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SUMMARY

Proteins carry out life’s essential functions. Comprehensive proteome analysis
technologies are thus required for a full understanding of the operating principles
of biological systems. While current proteomics techniques suffer from limita-
tions in sensitivity and/or throughput, nanopore technology has the potential
to enable de novo protein identification through single-molecule sequencing.
However, a significant barrier to achieving this goal is controlling protein/peptide
translocation through the nanopore sensor for processive strand analysis. Here,
we review recent approaches that use a range of techniques, from oligonucleo-
tide conjugation to molecular motors, aimed at driving protein strands and
peptides through protein nanopores. We further discuss site-specific protein
conjugation chemistry that could be combined with these translocation ap-
proaches as future directions to achieve single-molecule protein detection and
sequencing of native proteins.

INTRODUCTION

Proteins are the major functional molecules involved in essentially every biological process, such as build-

ing the cellular structure, regulating gene expression, and powering the immune system. Although

genomics and transcriptomics provide fundamental information about cellular history and basal activity,

proteomics plays a crucial role in filling the gap between genotype and phenotype as protein activities

are more directly related to phenotype (Figure 1). Thus, protein analysis provides valuable information

for understanding biological phenomena and disease. Unfortunately, unlike the remarkable technological

improvements in DNA and RNA sequencing in recent years, the development of highly sensitive, high-

throughput protein sequencing techniques have not yet been realized. There are two principal methods

currently available for protein sequencing/identification that do not use affinity reagents such as anti-

bodies: Edman degradation and mass spectrometry (Edman et al., 1950; Steen and Mann, 2004). Edman

degradation is a useful technique for de novo sequencing, but it is limited to the analysis of homogenous

protein samples and read lengths typically <50 amino acids, which are far shorter than the median protein

length of eukaryotic (361 amino acid long), bacterial (267 amino acid long), and archaeal organisms (247

amino acid long) (Brocchieri, 2005). Mass spectrometry allows the analysis of protein mixtures and currently

dominates proteomics research. Mass spectrometry has undergone significant improvements in instru-

mentation and sample preparation over the decades (Budnik et al., 2018; Specht et al., 2021; Zhu et al.,

2018a, 2018b), although it still faces limitations in terms of detection sensitivity, dynamic range, analytical

throughput, and instrumentation cost (Zubarev, 2013).

To address these challenges, complementary or potentially disruptive platforms for next-generation

protein analysis and sequencing have been envisioned recently (Alfaro et al., 2021; Asandei et al., 2020;

Cressiot et al., 2020; Hu et al., 2021; Restrepo-Pérez et al., 2018; Timp and Timp, 2020). These emerging

techniques include tunneling currents, single-molecule fluorescence, and nanopores. In 2014, Ohshiro

et al. identified 12 different amino acids and phosphotyrosine using tunneling currents measured as the

individual molecules threaded through a nanoscale electrode gap (Ohshiro et al., 2014). Tunneling currents

have shown the remarkable sensitivity to discriminate even enantiomers and isobaric amino acids (Zhao

et al., 2014). In more recent years, several fluorescence-based studies have demonstrated experimental

proof-of-principle toward single-molecule protein fingerprinting (de Lannoy et al., 2021; Swaminathan

et al., 2018; van Ginkel et al., 2018). For example, Swaminathan et al. established a fluorosequencing
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Figure 1. Current analytical techniques for omics studies

(Left) The proteome is orders of magnitude more complex than the genome and transcriptome (Aebersold et al., 2018). (Right) Second and third-generation

sequencing techniques can be used for high throughput genomic and transcriptomic analysis, while protein sequencing/identification is performed by

relatively-low throughput methods such as mass spectrometry or Edman degradation.
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technology that couples Edman degradation with fluorescent labeling of specific residues (e.g., cysteines

and lysines). Total internal reflection fluorescence (TIRF) microscopy allows for millions of fluorescently

labeled peptide molecules to be identified in parallel based on the sparse fluorescent sequence (i.e.,

fingerprint) of each molecule determined by recurrent rounds of Edman degradation (Swaminathan

et al, 2015, 2018). Thus, those innovative approaches based on tunneling currents or fluorescence have

opened new avenues to revolutionize conventional proteomic technologies. However, they may face lim-

itations compared to nanopore technology in terms of the potential to achieve de novo full-length protein

sequencing. Approaches using tunneling currents, for instance, lack experimental demonstrations of con-

trolling translocation of polypeptides through the gap and are currently limited to the analysis of amino

acids or short peptides. Fluorescence-based methods are so far incompatible with de novo sequencing

owing to constraint in the chemical repertoire to orthogonally label the 20 amino acids and the number

of uniquely distinguishable fluorescent labels. In the following section, we present an overview of protein

analysis and sequencing using nanopore technology.
Recent advances and challenges in nanopore sequencing

Nanopore technology relies on a nanometer-sizedpore (i.e., nanopore)within an insulatingmembrane that sep-

arates two electrolyte-filled wells. A voltage applied across the membrane drives ionic current flow through the
2 iScience 24, 103032, September 24, 2021



Figure 2. Schematic representation of single-molecule sequencing with a nanopore

In nanopore sequencing, a nanometer-sized protein pore is embedded in an insulating membrane that separates two

electrolyte-filled wells. Voltage is applied between the wells, causing ionic current flow through the pore. As single

biopolymer molecules translocate through the channel, they generate sequence-specific ionic current signals that are

diagnostic of the polymer sequence. Nanopore sequencing has been established as a commercial technology to read

single DNA and RNA molecules (Garalde et al., 2018; Jain et al., 2016).
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nanopore sensor between the cis and trans wells. As individual molecules translocate through or otherwise

interactwith thenanopore, theycan rectify this ionic currentflowandcause anobservable signal change thatpro-

vides structural insights into themolecules (Deamer and Akeson, 2000). Although nanopore sensing was initially

proposed as a technique for the sequencingof nucleic acid strands (Kasianowicz et al., 1996) (Figure 2), it also has

great potential for protein analysis. Single-molecule sensitivity, full-length readout, real-timemeasurement, and

deviceportability is just as, if notmore, crucial forproteomics than it is forgenomics and transcriptomics (Shi et al.,

2017). Towards this end, nanopore sensors have been used for discrimination of peptides and proteins (Asandei

et al., 2017; Cardozo et al., 2021; Huang et al, 2017, 2019; Nivala et al., 2014; Piguet et al., 2018; Robertson and

Reiner, 2018), real-timemeasurement of protein–protein (Thakur andMovileanu, 2019) and protein–ligand inter-

actions (Harrington et al., 2013; Movileanu et al., 2000), antigen�antibody binding assays (Han et al., 2008; Ma-

dampage et al., 2010; Sexton et al., 2007), and aptamer-mediated protein detection (Rotem et al., 2012; Soskine

et al., 2012; Sze et al., 2017). Moreover, protein nanopores have shown promise in identifying amino acids and

post-translational modifications (PTMs), taking a major step toward single-molecule protein sequencing. For

example, Ouldali et al. have recently shown that 13 of the 20 standard amino acids are distinguishable based

on their current signals using an aerolysin nanopore (Ouldali et al., 2020). The study also has proposed a way to-

ward the identification of the remaining 7 amino acids by instrumentation advances and nanopore engineering.

The detection of PTMs such as phosphorylation and glycosylation, which serve as biomarkers of cell states and

diseases (Aebersold et al., 2018; Pagel et al., 2015), has also been achieved with protein nanopore sensors (Re-

strepo-Pérez et al., 2019b; Rosen et al., 2014b; Wloka et al., 2017; Ying et al., 2019; Zhang et al., 2021b).

Despite these promising results, protein sequencing of intact, full-length protein strands using nanopores

has been hindered, in part, because of the difficulty in controlling protein translocation through the sensor.

This challenge exists because of two major reasons (Figure 3): First, the polypeptide backbone is neutrally

charged and amino acid side chains can vary in charge state. Thus, electrophoresis-driven unidirectional

translocation of peptides or proteins through nanopores cannot be as effectively employed, as it can for

uniformly negatively-charged polymers like nucleic acids. Second, most proteins adopt a stable 3-dimen-

sional fold. Thus, disruption of this tertiary structure is required for proteins to translocate through a narrow

nanopore constriction for primary sequence analysis. In this review, we summarize the recent advances and

remaining obstacles in controlling protein translocation through a nanopore and highlight label-based ap-

proaches that potentially address these challenges.

APPROACHES FOR PROTEIN/PEPTIDE TRANSLOCATION THROUGH A NANOPORE

In 2004, peptide translocation through a nanopore was demonstrated for the first time (Sutherland et al.,

2004). This study showed the translocation of short repeats of the collagen-like sequence (GPP) through an
iScience 24, 103032, September 24, 2021 3



Figure 3. Challenges in protein translocation through a nanopore

(Left) While DNA/RNA is uniformly negatively charged, (Middle) proteins can contain both negatively-charged (glutamate

and aspartate) and positively-charged (arginine, lysine, and histidine) residues at physiological pH. Unidirectional

translocation of proteins in the electric field must be achieved despite their nonuniform charge. (Right) The diameters of

folded proteins are typically larger than the constriction of protein nanopores that would be suitable for protein

sequencing application (�1–2 nm) (Steinbock et al., 2014). For processive strand analysis, proteins must be unfolded to

allow the denatured protein strand to thread through the nanopore with amino acid residues in single-file order.
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a-hemolysin nanopore. Another pioneering study investigated the interactions of an a-hemolysin nano-

pore with helical peptides containing the (AAKAA)n sequence (Movileanu et al., 2005). These works laid

the foundation for peptide analysis using nanopores, but general approaches for translocation of native

peptides/proteins through nanopores are required for the development of single-molecule protein

sequencing.

First efforts for protein translocation involved physical and chemical denaturants. Several groups have

shown that the use of high temperature (Payet et al., 2012), chaotropic agents (Cressiot et al, 2012, 2015;

Merstorf et al., 2012; Oukhaled et al., 2007; Pastoriza-Gallego et al., 2011; Talaga and Li, 2009), or deter-

gents (Kennedy et al., 2016; Restrepo-Pérez et al., 2017), facilitates protein translocation through nano-

pores. For example, Timp and colleagues have demonstrated protein translocation through solid-state

pores using sodium dodecyl sulfate (SDS) as a denaturant (Kennedy et al., 2016). SDS further provides a

near-uniform negative charge to denatured proteins and promotes the electrical control of the transloca-

tion kinetics, though it is unclear if the protein-bound SDS could interfere with the nanopore signal’s sensi-

tivity to amino acid sequence. Although such denaturation methods are compatible with solid-state

nanopores and show great promise for protein translocation, they cannot be as readily applied to protein

nanopore systems that include lipid or lipid-like membranes, which are susceptible to harsh conditions

required to completely unfold stable proteins (e.g. high temperature or a high concentration of denatur-

ants). To overcome this barrier, several label-based translocation strategies that are compatible with pro-

tein nanopores have been explored (Figure 4).

Oligonucleotide-assisted translocation

In nanopore-based DNA and RNA sensing, nucleic acid strands can be electrophoretically-driven into and

through a nanopore unidirectionally by an applied voltage as their phosphodiester backbone is intrinsically

negatively charged. Hence, attaching an oligonucleotide strand to a protein is a straightforward way to facil-

itate electrophoresis-driven protein translocation (Figure 4A, Left). Using this approach, Bayley and colleagues

have demonstrated controlled directional translocation of proteins through an a-hemolysin nanopore (Rodri-

guez-Larrea andBayley, 2013, 2014; Rosen et al., 2020). The group usedgenetically engineered thioredoxin as a
4 iScience 24, 103032, September 24, 2021
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Figure 4. Approaches for protein/peptide translocation through a nanopore

(A) Electrophoresis-driven translocation. Left) The negative charges of oligonucleotides enable electrophoresis-driven

unidirectionalmovementof proteins. Right) Positively-charged (arginine, lysine, andhistidine) or negatively-charged (glutamate

and aspartate) residues promote unidirectional protein translocation under a negative or positive voltage bias, respectively.

(B) Motor-driven translocation. Left) An unfoldase present in the trans solution binds a recognition motif on the threaded

protein (e.g., ssrA tag) and generates mechanical force sufficient to denature and processively pull the protein through

the pore. Right) A DNA-processive motor bound to an oligonucleotide strand pulls the oligonucleotide-peptide

conjugate from the trans to cis side against electrophoretic force. This allows for the peptide strand to pass through the

nanopore constriction with a regular stepping size and yields sequence-dependent signals derived from the peptide

strand in the pore’s sensitive region.
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model protein and linked aC-terminal cysteine side chain to a 30-mer oligo(dC) nucleotide via a disulfidebond.

The study demonstrated a co-translocational unfoldingmechanism; first, the protein-tethered oligonucleotide

is captured by the nanopore. Second, the oligonucleotide is pulled through the nanopore and the C-terminus
iScience 24, 103032, September 24, 2021 5
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of the protein locally unfolds because of the pulling force. Third, the remaining protein structure unfolds spon-

taneously after being critically destabilized as a result of the C-terminal local structure unfolding. Fourth, the

unfoldedprotein completely translocates through the nanopore. A recent follow-upwork to this has also shown

that simple neural network-based classifiers can distinguish single point mutations in the protein that result in

altered unfolding characteristics (Rodriguez-Larrea, 2021). Other groups have also demonstrated successful

translocation of proteins and peptides using tethered oligonucleotides (Biswas et al., 2015; Pastoriza-Gallego

et al., 2014), confirming the effectiveness of this translocation approach. This method, however, generates fast

translocation events (<1 ms) that may cause poor signal-to-noise ratios and thus make this method less sensi-

tive to protein sequence-level changes. This method may also be ineffective at translocating larger, multi-

domain proteins, as the electrophoretic pulling force is largely absent after the oligonucleotide has completely

translocated through the nanopore. As molecular motors and nanopore engineering have been employed to

reduce the velocity of translocating DNA and RNA in nanopore nucleic acid sequencing (Cherf et al., 2012; Ga-

ralde et al., 2018; Manrao et al., 2012; Rincon-Restrepo et al., 2011), techniques to regulate the rate of protein

translocation may be required for the acquisition of well-resolved and reproducible current signals.

Charged peptide-assisted translocation

Similar to the oligonucleotide-assisted approach, the fusion of charged peptides promotes unidirectional

protein translocation (Figure 4A, Right). Ouldali et al. have demonstrated translocation of XRRRRRRR pep-

tides through an aerolysin nanopore, where X represents the 20 standard amino acids (Ouldali et al., 2020).

The translocation experiment was run under a �50 mV bias applied to the trans side to enable the polyca-

tionic peptide to move toward the trans compartment by electrophoretic force. Moreover, Restrepo-Pérez

et al. have shown translocation of 30 amino acid long peptides, containing 10 glutamates at the N-terminus

and 10 arginines at the C-terminus (Restrepo-Pérez et al, 2019a, 2019b). The ‘‘tug-of-war’’ state created by

the terminal charged residues enabled slow translocation (>1 ms) of peptides through a FraC nanopore to

read out PTMs and 6 distinct chemical tags on the peptides. Our group has recently shown that an Smt3

protein genetically tagged at its C-terminus with a polyGSD peptide can promote capture of the protein

in a CsgG nanopore but does not readily drive unfolding and complete translocation (Cardozo et al.,

2021). This observation supports the conclusion that amore highly charged peptide or the addition of other

mechanisms would be necessary to generate enough force to completely unfold and translocate stably

folded proteins through a narrow nanopore.

Molecular motor-assisted translocation

Another approach for protein translocation is based on an unfoldase that enables enzyme-mediated un-

folding and translocation of tagged proteins (Figure 4B, Left). We previously employed the AAA+ unfol-

dase ClpX, which specifically unfolds proteins bearing a C-terminal ssrA peptide tag (AANDENYALAA),

for processive unfolding of large proteins (Nivala et al, 2013, 2014). ClpX generates sufficient mechanical

force (�20 pN) to denature stable protein folds and translocates proteins at a rate suitable for nanopore

sequencing (up to 80 amino acids per second) (Maillard et al., 2011). This approach has demonstrated

ClpX-mediated translocation of proteins over 700 amino acids in length, including a variety of protein do-

mains, that are genetically fused with the ssrA tag and a polyanion peptide linker designed to promote pro-

tein capture and retention in the nanopore electric field. Distinct protein domains as well as specific point

mutations, proteolytic cleavage, and sequence rearrangements in those domains resulted in detectable

ionic current pattern changes and single-molecule classification accuracies of 86–99% (Nivala et al., 2014).

While ClpX is capable of unfolding many different types of proteins even with very high stabilities (Kennis-

ton et al., 2004), it likely does not generate sufficient force for some protein folds (Hoskins et al., 2002). In

addition, disulfide bonds, which commonly occur in proteins (Bosnjak et al., 2014; Wiedemann et al., 2020),

may interrupt protein translocation. The force exerted on protein strands by ClpX or by an electric field

(tens to several hundred pN) in a typical experimental setup (Ouldali et al., 2020) is not able to break the

covalent disulfide bond (Baldus and Gräter, 2012; Wiita et al., 2007). Although ClpX’s ring-like structure

is flexible enough to translocate a disulfide-linked beta hairpin into the proteolytic chamber of ClpP (Burton

et al., 2001), it is unlikely that a more narrow, rigid nanopore protein would accommodate such a structure.

Thus, the use of reducing agents would assist the linear translocation of proteins with disulfide bonds.

Another consideration to the unfoldase approach is the large and variable translocation step size of

ClpX. Although the fundamental step size of ClpX is �1 nm, this distance corresponds to an irregular num-

ber of amino acids that is dependent on the confirmation of the peptide backbone (typically 5–8 amino

acids per 1 nm step). ClpX stepping can also occur in quick bursts of up to 4 nm (Cordova et al., 2014).
6 iScience 24, 103032, September 24, 2021
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Although this bursting activity is critical to its unfolding activity, it could complicate sequencing with single-

amino-acid resolution. Efforts to explore alternative unfoldase motors that have a more well-defined step

size, such as ClpA (Miller et al., 2013; Olivares et al., 2014), or proteasome systems (Olszewski et al., 2019;

Zhang et al., 2020) may be necessary for building a more robust translocation system with optimal

resolution.

As an alternative to the unfoldase approach, recent work has explored controlled peptide translocation

through nanopores using DNA processive motors. This was accomplished by conjugating peptides to

DNA oligonucleotides. A DNA processive motor can then ratchet the peptide-oligonucleotide conjugate

through the pore (Figure 4B, Right). This technique has been demonstrated with two different types of DNA

processive motors, a helicase (Brinkerhoff et al., 2021) or a polymerase (Yan et al., 2021). The process yields

a series of discrete ionic current steps derived from enzyme-mediated peptide-oligonucleotide strand

translocation. As the motors are not able to move along the peptide strand itself, the read length is limited

to less than the �30 amino acids that typical nanopore vestibules, such as MspA, can accommodate. This

length is still longer than the typical peptide analyzed in bottom-up mass spectrometry and could be

further extended by nanopore engineering. While this novel approach overcomes the irregular stepping

of ClpX and allows identification of peptide variants in some contexts with single-amino-acid resolution,

applications are currently limited to the analysis of synthetic peptide strands with highly negative charges

responsive to electrophoretic forces that stretch and trap the peptides within the nanopore (Brinkerhoff

et al., 2021); otherwise peptide strands would escape from the nanopore (Yan et al., 2021). A sandwich

structure with a negatively-charged strand linked to the other free terminus of a peptide may allow for

the peptide to remain captured in the nanopore regardless of its charge distribution.

In summary, key advances have been made toward facilitated translocation of proteins and peptides

through narrow protein nanopore sensors for the realization of single-molecule protein sequencing. The

development of protein translocation systems has been an exciting and active research area and further

improvements are anticipated in the near future.
SITE-SPECIFIC PROTEIN MODIFICATION AND CONJUGATION CHEMISTRY

Nanopore sequencing is an interdisciplinary technology where a wide variety of fields intersect, from pro-

tein science and biophysics to chemistry and computer science (Alfaro et al., 2021; Robertson et al., 2021).

As the translocationmethods discussed above involve the conjugation of translocation-assistingmolecules

(e.g., oligonucleotides and peptides) to a protein terminus, protein modification and conjugation chemis-

try are a key step to allow analysis of native proteins, analogous to how nanopore DNA/RNA sequencing

requires sample preparation steps such as adapter ligation (Garalde et al., 2018; Jain et al., 2016). To this

end, robust bioconjugation molecules such as the azide and alkyne groups can be incorporated into pro-

teins in a site-specific manner (Shadish and DeForest, 2020; Sletten and Bertozzi, 2009). This section reviews

conventional amine-specificN-hydroxysuccinimide (NHS) ester chemistry, emerging terminal-specific pro-

tein modification chemistry, and protein bioconjugation with translocation-assisting molecules (Figure 5).
NHS ester

NHS esters are reagents that target primary amines and form stable amide bonds with both the N-terminal

amine and lysine side chains. As the basicity of N-terminal a-amines (pKa = 6–8) is lower than that of lysine

ε-amines (pKa = �10.5), a lower pH offers a higher degree of selectivity toward the N-terminal amine at the

cost of decreased reactivity (Rosen and Francis, 2017; Sereda et al., 1993). NHS esters are widely used to

modify proteins with a variety of functional molecules, such as an azide group and HaloTag ligands (Los

et al., 2008), that are then used in subsequent conjugation steps. By preparing translocation-assisting mol-

ecules linked to the NHS ester, it would be also possible to directly conjugate proteins with them. The main

drawback of NHS esters for N-terminal specific labeling is minimizing the cross reactivity with lysines. For

example, RNase A, which has 10 lysine residues, had 2 and 5 simultaneous modifications at pH 6.5 and 7.5,

respectively, when reacted with 2-azidoacetic acid NHS ester (Inoue et al., 2019).
N-terminal specific modification

Because it is challenging to achieve complete selectivity toward the N-terminus using NHS esters, much

effort has been expended to explore more selective reagents and a growing number of studies are now

demonstrating efficient targeting (Hoyt et al., 2019; Rosen and Francis, 2017; Shadish and DeForest,
iScience 24, 103032, September 24, 2021 7



Figure 5. Schematic representation of site-specific protein modification and conjugation

In the site-specific modification step, proteins aremodified with functional groups for subsequent bioconjugation. WhileN-hydroxysuccinimide (NHS) esters

and 2-pyridinecarboxaldehyde derivatives target the protein N-terminus, photoredox-catalyzed decarboxylation enables C-terminal specific reaction. In the

bioconjugation step, the modified proteins are conjugated with nanopore-targeting molecules such as oligonucleotides or peptides via click chemistry.
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2020). Notably, the emergence of facile and versatile N-terminal specific modification methods have

enabled protein modification at an excellent conversion rate, relying solely on commercially available re-

agents and thereby circumventing the requirement of complex chemical synthesis steps. In 2015, Francis

and colleagues reported one-step modification using 2-pyridinecarboxaldehyde (2PCA) (MacDonald

et al., 2015). They found that 2PCA specifically reacts in moderate to excellent conversion rates (43–96%)

with the N-termini of peptides and proteins in physiological conditions (37�C, pH 7.5), and is compatible

with most N-terminal sequences. The study further demonstrated incorporation of functional molecules

such as biotin and fluorescein onto the N-terminus. The reaction depends on the characteristics of

2PCA, which specifically reacts with the N-terminus through the formation of cyclic imidazolidinone. The

ε-amino groups of lysine residues are unreactive in this pathway owing to their higher basicity compared

to the a-amino group of the N-terminus and the lack of a neighboring amide group suitable for cyclization,

yielding no detectable side reaction on the ε-amino groups of lysines. One drawback of this method is that

proteins with a proline in their second N-terminal position cannot be modified because of cyclization

blocking.

More recently, other groups have also performed similar or revised approaches for N-terminal specific

modification (Chen et al., 2017; Deng et al., 2020; Inoue et al., 2019; Li et al., 2018; Onoda et al., 2020).
8 iScience 24, 103032, September 24, 2021
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In 2019, Inoue et al. reported one-step N-terminal specific modification using 6-(azidomethyl)-2-pyridine-

carbaldehyde (6AMPC) derivatives (Inoue et al., 2019). This study showed that 6AMPC provides excellent

conversions toward various peptides and proteins (e.g., 95% for Angiotensin I and >90% for RNase A). The

azide group added to the N-terminus of RNase A was subsequently used for conjugation with fluorescein

via copper-catalyzed azide–alkyne cycloaddition (CuAAC; 92% conversion in 60 min) and strain-promoted

azide–alkyne cycloaddition (SPAAC; 59% in 60 min), demonstrating the feasibility of linking alkyne-modi-

fied molecules to native proteins without the requirement of genetic engineering. In 2020, Onoda et al.

developed a more general strategy for one-step modification of the protein N-terminus using triazolecar-

baldehyde reagents (Onoda et al., 2020). In principle, this method is applicable for protein modification

with any functional molecule containing a primary amine. Indeed, the N-terminus of RNase A was modified

with a variety of functional molecules such as biotin, polyethylene glycol, azide, and alkyne groups with con-

version rates ranging from 50% to 85%.
C-terminal specific modification

C-terminal specific modification methods have also been explored, though not as thoroughly as N-terminus

targeting reactions. In 2018, MacMillan and co-workers developed a method based on light-mediated sin-

gle-electron transfer as a mechanism enabling site- and chemoselective bioconjugation (Bloom et al., 2018).

This approach exploited the innate difference in oxidation potentials between side chains (glutamate and

aspartate) andC-terminal a-amino carboxylates (Galicia andGonzález, 2002; Zuo andMacMillan, 2014). In their

work, insulin wasmodified at its C-terminus with an alkyne groupwith a conversion rate of 41% in 8 h incubation

at room temperature and pH 3.5. Although this approach did not show a comparable conversion rate to the

N-terminal modification strategies, C-terminal specific modification is useful for targeting native proteins

with N-terminals that have been post-translationally modified. While N-terminal acetylation rarely occurs in

prokaryotes or archaea, 80–90% of cytosolic mammalian proteins and 50% of yeast proteins are N-terminally

acetylated (Polevoda and Sherman, 2003). Thus, N-terminal specific modification needs an additional step

for removal of the blocked N-terminus (Gheorghe et al., 1997) when targeting post-translationally N-terminally

modified proteins, whereas the C-terminal modification approach can circumvent this requirement.
Protein conjugation chemistry

Protein conjugation is followed by site-specific modification in order to prepare protein conjugates linked to

translocation-assisting biomolecules such as oligonucleotides and peptides (Figure 5). SPAAC is one of the

most widely used click chemistry reactions for biomolecule conjugation (Khatwani et al., 2012). SPAAC utilizes

a pair of reagents, azides and cyclooctynes, that exclusively andefficiently reactwith each other while remaining

inert to naturally occurring functional groups such as amines. SPAAC enables protein labeling with a wide va-

riety of biomolecules without any auxiliary reagents in an aqueous and low temperature (e.g. 4�C) environment

that is suitable for protein stability. Using the SPAAC chemistry, Biswas et al. have demonstrated translocation

of three different peptides ranging between 8 and 12 amino acids long through a solid-state nanopore (Biswas

et al., 2015). In their work, protein N-termini were selectively modified with an azide group and subsequently

conjugated with a dibenzocyclooctyne-modified 20-mer oligo(dT) nucleotide via SPAAC for oligo-mediated

nanopore translocation. In a similar way, CuAAC is also useful for such tagging reactions. The CuAAC reaction

requires the addition of a copper catalyst and a reductive reagent such as sodium ascorbate (Inoue et al., 2019).

In addition, there are a variety of other toolkits available for bioconjugation (Hatlem et al., 2019; Rosen et al.,

2014a; Rosen and Francis, 2017; Shadish and DeForest, 2020; Sletten and Bertozzi, 2009; Stephanopoulos and

Francis, 2011). These bioconjugation approaches are customizable by simply changing chemical groups intro-

duced into proteins in the site-specific modification step. HaloTag, for instance, is a mutant haloalkane deha-

logenase that specifically binds synthetic ligands comprising a chloroalkane linker attached to various func-

tional molecules (Los et al., 2008). Covalent bond formation between HaloTag and the chloroalkane linker is

fast and essentially irreversible under physiological conditions, enabling versatile protein conjugation with a

variety of molecules (England et al., 2015; Yazaki et al., 2020). Thus, these current, and potentially future, conju-

gation strategies will facilitate protein conjugation with translocation-assisting molecules, enabling controlled

protein translocation through a nanopore without the need of genetic engineering.
CONCLUSION AND PERSPECTIVE

This reviewhighlighted the intersection of nanopore sensing, protein chemistry, andbioconjugation strategies.

The site-specificbioconjugation chemistriespresentedhere areuseful for protein sequencingand identification

using nanopore technology as well for other single-molecule approaches (de Lannoy et al., 2021; Howard et al.,
iScience 24, 103032, September 24, 2021 9
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2020; Zhang et al., 2021a). Single-molecule protein sequencing is a highly interdisciplinary endeavor and will

require the integration of a wide array of techniques on top of bioconjugation chemistry for successful realiza-

tion.While advances in bioconjugation chemistry hold great promise to resolve the critical issue of driving pro-

tein translocation in nanopore sequencing, the grand challenge to be addressed is accurate decoding of the

ionic current signals into amino acid sequences. Indeed, unfoldase-mediated linear translocation of full-length

proteins through ana-hemolysin nanoporedid not demonstrate readingof aminoacidswith single-residue res-

olution (Nivala et al, 2013, 2014). However, recent progress in synergistic areas of research has increased the

feasibility of nanopore-based protein sequencing. First, signal-to-noise ratios can be improved by exploring

and engineering nanopores suitable for the detection of amino acids. As the average amino acid residue is

around half the size of a monophosphate nucleotide, high sensitivity and resolution would likely be achieved

by a nanopore with a sharp and narrow constriction, for example, recently developed CsgG or MspA rather

than a-hemolysin (Vander Verren et al., 2020;Wanget al., 2018). Second, protein fingerprinting, inwhich a small

subset of residues are orthogonally labeled with chemical tags that produce readily distinguishable nanopore

signals, could improve the accuracy of amino acid read-out and protein identification (Ohayon et al., 2019; Yao

et al., 2015). This strategy has been adopted in efforts toward nanopore-based protein/peptide identification

(Restrepo-Pérez et al., 2019a). Third, the emergence of commercial nanopore sequencers has enabled highly

parallel nanoporeanalysis andhigh-throughputdata collectiononananoporearray (Cardozoet al., 2021; Zhang

et al., 2021b), which otherwisewould not be realizedby single-channel experiments. A large set of trainingdata,

coupledwith state-of-the-artmachine learningmodels,wouldboost accurate translationof complex rawsignals

into amino acid sequences and PTMs, analogous to the example of highly improved basecalling accuracy in

nanopore DNA sequencing using deep learning (Rang et al., 2018; Teng et al., 2018; Wick et al., 2019).

Nanopore protein sequencing is a challenging frontier that has yet to be realized, but there is great poten-

tial for this nascent technology to revolutionize current proteomics studies, which often suffer from limited

sensitivity and throughput in contrast to genomics and transcriptomics technologies. As nanopore sensors

provide single-molecule sensitivity, the development of nanopore-based de novo protein sequencing

would enable comprehensive identification and quantification of proteins having low abundance or heter-

ogenous PTMs, opening the door to single-molecule proteomics, novel protein biomarker and drug target

discovery, and early diagnosis of disease. Further, the low cost and portability of nanopore sensing plat-

forms, in contrast tomass spectrometry instrumentation, open new avenues for more ubiquitous proteomic

analyses, for example in the field or in other low resource environments.
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Edman, P., Högfeldt, E., Sillén, L.G., and Kinell,
P.-O. (1950). Method for determination of the
amino acid sequence in peptides. Acta Chem.
Scand. 4, 283–293. https://doi.org/10.3891/acta.
chem.scand.04-0283.

England, C.G., Luo, H., and Cai, W. (2015).
HaloTag technology: a versatile platform for
biomedical applications. Bioconjug. Chem. 26,
975–986. https://doi.org/10.1021/acs.
bioconjchem.5b00191.

Galicia, M., and González, F.J. (2002).
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