattern
association strategies. In order to generate effective associa-
tion, the column-centric strategy and the row-centric strategy
are adopted in GL-PCPHC. The Seed Augment algorithm
works with respect to the size of the expression matrix size.
As the average linkage method associates with the PCPHC
patterns, the thresholds values are set to 𝑒max and ℎmin to
be both 0 for fair comparison, which means that the Seed
Augment algorithm also mines PCPHC patterns.
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Begin
Input gene expression dataset, threshold 𝛿
Let the gene expression data be represented as vectors
𝑉
𝑖
= {V
𝑖,𝑗
| where 𝑗 lies between 1 and f}

Let the Expression Matrix be EM = (𝑅, 𝐶) and 𝑤
𝑖,𝑗
be the log ratio factor

Let V
𝑖
and V

𝑗
be two gene values and vector, V󸀠

𝑖
and V󸀠

𝑗

Let 𝜇V𝑖 and 𝜇V𝑗 be average values for two vectors V
󸀠

𝑖
and V󸀠

𝑗
,

Measure the proximity level using
Σ = 1 (V

𝑖 dim − 𝜇V𝑖) (V𝑗 dim − 𝜇V𝑗)/√V𝑖 dim − 𝜇V𝑖√V𝑗 dim − 𝜇V𝑗
For 𝑅 = {𝑟

1
, . . . , 𝑟

𝑛
}

Form the expression patterns for rows
For 𝐶 = {𝑐

1
, . . . , 𝑐

𝑛
}

Form the expression profiles of samples
Obtain log ratio factor 𝑤

𝑖,𝑗

End for
End for
If (𝑊
𝑖,𝑗
< 𝛿) Similarity gene expression patterns are obtained

Else If (𝑊
𝑖,𝑗
> 𝛿) Similarity gene expression patterns are not obtained

End

Algorithm 1: Hierarchical clustering algorithm to measure the similar gene expression pattern.

Begin
Input: Similarity gene expression patterns obtained from Algorithm 1, GL-PCPHC (𝑃, 𝑄, 𝐶

𝑃
, 𝑒max and ℎmin)

//Expression Matrix Column Expansion
For 𝐶

𝑖
∈𝐶- 𝑃

do
For 𝑂

𝑖
in 𝑂(𝑃, 𝑄)

Do
𝑂
𝑖
= COLEXPANSION (𝑒max and ℎmin)
End for

End for
//Expression Matrix Row Expansion
For 𝑅

𝑖
∈𝑅- 𝑄

do
For 𝑂

𝑖
in 𝑂(𝑃, 𝑄)

𝑂
𝑖
= ROWEXPANSION (𝑒max and ℎmin)

End for
End for
Obtain distance between two genes from (4)
End

Algorithm 2: Seed Augment algorithm.

Empirical studies show that the application of the PCPHC
model improves the quality of the associated patterns. The
Seed Augment algorithm that produces GL-PCPHC model
is also significantly more efficient than the state-of-the-art
PCPHC mining method that proves the robustness of the
Seed Augment algorithm.

3. Results and Discussion on Gene Expression
Data Analysis

The efficiency of the method is evaluated with various condi-
tions using JAVA platform. Initially, the biological process

on gene expression data is presented to estimate the bio-
logical association performance using yeast gene expres-
sion datasets derived from UCI repository and GenBank
sequence database. The GenBank sequence database con-
tains the nucleotide sequences and their protein transla-
tions produced and maintained by the National Center for
Biotechnology Information (NCBI) obtained from the URL
ftp://ftp.ncbi.nih.gov/genbank/, for experimental evaluation
of the proposed PCPHCmodel with existingmining discrim-
inative patterns for classifying trajectories, which extract the
hidden and practical information from datasets.

The yeast gene expression datasets consist of 8 attributes
and 1484 instances with classification associated tasks.
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Table 1: Tabulation of execution time (using GenBank database).

Size of pattern (KB) Execution time (ms)
Existing MDP method SC3 PCPHC model

155 370 300 260
203 650 580 470
350 1040 950 780
489 1170 1000 900
550 1430 1200 1010
614 1635 1420 1150
757 1765 1350 1205

The attributes used here for the evaluation of gene expression
datasets are Sequence Name (accession number for the
SWISS-PROT database), mcg (McGeoch’s method for signal
sequence recognition), gvh (von Heijne’s method for signal
sequence recognition), alm (score of the ALOM membrane
spanning region prediction program), mit (score of discrim-
inate analysis of the amino acid content of the N-terminal
region (20-residue long) ofmitochondrial and nonmitochon-
drial proteins), erl (presence of “HDEL” substring (thought
to act as a signal for retention in the endoplasmic reticulum
lumen)), binary attribute, pox (peroxisomal targeting signal
in the C-terminus), vac (score of discriminate analysis of the
amino acid content of vacuolar and extracellular proteins),
and nuc (score of discriminate analysis of nuclear localization
signals of nuclear and nonnuclear proteins).

The GenBank database is comprised of data from large-
scale projects (quality scores) quality score information
and consists of integers ranging from 0 to 100; individual
files (daily-nc) for new or updated sequence entries, where
“MM” represents month and “DD” represents year; data files
(wgs) for the sequence-overlap contigs of all whole genome
shotgun (livelists), which contains lists, generated weekly on
Sunday evening at approximately 6:00 pm EST/EDT, of all
nucleotide and protein accession numbers for the sequences
in GenBank; and so on.

At first, the biological processes are observed and ana-
lyzed for processing. The improved Pearson’s correlation
proximity-based hierarchical clustering (PCPHC) model is
used with the analysis of biological process association and
the performance of the PCPHC is measured in terms of exe-
cution time, biological association efficiency, pattern quality
level, and accuracy rate and gene expression level. Execution
time is the average amount of time consumed to perform the
whole process in PCPHC model and mechanism with the
existing mining discriminative patterns for classifying trajec-
tories (MDP) and triple spectral clustering-based consensus
clustering (SC3), measured in terms of milliseconds (ms).

Biological association efficiency is an effective way of bio-
logical features associated together in PCPHC andMDP, SC3
measured in terms of percentage (%). Pattern quality level is
defined as the amount of accuracy in patternmining based on
the gene expressions and ismeasured in terms of score points.
Accuracy rate is judged by comparing numerous capacities

from the same or different sources in gene expression data to
attain improved percentage:

Accuracy

=
Number of correctly associated biological information

Total number of gene levels
.

(5)

Gene expression data at each data point designed a DNA
microarray that represents the ratio of expression levels of an
exacting gene under different experimental conditions. Gene
expression level is measured based on the gene count taken
for experimental purpose.

3.1. Performance of PCPHC Model. The improved Pear-
son’s correlation proximity-based hierarchical clustering
(PCPHC)model is compared with the mining discriminative
patterns for classifying trajectories (MDP) method and triple
spectral clustering-based consensus clustering (SC3). Table 1
shows the experimental values and graph illustrates the
pictorial form of PCPHC model and existing MDP method
and SC3 model on various statistical parameters.

Table 1 describes the execution time on PCPHC model
and MDP method and SC3 model based on the size of the
pattern, where the size of the pattern is measured in terms
of kilobytes (KB). As the pattern size increases, execution
time also increases, but when compared to the existing MDP
and SC3, the execution time decreased gradually. The size of
pattern varies on different genes of data.

Figure 2 describes the execution time based on the
size of the pattern processed using GenBank database. The
execution time of the PCPHC model is 30–42% less when
compared with the MDP method and SC3 model, because
all the genes in a PCPHC pattern support a distance based
on the proximity using Pearson’s correlation in the sense
that the condition values of a gene maintain the ordering
relationship between all the genes datasets to reduce the
time. But comparatively, SC3 is better than the MDPmethod
because SC3 uses spectral clustering for cancer discovery
from gene expression profiles resulting in better execution
time. As the execution time decreased, the processing speed
in PCPHC improved.
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Table 2: Tabulation of biological association efficiency (using yeast gene expression dataset).

Number of features Biological association efficiency (%)
Existing MDP method SC3 PCPHC model

10 75 77 82
20 76 78 85
30 78 80 82
40 79 80 86
50 78 81 87
60 79 83 92
70 80 85 95
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Figure 2: Measure of execution time (using GenBank database).

Table 2 describes the biological association efficiency
based on the feature set using GenBank database. As the fea-
tures increased, biological association efficiency percentage
also improved drastically in PCPHC model.

Figure 3 describes the biological association efficiency
based on the number of features.The PCPHCbiological asso-
ciation is 4–15% improved compared to the MPD and 2–10%
improved compared to the existing SC3, as the GL-PCPHC
average linkage method on rows and columns in order to
capture the underlying consensus trend and support in such a
way that the similarities between the gene expression patterns
and between the clusters are large enough.

Figure 4 and Table 3 describe the pattern quality level
based on the significance level obtained using the yeast gene
expression dataset. Significance level ranges from 2, 4, . . . to
14 on the gene expression data. As the significance level
increases, pattern quality level improves from 6 to 11% due to
the algorithmdevelopment in PCPHCmodel and 2–6%more
than the existing MDP method and SC3 model, respectively.
PCPHCadopts the proximitymeasure based on the improved
Pearson’s correlation which always takes the best possible log
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Figure 3: Measure of biological association efficiency (using yeast
gene expression dataset).

ratio factor to associate the current pattern and improve the
pattern level effectively.

Procedures in different orders lead to different pattern
association strategies in PCPHCmodel when compared with
the MDP method and SC3 model.

Figure 5 and Table 4 show the accuracy rate of existing
MDP method and SC3 model and are compared against the
PCPHC model in terms of percentage (%) using GenBank
database. Linear prefix tree (LPTree) structure organizes the
candidate linear orders and improves the accuracy rate to
15% when compared with the MDP method and 8% better
than the SC3 model. The accuracy rate using SC3 model is
better than the MDP method because the SC3 model used
separately a consensus function to split the consensus matrix
constructed from multiple clustering solutions resulting in
increased accuracy rate.The SeedAugment algorithm rapidly
updated candidate using the column expansion and row
expansion function. Performing the expansion helps generate
the candidate linear orders and count the supports effectively
in PCPHC model.
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Table 3: Tabulation of pattern quality level.

Number of features Pattern quality level (score points)
Existing MDP method SC3 PCPHC model

2 42 43 46
4 60 61 64
6 36 37 39
8 37 39 42
10 30 32 34
12 34 35 37
14 40 41 42
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Figure 4: Measure of pattern quality level.
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Figure 5: Technique versus accuracy rate (using GenBank data-
base).

Table 4: Technique versus accuracy rate (using GenBank database).

Technique Accuracy rate (%)
Existing MDP method 72
SC3 78
PCPHC model 85

Table 5 describes gene expression level based on the
genes. As the gene data increases, gene expression level is
improved drastically and illustrated in terms of percentage
(%).

Figure 6 describes the gene expression level based on the
PCPHC model and compared with the MDP method and
SC3 model. Gene expression level in PCPHC model is 8–
16% increased because of proximity based on the improved
Pearson’s correlation method that shares the analogous prin-
ciplewith the sequential patternminingmethod.Gene ranges
from 25, 50, . . . , 175. In a similar manner, when compared to
the MDP method, the gene expression level was improved
using SC3 model ranging from 4 to 10% because it also
reduces the effect of noisy genes in cancer gene expression
profiles.

Finally, it is being observed that the improved Pear-
son’s correlation proximity-based hierarchical clustering
(PCPHC) model develops biological associations between
genes and correlated genes identified as a linear order. The
PCPH model requires that the rows in a PCPHC support
Seed Augment framework and adopts an improved Pearson’s
correlation proximity-based model to mine patterns. Empir-
ical studies show that the adoption of the PCPHC model
improves the quality of the mined patterns.

4. Conclusion

The improved Pearson’s correlation proximity-based hierar-
chical clustering (PCPHC) model is an efficient model which
exhaustively mine the similarity diversion strategy interpre-
tively. A global PCPHC (GL-PCPHC) model adopts pattern
growing method to mine GL-PCPHC patterns and discover
significant biological associations between genes. PCPHC
model allows linear orders and Seed Augment algorithm
adopts two different growing strategies on rows and columns
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Table 5: Tabulation of gene expression level (using yeast gene expression dataset).

Number of genes Gene expression level (%)
Existing MDP method SC3 PCPHC model

25 76 81 91
50 79 82 91
75 80 83 92
100 81 84 92
125 82 84 92
150 84 87 93
175 85 89 93
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Figure 6: Measure of gene expression level (using yeast gene
expression dataset).

in order to expand a seed PCPHCmodel into a maximal GL-
PCPHC pattern. The high rate of expression levels between
gene datasets is also simultaneously measured using the
improved Pearson’s correlation. Experimental studies show
that the PCPHC model outperforms all the current models,
and, importantly, it leads to the discovery of more quality
patterns. The experimental result of PCPHC model attains
the improved gene expressional data, minimal execution
time, 10. 085% effective biological association based on
feature set, 4.5% maximal accuracy rate, and better pattern
quality level based on the significance level.
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