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Multiple myeloma is a heterogeneous plasma cell malignancy that remains incurable
because of the tendency of relapse for most patients. Survival outcomes may vary
widely due to patient and disease variables; therefore, it is necessary to establish a
more accurate prognostic model to improve prognostic precision and guide clinical
therapy. Here, we developed a risk score model based on myeloma gene expression
profiles from three independent datasets: GSE6477, GSE13591, and GSE24080. In
this model, highly survival-associated five genes, including EPAS1, ERC2, PRC1,
CSGALNACT1, and CCND1, are selected by using the least absolute shrinkage
and selection operator (Lasso) regression and univariate and multivariate Cox
regression analyses. At last, we analyzed three validation datasets (including
GSE2658, GSE136337, and MMRF datasets) to examine the prognostic efficacy of
this model by dividing patients into high-risk and low-risk groups based on the median
risk score. The results indicated that the survival of patients in low-risk group was
greatly prolonged compared with their counterparts in the high-risk group. Therefore,
the five-gene risk score model could increase the accuracy of risk stratification and
provide effective prediction for the prognosis of patients and instruction for
individualized clinical treatment.
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INTRODUCTION

Multiple myeloma (MM) is a heterogeneous plasma cell malignancy, which is the second most
common hematological malignancy in the world (Kazandjian, 2016). There were 16,500 new cases
and 10,300 deaths of MM in China in 2016; the morbidity andmortality rates increased with age, and
older people were at higher risk of MM (Gerecke et al., 2016; Liu et al., 2019). The median survival in
MM is approximately 6 years, with survival duration ranging from a few months to more than
10 years (Rajkumar, 2020). The International Staging System (ISS) is a widely used system for the
stratification of MM patients based on easy-to-apply variables (serum beta2-microglobulin and
serum albumin) (Greipp et al., 2005). In 2015, the International Myeloma Working Group (IMWG)
developed the revised international staging system (R-ISS); it classifies patients into three risk groups
by combining the ISS with high-risk cytogenetic abnormalities (CA) [del (17p), t (4; 14) (p16; q32),
or t (14; 16) (q32; q23)] and serum lactate dehydrogenase (LDH) (Palumbo et al., 2015). For
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cytogenetic changes, t (4; 14), t (14; 16), t (14; 20), del (17p), and
hypodiploidy have been found to be associated with high-risk
diseases (Rajkumar et al., 2013; Lakshman et al., 2018).

Over the past 15 years, the survival rate of MM has improved
significantly (Kumar et al., 2014). Bortezomib, lenalidomide, and
dexamethasone (VRd) is the current standard of treatment for newly
diagnosed MM (Rajkumar, 2020). For the treatment of recurrent
MM, proteasome inhibitors, immunomodulatory substances, and
classical chemotherapy agents are the main therapeutic measures
(Gerecke et al., 2016). But even under these treatments, almost all
patients with MM eventually relapse; the survival outcomes of MM
are highly heterogeneous. Therefore, it is important to perform risk
stratification for patients with MM and to find reliable prognostic
biomarkers, which can better improve prognostic accuracy and
guide clinical treatment (Shaughnessy et al., 2007).
Comprehensive clinical information and gene expression data in
public biological databases can provide opportunities to identify the
prognostic signature for MM, and the biomarkers which are
associated with prognostic and survival outcomes can be
identified based on the gene expression of myeloma patient
tissues. Studies have demonstrated that prognostic models based
on the gene expression signature can predict survival outcomes in
multiple independent datasets, and the discriminatory ability was
also better than other combinations of traditional risk scores (Heuck
et al., 2014). In addition, further validation and analysis can also be
performed in combination with other clinical information from
more cohorts, to provide new insights for clinical application (Cai
et al., 2020).

The gene expression profiles can be used to calculate differentially
expressed genes (DEGs) between myeloma patients and healthy
individuals, and the DEGs may associate with the prognosis of MM
patients (Alizadeh et al., 2000). Some studies have already
investigated the use of gene expression profiles alone or in
combination with clinical factors as an improvement to estimate
patient survival risk (Fernandez-Teijeiro et al., 2004; Habermann
et al., 2008). The least absolute shrinkage and selection operator
(Lasso) regression is a method for variable selection; it reduces the
number of variables and only retains themost influential variables by
using dimensionality reduction techniques. Univariate and
multivariate Cox regression analyses were performed to obtain
the genes correlated with prognosis in order to produce an
accurate and refined model.

In this study, we integrated multiple datasets to develop and
validate an effective prognostic risk model for MM patients, which
was successfully validated in additional three independent datasets to
demonstrate the stability and reliability of the riskmodel. Thismodel
contributes to risk stratification, providing important implications
for the prognosis of MM and may offer the prospect of personalized
therapeutic.

MATERIALS AND METHODS

MM Dataset
We systematically searched for MM datasets that were publicly
available and provided prognosis information, and the datasets
must have complete survival data, including survival status and

OS/PFS/EFS time. For this study, GSE6477, GSE13591,
GSE24080, GSE2658, and GSE136337 were downloaded from
the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/) and normalized between different arrays.
Detailed clinic-cytogenetic information including t (4; 14), t (14;
16), del (17p), ISS, and R-ISS stage and survival data were
included in the datasets. The MMRF CoMMpass study is a
clinical trial of newly diagnosed MM patients sponsored by
the Multiple Myeloma Research Foundation; the project
provides clinical information (including survival data) and the
expression profile data of MM patients. Because both GSE6477
and GSE13591 contained healthy individuals and MM patients,
the microarray data from these two databases were used to obtain
DEGs between the two groups. GSE24080, as a training dataset,
contained 559 MM patients, while the testing datasets GSE2658,
GSE136337, and MMRF contained 559, 256, and 559 MM
patients, respectively. The study workflow is shown in Figure 1.

Acquisition of Prognostic Associated Genes
FromGSE6477 and GSE13591 dataset, healthy individuals andMM
patients were screened out, and the data were combined to create an
expression matrix including 20 healthy individuals and 206MM
patients. Then, we acquired theDEGs between the two groups, genes
with |log fold change| > 1 and Benjamini–Hochberg–adjusted p <

FIGURE 1 | Study flowchart of prognostic model building and validation.
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0.05 were considered as significant DEGs. At last, the DEGs were
overlapped with 20,174 genes in the GSE24080 dataset to generate
the matrix of prognostic model–associated genes.

Lasso Regression Analysis
The GSE24080 dataset was used as the training dataset to
construct the risk score model. In order to improve the
prediction accuracy and interpretability of the prognostic
model, Lasso regression was used to select potential prognostic
genes. In this result, all genes have their own relative coefficients,
and with the continuous selection and simulation of significant
features, we can acquire an optimal model with the parameter
lambda.min which contains the top features for constructing the
risk score model. In the receiver operating characteristic (ROC)
curve, the survival outcome was predicted by the patients’ risk
score, and the area under curve (AUC) of the model was used to
demonstrate the prediction ability of the Lasso model.

Construction and Validation of Prognostic
Risk Score Model
We used the univariate Cox regression to select genes correlated with
prognosis (p < 0.05). Next, the Kaplan–Meier analysis was performed
to screen for the genes significantly associated with survival outcome.
Then,multivariate Cox regressionwas used to analyze these key genes
(p < 0.05) prior to establishing the prognostic risk score model. The
risk scores of all samples were calculated according to the equation:
risk score � ∑coefficient value p expression level.

The GSE2658, GSE136337 and MMRF datasets, were used for
validation. With the median risk scores as the cut-off value to
classify the high-risk and low-risk groups, we used the log-rank
test to compare the difference between the two groups in both
training and testing datasets.

Statistical Analysis
The R software “sva” package was used to perform correction and
acquire the integrated expression matrix by removing batch
effects between different datasets. The R software “Limma”
package was used to obtain DEGs, and the “Glmnet” package
was used to further construct the model. Survival was compared
using the Kaplan–Meier analysis with log-rank tests. Univariate
and multivariate Cox regression analyses were performed for
subsequent analyses. The R software “ggpubr” package was used
to visualize the risk scores of patients in different survival states
with the Wilcoxon tests. The R software “survival” and
“survminer” packages were used to divide the patients into
high-risk and low-risk groups by the median risk score. The R
software vision 3.6.3 was used for statistical analyses. A two-sided
p < 0.05 was considered statistically significant.

RESULTS

Identification of Prognostic
Model–Associated Genes
To develop the prognostic model for MM, GSE6477 dataset and
GSE13591 dataset were used to acquire the DEGs between MM

patients and healthy individuals. A total of 304 DEGs were
identified with the cutoffs of |log fold change| > 1 and
Benjamini–Hochberg–adjusted p < 0.05, among which, 90
genes were upregulated and 214 genes were downregulated, as
shown in the volcano plot (Supplementary Figure S1). Next, the
GSE24080 dataset was used as the training dataset and to
construct the prognostic model, 20,174 genes from 559 MM
patients were obtained from it. By overlapping these genes
with the 304 DEGs obtained above, we acquired a matrix
containing 304 genes as the prognostic model–associated genes
(Supplementary Table S1).

Construction of Lasso Regression Model
We used Lasso regression to select the prognostic-related genes.
In this regression, the contributions of all the genes were weighted
by their relative coefficients. Cross validation was used to get the
best performance of the model; the left dashed line represents
lambda.min, which was utilized to generate the most accurate
model by minimizing the prediction error (Figure 2A). Finally,
304 genes were narrowed down to 38 potential predictor variables
(Supplementary Table S2) with nonzero coefficients in the Lasso
regression model. The final risk score can be acquired by
multiplying the expression of each gene with its corresponding
coefficient and adding them together; then, we used the median of
the risk score as the cut-off value to divide the high-risk and low-
risk groups. By comparing the two groups, we found the 38-gene
predictive model could distinguish the survival and death events
effectively (Wilcoxon test p < 2.2e-16, Figure 2B). In the ROC
curve, the area under curve (AUC) of the predictive model is
0.785, indicating that the predictive ability of the model is
favorable (Figure 2C).

Construction of the Prognostic Model
Next, the univariate Cox regression analysis and Kaplan–Meier
survival analysis were used to filter the target genes, and the
results showed 20 genes (Supplementary Table S3) in the
GSE24080 dataset were significantly associated with prognosis.
To further screen the key genes, we performed multivariate Cox
regression analysis of the 20 genes, and finally we obtained a 11-
gene prognostic model which was significantly associated with
the prognosis in MM patients (Supplementary Table S4). We
further screened the 11 genes and ordered them according to the
p value. The data indicated that the log-rank p values of all genes
in the model were minimal (log-rank p < 0.01), when containing
the top four or top five genes. To obtain the optimal model, we
compared the prediction results of the four-gene model and the
five-gene model for the prognosis of MM. Results showed that
when applying the four-gene model in the testing dataset
(GSE136337), Kaplan–Meier curves of PFS showed no
difference between the high-risk and low-risk groups divided
by the median risk score (log-rank p � 0.092, Supplementary
Figure S1B), which indicated that the four-gene model was not as
valid as the five-gene model; the five-gene model can predict the
prognostic outcome more effectively. Therefore, the five genes
were used to build a risk score model, including EPAS1, ERC2,
PRC1, CSGALNACT1, and CCND1, the multivariate Cox
regression analysis showed them significantly associated with

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7853303

Chen et al. Prognostic Model for Multiple Myeloma

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


prognosis in MM patients (Figure 3A). Among them, EPAS1,
ERC2, CSGALNACT1, and CCND (hazard ratio <1) were
protective genes, while PRC1 was a harmful gene (hazard ratio
>1). Then MM patients were divided into the high-risk and low-
risk groups by the median risk score, and the KM analysis was
used to compare the overall survival (OS) difference between the
two groups. As shown in Figures 3B–F, we found that the
differences between each gene’s two groups were highly

significant. The high expressions of PRC1 were infaust for
survival outcome in MM patients, but other genes are beneficial.

Next, the dot plots were used to compare the survival of
patients in the high-risk and low-risk groups and found that the
survival of the low-risk group was higher than the survival of the
high-risk group (Figures 4A,B). The gene expression levels in the
heat map showed that four genes were decreased in the high-risk
group (Figure 4C) and consistent with their hazard ratio (HR)

FIGURE 2 | Screen prognostic genes by Lasso regression analysis. (A) Acquisition of the best Lambda value. The left dashed line represents lambda.min, the right
dashed line represents lambda.1se. (B) To distinguish the survival and death events by the model based on lambda.min. 0: alive, 1: death. (C) ROC curve is used to
evaluate the predictive performance of the model.

FIGURE 3 | Construction of the five-gene risk score model. (A)Multivariate Cox regression analysis of the five genes (**p < 0.01 and ***p < 0.001). The figure also
showed Hazard ratio, Global log-rank p, C-index, and AIC. (B–F) Kaplan–Meier survival of five prognostic genes: EPAS1, ERC2, PRC1, CSGALNACT1, and CCND1.
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values (HR < 1). The time-dependent ROC analysis was used to
assess the predictive ability of the model, the AUC values for 1-
year, 3-year, and 5-year survival were 0.685, 0.735, and 0.676,
respectively (Figure 4D). In the GSE24080 dataset, to verify the
predictive ability of the five-gene risk score model in the training
dataset, the patients were divided into high-risk and low-risk
groups by themedian risk score.We found the difference between
the two groups was highly significant in event-free survival (EFS)
and OS (log-rank p < 0.0001; Figures 4E,F). The results
demonstrated that the five-gene prognostic model was
significantly associated with prognosis in MM patients.

Validation of the Five-Gene Risk Score
Model
In order to validate the predictive ability of the five-gene risk
score model, we analyzed three testing datasets: the MMRF
dataset, GSE2658, and GSE136337 datasets. In these testing
datasets, the median risk score was taken as the cut-off value
to divide high-risk and low-risk groups; then Kaplan–Meier
survival curves were used to distinguish the differences
between the two groups in MM patients. In the MMRF
dataset, the survival information contains OS and progress-
free survival (PFS), both survival information could be used to
verify the five-gene risk score model. The results showed that the
differences between the two groups were highly significant in OS
(log-rank p < 0.001) as well as PFS (log-rank p < 0.001), and the
high-risk group predicted poor survival outcome, in line with the
training dataset (Figures 5A,B). Similarly, both in the GSE2658
(Figure 5C) GSE136337 datasets (Figures 5D,E), the high-risk
groups showed significantly shorter OS than the low-risk groups

and the log-rank p values were <0.0001, 0.00017, and 0.012,
respectively. Taken together, our five-gene risk score model was
confirmed to be an independent prognostic factor in three testing
datasets and can effectively predict the prognostic risk of MM
patients.

Identification of Genetic Risk Indicators
Del (17p), t (4; 14), and t (14; 16) are defined as high-risk genetic
factors by the IMWG. To verify the predictive ability of the five-
gene risk score model in patients with or without these genetic
factors, we analyzed the GSE136337 dataset which contains these
indicators. First, we divided MM patients into two subgroups
based on absence/presence del (17p), and the number of these
patients were 411 and 15, respectively. Then, the patients were
further subdivided into high-risk and low-risk groups by the
median risk score. Kaplan–Meier curves of PFS showed no
difference between the del (17p) FALSE and del (17p) TRUE
group (log-rank p � 0.86), which indicated that del (17p) was not
an effective indicator for prognostic outcome (Supplementary
Figure S2A). However, in patients without del (17p), the
difference between two groups was statistically significant (log-
rank p < 0.0001, Figure 6A), with the high-risk group showing
shorter overall survival than the low-risk group, whereas in
patients with del (17p), the difference was not significant (log-
rank p � 0.49; Supplementary Figure S2B).

Similarly, the results showed that there was no difference
between the t (4,14) FALSE and t (4,14) TRUE group,
indicating t (4,14) was not an effective indicator for prognostic
outcomes (log-rank p � 0.98, Supplementary Figure S2C). In
patients without t (4,14), the low-risk group showed higher
overall survival than the high-risk group (log-rank p < 0.0001;

FIGURE 4 | Risk score model based on five-gene signature in the training dataset. (A) MM patients were divided into high-risk and low-risk groups based on the
median risk score. (B) Scatter plot of survival time and status in the high-risk and low-risk groups. (C)Gene expression heat map for five prognostic genes in the high-risk
and low-risk groups. (D) Assessment of the predictive ability of the model by time-dependent ROC analysis. (E,F) Kaplan–Meier curves of overall survival and event-free
survival for the high-risk group and low-risk group in MM patients (log-rank test, p < 0.0001).
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Figure 6B). But for patients with t (4,14), the difference between
the two groups was not significant (log-rank p � 0.1; Supplementary
Figure S2D). Since there was only 1MM patient with t (14,16), t
(14,16) also cannot be used as a predictor of prognosis (log-rank p �
0.48, Supplementary Figure S2E). For 425MM patients without t

(14,16), the result showed that the survival was longer in the low-risk
group than in the high-risk group (log-rank p < 0.0001; Figure 6C).
In conclusion, our five-gene risk score model could effectively
predict the prognosis of MM patients without high-risk genetic
factors.

FIGURE 5 | Validation of the five-gene risk score model in the testing datasets by Kaplan–Meier curves. (A) OS in the MMRF dataset (p � 0.00082). (B) PFS in the
MMRF dataset (p � 0.00021). (C)OS in GSE2658 (p < 0.0001). (D) OS in GSE136337 (p � 0.00017). (E) PFS in GSE136337 (p � 0.012). MM patients were divided into
high-risk and low-risk groups by the median risk score. The difference between the two groups was tested by the log-rank test.

FIGURE 6 | Validation of the five-gene risk score model in patients without genetic risk indicators by Kaplan–Meier curves. (A) MM patients without del (17p)
(p � 0.0002). (B)MMpatients without t (4,14) (p � 0.00039). (C)MMpatients without t (14,16) (p � 0.00015). MM patients were divided into high-risk and low-risk groups
by the median risk score.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7853306

Chen et al. Prognostic Model for Multiple Myeloma

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Identification of Clinical Risk Indicators
R_ISS and ISS were the widely used systems for the stratification
of MM patients. In the MMRF dataset, the difference between
different stages were highly significant (log-rank p < 0.0001;
Supplementary Figures S3A,B). The ISS and R_ISS systems
divided MM patients into three stages, and stage II and stage
III were considered as progressive stages for MM patients. Thus,
we verified the model’s predictive ability in the patients with these
two stages, and the results showed that by combining the data
from the ISS stage II and III, the difference in OS between the
high-risk and low-risk groups was highly significant (log-rank p �
0.0049; Figure 7A), the survival of the low-risk group was longer
than the survival of high-risk group. However, for the ISS stage I,
the difference between the two groups was not discernible (log-
rank p � 0.16; Supplementary Figure S3C). For R-ISS, we
performed the same analysis, broadly consistent with the
above. For stage II and III, the difference between the high-
risk and low-risk groups was significant (log-rank p � 0.01;
Figure 7B); stage I was not significant (log-rank p � 0.7;
Supplementary Figure S3D). As the disease progressed, the
risk scores became higher. The risk scores were significantly
higher in stage II and III patients than in stage I patients in
the ISS (Wilcoxon test p � 0.00045, Figure 7C) and R-ISS

(Wilcoxon test p � 0.00076, Figure 7D). In addition, for ISS,
when comparing stage II and stage III patients with stage I
patients separately, the difference of risk scores between two
stages were significant (Wilcoxon test p < 0.05). But the difference
was not significant between stage II and stage III patients
(Wilcoxon test p � 0.1). For R-ISS, when comparing stage I
patients, stage II patients, and stage III patients separately, the risk
scores between these stages were highly significant (Wilcoxon test
p < 0.05, Supplementary Figure S3E,F). In conclusion, for high-
risk ISS and R_ISS stage patients, the five-gene risk score model
was confirmed to be an independent prognostic factor and can be
further used to predict the prognostic outcome more accurately.

DISCUSSION

MM is a malignancy of terminally differentiated plasma cells,
which in most cases remain incurable, the MM cells are mainly
resident in the bone marrow (Kumar et al., 2017). Patients
suffering from MM often display heterogeneous clinical
outcomes, and MM remains a challenge due to the tendency
to relapses for most patients (Sonneveld and Broijl, 2016). Among
patients receiving the same treatments, survival outcomes can

FIGURE 7 | Validation of the five-gene risk score model in ISS and R_ISS. (A) Kaplan–Meier curves of MM patients in stage II and III of ISS (p � 0.0049). (B)
Kaplan–Meier curves of MM patients in stage II and III of R-ISS (p � 0.01). (C) Survival differences between stage I and stage II and III of ISS (p � 0.00045). (D) Survival
differences between stage I and stage II and III of R_ISS (p � 0.00076). MM patients were divided into high-risk and low-risk groups by the median risk score.
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vary widely. In this regard, treatment options for individualized
treatment are lacking.

Therefore, a prognostic signature beyond the current staging
system is needed to establish to improve prognostic precision and
guide clinical therapy. Many studies have found that gene
transcription levels are closely related to tumor prognosis and
biomarkers have been studied to improve prediction accuracy. In
this study, we integrated public MM datasets and constructed a
five-gene prognostic risk score model. The results demonstrated
its validity in three independent datasets. The risk score model
was confirmed to be an independent prognostic factor in multiple
analyses that included genetic factors and clinical factors.
Compared with other prognostic models, our model predicted
survival outcomes effectively and were applied to predict the
prognosis of patients with high-risk ISS/R-ISS stage or patients
without high-risk genetic factors innovatively. As shown in
Figure 6, for patients without del (17p), t (4,14), and t
(14,16), the difference between two groups was statistically
significant, the high-risk group showed shorter overall survival
than the low-risk group.

The five genes in the risk score model: Endothelial PAS
domain-containing protein 1 (EPAS1), often known as HIF2α,
is a type of hypoxia-inducible factor (Tian et al., 1997). In
colorectal carcinoma, the EPAS1 protein expression inversely
correlated with higher tumor grade and is associated with
poor prognosis (Baba et al., 2010). ERC2 (ELKS/RAB6-
Interacting/CAST Family Member 2) is a protein-coding gene
located in presynaptic active zones (Ko et al., 2006). In renal-cell
carcinomas (Arai et al., 2014), frequent genetic and
transcriptional inactivation of ERC2 occurs, suggesting that
ERC2 may be involved in cancer progression. PRC1 (protein
regulator of cytokinesis-1) belongs to the microtubule-associated
protein family and is involved in cytokinesis. PRC1 was
significantly overexpressed in breast cancer and lung
adenocarcinoma (Shimo et al., 2007; Zhan et al., 2017), despite
the possible molecular mechanisms have not been fully
elucidated. CSGALNACT1 (chondroitin sulfate
N-acetylgalactosaminyltransferase 1) encodes a protein
involved in glycos–aminoglycan chain synthesis and
modifications. Studies showed that in myeloma,
CSGALNACT1 was under-expressed in MM cells compared to
normal bone marrow plasma cells, which suggest that the
overexpression of CSGALNACT1 is associated with a good
prognosis (Bret et al., 2009). CCND1 (cyclin D1) is involved in
regulating cell cycle and transcriptional processes. Previous
studies have found that in myeloma, the dysregulation of
CCND1 is associated with oncogenic event in patients (Padhi
et al., 2013), but further functional studies are needed to validate.

The advantage of our research is large sample sizes, five GEO
datasets, and the MMRF dataset are used for system analysis; and

a variety of algorithms are used to explore the optimal prognostic
model. For survival information (OS, PFS, and EFS) in three
testing datasets, the five-gene risk score model also acquired
effective prognostic predictions; the survival of low-risk group
was higher than the survival in the high-risk group. For genetic
factors [del (17p), t (4; 14), and t (14; 16)] and clinical factors (ISS
and R-ISS), adding the model can increase the prediction
accuracy significantly. All these results demonstrate the
stability and reliability of the model, which is an independent
predictor of survival, can identify high-/low-risk patients and
provide effective treatment recommendations. More importantly,
in previous studies, these five genes have been confirmed to be
associated with tumor, so further functional studies are needed to
evaluate the roles of five genes in myeloma.

Despite the model is effective in predicting prognosis, there
were still some shortcomings. First, we used multiple datasets,
but there are biases between different platforms which may
cause differences in results. Second, this is a retrospective study;
further prospective studies are needed to confirm the results.
Third, the contribution of each gene in the five-gene risk score
model is unknown, further functional studies are needed to be
validated.
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