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Insights into the taxonomic 
and functional characterization 
of agricultural crop core 
rhizobiomes and their potential 
microbial drivers
Antonio Castellano‑Hinojosa & Sarah L. Strauss*

While our understanding of plant–microbe interactions in the rhizosphere microbiome (rhizobiome) 
has increased, there is still limited information on which taxa and functions drive these rhizobiome 
interactions. Focusing on the core rhizobiome (members common to two or more microbial 
assemblages) of crops may reduce the number of targets for determining these interactions, as they 
are expected to have greater influence on soil nutrient cycling and plant growth than the rest of the 
rhizobiome. Here, we examined whether the characterization of a core rhizobiome on the basis of 
only taxonomic or functional traits rather than the combined analysis of taxonomic and functional 
traits provides a different assessment of the core rhizobiome of agricultural crops. Sequences of 
the bacterial 16S rRNA gene from six globally important crops were analyzed using two different 
approaches in order to identify and characterize the taxonomic and functional core rhizobiome. For 
all crops examined, we found significant differences in the taxonomic and functional composition 
between the core rhizobiomes, and different phyla, genera, and predicted microbial functions were 
dominant depending on the core rhizobiome type. Network analysis indicated potentially important 
taxa were present in both taxonomic and functional core rhizobiomes. A subset of genera and 
predicted functions were exclusively or predominately present in only one type of core rhizobiome 
while others were detected in both core rhizobiomes. These results highlight the necessity of 
including both taxonomy and function when assessing the core rhizobiome, as this will enhance 
our understanding of the relationships between microbial taxa and soil health, plant growth, and 
agricultural sustainability.

The root-rhizosphere interface is a nexus of plant–microbe interactions that assist plant uptake of mineral nutri-
ents or water1,5. This interface is a key component for agricultural microbiome engineering as it has been used to 
maximize microbiome functions in agroecosystems to increase plant nutrient uptake6,7 and resistance to biotic 
and abiotic stresses1,8,9. These engineering projects, and the potential for additional manipulation of microbiome 
functions, makes the examination of these interactions a prerequisite for the future of global agriculture5,10–13. 
In particular, there is increased focus on identifying taxa or components of the rhizosphere microbiome (rhizo-
biome) that can be utilized to improve agriculture sustainability, however, the number of potential targets in the 
entire rhizobiome, and the variation between crops, is immense5,14–17. Determining and characterizing the “core” 
rhizobiome (members common to two or more microbial assemblages associated with a habitat18) of crops could 
narrow this search for targets, as this “core” microbiota is hypothesized to have greater influence on soil nutri-
ent cycling and the physiology, growth, and health of the host plant than the rest of the rhizobiome1–3,5,19. Yet 
multiple definitions of the term core rhizobiome have been used across studies to try and identify key microbes 
based on their presence within a host population, spatial distribution, temporal stability, or contribution to host 
function and fitness18,20.

Despite the differences in definitions, a core rhizobiome in certain plant species has been identified, includ-
ing Arabidopsis21, barley22, citrus23, maize24, common bean25, cucumber26, grapevine27, millet28, populus29, rice30, 
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soybean31, sugarcane32, tomato33, and wheat34–36. These studies identified operational taxonomic unit (OTUs) 
that were present in the rhizosphere in a high proportion of the sequencing samples (e.g., > 75% of the samples), 
but only four of these studies also looked at the functional traits in the core rhizobiome using metagenomic 
sequencing23,26,31 or other tools28 such as PICRUSt237 that can predict microbial functions from 16S rRNA 
sequences. The latter core rhizobiome study used PICRUSt2 to identify a number of Kyoto Encyclopedia of Genes 
and Genomes (KEGG) orthologs (KOs38) that were present in a high proportion of the samples (e.g., > 75% of 
the samples) but did not identify taxa associated with core functions in the rhizobiome.

However, the description of the core rhizobiome taxa on the basis of taxonomy may provide only a partial 
characterization of the core rhizobiome20,39,40. For example, bacterial diversity in the rhizosphere can differ 
depending upon soil types41 and plant genotypes42–44 and can be heavily influenced by abiotic and environmen-
tal conditions19,45,46. In addition, functional traits rather than taxonomy seem to dominate the recruitment of 
bacterial communities in the rhizosphere22,26,31,43,47. Although previous studies have identified core rhizobiome 
taxa and rhizobiome functional genes of soybean31, cucumber and wheat26, millet28, and citrus23, they did not 
look at the association between core taxa and functions within the core rhizobiome. Lemanceau et al.39 proposed 
the implementation of a new strategy for the characterization of core rhizobiomes through which not only the 
“taxonomic core rhizobiome” but also the “functional core rhizobiome” should be identified as potential micro-
bial drivers in a core rhizobiome. However, it is still unclear how, and to what extent, a combined analysis of 
the taxonomic and functional description of the core rhizobiome rather than a single taxonomic or functional 
approach could provide additional insights into the identification and characterization of core rhizobiomes. A 
better characterization of core rhizobiomes and their potentially important microbial drivers is critical not only 
to increase our understanding of plant–microbe interactions occurring in this interface2–5 but also to assess 
the impact of external forces such as management practices (e.g., crop rotation, tillage, and fertilization) in the 
rhizosphere microbial community48. Improved understanding of microbe-microbe interactions occurring in the 
rhizosphere can also help identify microbial “hubs,” small numbers of taxa that are strongly interconnected, 
which are thought to be disproportionally important in shaping microbial communities of plant hosts, and 
important intermediates between abiotic and host factors49,50. In addition, because rhizobiomes often involve 
taxa with the same or similar functions (that is, functional redundancy51), increased knowledge about taxonomic 
and functional taxa in the core rhizobiome may help to better characterize functional redundancy, as previously 
shown in the human gut52.

Here we present an exploratory effort to identify the bacterial taxa and functions belonging to taxonomic and 
functional core rhizobiomes of crops. Our study had two main objectives: (1) to determine whether the char-
acterization of a core rhizobiome on the basis of only taxonomic or functional traits rather than the combined 
analysis of taxonomic and functional traits provides a different description of the core rhizobiome; and (2) to 
examine potential interactions between taxa belonging to both the taxonomic and functional core rhizobiomes 
and identify highly interconnected taxa, defined here as “hub taxa.” We hypothesize that: (1) because taxonomic 
and functional traits seem to drive the recruitment of microbial populations by plants22,26,39,43,47,51, the combined 
analysis of the taxonomic and functional description of the core rhizobiome will lead to a more complete char-
acterization of core rhizobiomes than the use of only a taxonomic or functional approach; and (2) if hypothesis 
#1 is supported, hub taxa will be identified in both taxonomic and functional core rhizobiomes. To test these 
hypotheses, we used data from six previously published rhizobiome studies of the globally important crops53 
rice30, wheat34, maize24, citrus23, sugarcane32, and tomato33, and obtained over 5800 samples and 770 million 
sequences of the bacterial 16S rRNA gene. In addition, a subset of samples from the rhizosphere of citrus (C. 
sinensis; C. paradise; C. reticula; and C. grandis) in Florida (herein citrus #2) was included. For each rhizobiome 
study, samples were analyzed using two distinct approaches to determine the taxonomic and the functional core 
rhizobiomes.

Results
Bacterial community composition of the taxonomic and functional core rhizobiomes.  For all 
rhizobiome studies, there were significant differences in the bacterial community composition of the taxonomic 
and functional core rhizobiomes (p < 0.001; Fig. 1A–G). A significantly greater number of ASVs were identified 
in the functional compared to the taxonomic core rhizobiome for all studies (Table S3). The taxonomic and func-
tional core rhizobiomes comprised, on average, only 0.2–3.3% and 0.9–4.2%, respectively, of all bacterial ASVs 
observed in the rhizobiome of each crop. However, these taxonomic and functional core ASVs accounted for, on 
average, 6–12% and 8–18%, respectively, of the relative abundance of all bacteria detected in the rhizobiomes. 
Number and taxonomic affiliation of shared ASVs between the taxonomic and functional core rhizobiomes for 
each rhizobiome study are presented in Table S4. Shared taxa represented about 8–15% of the total number of 
ASVs identified in both core rhizobiomes (Table S4). Phylogenetic trees of the ASVs identified in the taxonomic 
and functional core rhizobiomes of each crop revealed that there was not a phylogenetic signal associated with 
core taxonomic and functional ASVs (Fig. S2A–G).

The relative abundances of a subset of the phyla identified in both core rhizobiomes were significantly differ-
ent (p < 0.05) between taxonomic and functional core rhizobiomes for rice (11 phyla), wheat (12 phyla), maize 
(8 phyla), citrus #1 (13 phyla), citrus #2 (10 phyla), sugarcane (9 phyla), and tomato (10 phyla) (Fig. 2). For rice 
(Fig. 2A), wheat (Fig. 2B), and tomato (Fig. 2G), Acidobacteria, Actinobacteria, Chloroflexi, Plantomycetes, 
and Proteobacteria were significantly more abundant in the functional than in the taxonomic core rhizobiomes. 
For maize (Fig. 2C) and sugarcane (Fig. 2F), functional core rhizobiomes had statistically higher abundances of 
Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria than taxonomic core rhizobiomes. For Citrus #1 
(Fig. 2D) and Citrus #2 (Fig. 2E), Bacteroidetes and Proteobacteria were significantly more abundant in func-
tional rather than in the taxonomic core rhizobiomes.
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The relative abundances of a subset of the genera identified in the core rhizobiomes were significantly different 
(p < 0.05) between taxonomic and functional core rhizobiomes for rice (15 genera), wheat (14 genera), maize (12 
genera), citrus #1 (25 genera), citrus #2 (36 genera), sugarcane (13 genera), and tomato (12 genera) (Fig. S3). 
For each rhizobiome study, a subset of specific genera was exclusively detected in one type of core rhizobiome 
(Supplementary Data 1): rice (40 genera), wheat (17 genera), maize (15 genera), citrus #1 (28 genera), citrus #2 
(22 genera), sugarcane (15 genera), and tomato (17 genera).

Predicted functional traits of the taxonomic and functional core rhizobiomes.  For all rhizobi-
ome studies, a significantly greater number of pathways and KOs were detected in functional rather than taxo-
nomic core rhizobiomes (Table S5). Significant variations in the functional composition of the core rhizobiome 
between taxonomic and functional core rhizobiomes were detected both at the pathway and KO levels for all 

Figure 1.   Principal coordinates analysis (PCoA) plots of Bray–Curtis similarities of taxonomic and functional 
core rhizobiomes calculated on unweighted UniFrac distances for rice (A), wheat (B), maize (C), citrus #1 (D), 
citrus #2 (E), sugarcane (F), and tomato (G). Differences in bacterial community composition between core 
rhizobiomes were tested by analysis of similarities (ANOSIM), and p-values < 0.01 were considered significant. 
R values showing the extent of bacterial community variation between core rhizobiomes are indicated, and R 
values close to "1.0" suggest dissimilarity between groups.

Figure 2.   Histograms of phyla significantly different between taxonomic and functional core rhizobiomes 
according to the Welch’s t-test and Benjamini–Hochberg FDR multiple test correction for rice (A), wheat (B), 
maize (C), citrus #1 (D), citrus #2 (E), sugarcane (F), and tomato (G). The mean proportion (%) of the phyla in 
each taxonomic or functional core rhizobiome is shown. Letters above the bars indicate significant differences in 
the relative abundance of each phylum between taxonomic and functional core rhizobiomes, and p-values < 0.05 
were considered significant. Bars marked with the same letter are not significantly different.
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rhizobiome studies (p < 0.001; Table 2). A subset of the pathways identified in the core rhizobiomes showed sig-
nificant differences (p < 0.05) in their relative abundance between taxonomic and functional core rhizobiomes 
for rice (17 pathways), wheat (18 pathways), maize (18 pathways), citrus #1 (22 pathways), citrus #2 (22 path-
ways), sugarcane (19 pathways), and tomato (18 pathways) (Fig. 3). In particular, pathways assigned to global 
metabolism (metabolic pathways), carbohydrate metabolism (amino sugar and nucleotide sugar metabolism 
and pentose phosphate pathways), energy metabolism (methane and nitrogen metabolisms), lipid metabolism 
(fatty acid and alpha-linolenic acid metabolism), metabolism of other amino acids (fatty acid biosynthesis), 
amino acid metabolism (tryptophan and cysteine and methionine metabolisms), metabolism of terpenoids 
and polyketides (zeatin and diterpenoid biosynthesis), signal transduction (plant hormone signal transduc-
tion), and chemical structure transformations (biosynthesis of plant secondary metabolites, plant hormones 
and terpernoids and steroids) were significantly more abundant in functional rather than taxonomic core rhizo-
biomes (Fig. 3). Pathways involved in membrane transport (bacterial secretion system and ABC transporters), 
cell motility (bacterial chemotaxis and flagellar assembly), cellular community (quorum sensing and biofilm 
formation), and signal transduction (two-component system) showed a statistically greater abundance in the 
taxonomic than functional core rhizobiomes (Fig. 3).

A subset of the KOs identified in the core rhizobiomes showed significant differences (p < 0.05) in their rela-
tive abundances between taxonomic and functional core rhizobiomes for each crop (Supplementary Data 2) or 
were exclusively detected in one type of core rhizobiome (Supplementary Data 3).

Network analysis and hub taxa.  For each rhizobiome study, a co-occurrence network was constructed 
to provide insights into the structure and putative ecological interactions between taxonomic and functional 
core ASVs. Co-occurrence network analysis of the core rhizobiome revealed significant associations (with MIC 
values ranging from 0.22 to 0.91) between taxonomic and functional core ASVs for rice (564 significant asso-
ciations), wheat (421 significant associations), maize (325 significant associations), citrus #1 (412 significant 
associations), citrus #2 (368 significant associations), sugarcane (268 significant associations), and tomato (325 
significant associations), of which most associations (ranging from 82.5 to 86.8%) were non-linear (Fig. 4). Hub 
taxa belonging to both the taxonomic and functional core rhizobiomes were identified for each rhizobiome 
network, although hub taxa were mostly assigned (on average > 70%) to the functional core rhizobiome (Fig. 4; 
Table S6). These hub taxa were assigned to different genera depending on the core rhizobiome study (Fig. 4; 
Table S6).

Discussion
Currently, the core rhizobiome of crops has been predominately defined on the basis of the taxonomic composi-
tion of the microbial community. However, this approach may only provide a partial characterization of the core 
rhizobiome as bacterial diversity in the rhizosphere is influenced by soil types41, plant genotypes42–44, and abiotic 
and environmental conditions19,45,46, thus potentially providing a different community composition for rhizo-
sphere recruitment for crops of the same genotype. Indeed, taxa recruited by plants in the rhizosphere appear 
to have greater functional rather than taxonomic similarity39. Our results illustrate that a combined analysis of 
the taxonomic and functional description of the core rhizobiome rather than the use of a single taxonomic or 
functional approach provides a more complete characterization of agricultural crop core rhizobiomes and helps 
identify potentially important microbial drivers.

Figure 3.   Histograms of predicted pathways significantly different between taxonomic and functional core 
rhizobiome samples according to the Welch’s t-test and Benjamini–Hochberg FDR multiple test correction for 
rice (A), wheat (B), maize (C), citrus #1 (D), citrus #2 (E), sugarcane (F), and tomato (G). The mean proportion 
(%) of the predicted pathways in each taxonomic or functional core rhizobiome is shown. Letters above the bars 
indicate significant differences in the relative abundance of each pathway between taxonomic and functional 
core rhizobiomes, and p-values < 0.05 were considered significant. Bars marked with the same letter are not 
significantly different.
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We performed an exploratory analysis of the differences in the taxonomic and functional core rhizobiomes 
using sequences from seven rhizobiome studies of six different crops (Table 1). Samples were analyzed using two 
different approaches (Fig. S1) in order to identify and characterize the taxonomic and functional core rhizobiome, 
and to detect possible crop-specific differences. For all rhizobiome studies examined, we found significant dif-
ferences in the taxonomic (Fig. 1) and functional (Table 2) composition between the core rhizobiomes (Fig. 1), 
and different phyla (Fig. 2), genera (Fig. S3; Supplementary Data 1), pathways (Fig. 3), and KOs (Supplementary 
Data 2 and 3) dominated depending on the core rhizobiome type. This illustrates that using only a taxonomic or a 
functional approach could significantly influence conclusions about the core rhizobiome. For example, pathways 
and KOs assigned to traits related to plant hormone signal transduction and chemical structure transformations, 
as well as traits related to metabolic pathways, such as the metabolism of carbohydrates, amino acids, terpenoids, 

Figure 4.   Co-occurrence networks showing significant associations between taxonomic and functional core 
OTUs belonging to the taxonomic and functional core rhizobiomes, respectively for rice (A), wheat (B), maize 
(C), citrus #1 (D), citrus #2 (E), sugarcane (F), and tomato (G). Node size reflects the node degree (number of 
neighbours/correlations in the network). Hub taxa are listed and highlighted with black borders in the networks 
and were identified as per Fig. S4. The full taxonomic affiliation of the hub taxa is presented in Table S6. 
Network visualization was performed using Cytoscape v3.7.1.

Table 1.   Summary of the sequence data used in this study, including the accession number, sequence type, 
region of the 16S rRNA gene, total number of samples, and total number of raw sequence reads for each 
rhizobiome study.

Crop Accession number Sequence type
Region of the 16S rRNA 
gene Primer pairs Total n. of samples

Total n. of raw sequence 
reads Reference

Rice SRP044745 Illumina Miseq V4 515F and 806R 132 5,860,040 Edwards et al.30

Wheat PRJNA209386 454 sequencing V5–V7 799F and 1193R 44 66,345 Donn et al.34

Maize PRJEB21985 Illumina Miseq V4 515F and 806R 4866 627,638,736 Walters et al.24

Citrus #1 PRJNA362455 Illumina Miseq V4 515F and 806R 23 640,251 Xu et al.23

Citrus #2 PRJNA636132, 
PRJNA636781 Illumina Miseq V4 515Fa and 926R 624 11,245,456 This paper

Sugarcane PRJNA390435 Illumina Miseq V3–V4 341F and 805R 99 130,858,200 Hamonts et al.32

Tomato PRJNA316593 Illumina Hiseq V3–V4 341F and 805R 54 1,503,861 Cheng et al.33

Table 2.   Variations in the functional composition of the rhizobiome between the taxonomic and functional 
core rhizobiomes at the pathway and KO levels as explained by weighted Bray–Curtis dissimilarity using the 
Adonis test. R2 values are shown; 999 permutations. *p < 0.05, **p < 0.01, ***p < 0.001.

Crop Pathways KOs

Rice 0.114*** 0.144***

Wheat 0.187*** 0.161***

Maize 0.241*** 0.256***

Citrus #1 0.258*** 0.321***

Citrus #2 0.245*** 0.184***

Sugarcane 0.264*** 0.244***

Tomato 0.287*** 0.233***
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and polyketides were significantly more abundant (Supplementary Data 2) or exclusively present (Supplementary 
Data 3) in functional rather than taxonomic core rhizobiomes. By contrast, the taxonomic core rhizobiomes 
were significantly enriched in predicted pathways and KOs involved in genetic information processing, signal 
transduction, quorum sensing, biofilm formation, and membrane transport (Fig. 3; Supplementary Data 2 and 
3). All of these functions are important for plant health (e.g., those involved in plant hormone balance, plant 
nutrition and disease suppression)22,26,31, however different taxa are potentially responsible for these functions 
leading to a different characterization of the core rhizobiome. For example, taxa of the phylum Proteobacteria 
dominated in both taxonomic and functional core rhizobiomes, while taxa from the phyla Acidobacteria, Bac-
teroidetes, Firmicutes, Nitrospirae, and Gemmatimonadetes had significantly different relative abundances in 
taxonomic and functional core rhizobiomes (Fig. 2).

In addition, for each rhizobiome study, there was a subset of genera that were exclusively present in one type 
of core rhizobiome (Supplementary Data 1). For example, genera such as Syntrophorhabdus, Syntrophus, and 
Smithella were only detected in the functional core rhizobiome of rice. Members from those genera are known for 
syntrophic growth with archaea and play a crucial role in methane production54. Thus, if only the taxonomic core 
was examined, these taxa would not be identified, leading researchers to miss potentially critical taxa in methane 
production, an important source of greenhouse gases from rice paddy soils55. Also, genera such as Acinetobacter, 
Micromonospora, Phyllobacterium, and Serratia were only detected in the functional core rhizobiome of both 
citrus #1 and citrus #2. Some species in these genera have been identified as plant growth promoting bacteria as 
they are able to fix atmospheric nitrogen, solubilize phosphate, produce siderophores and phytohormones, and 
enhanced salinity tolerance56–58. Thus, the use of only a taxonomic or functional approach may not only provide 
a partial characterization of core rhizobiome but also a different understanding of the processes leading to the 
recruitment of taxa in the core rhizobiome and the role of taxonomic and functional core taxa in nutrient cycling 
and plant growth. This supports the proposal of Lemanceau et al.39 for the implementation of a combined analysis 
of the taxonomic and functional description of the core rhizobiome to provide a more complete characterization.

The network analysis also illustrated that a combined analysis of the taxonomic and functional description of 
the core rhizobiome could help identify a greater number of potentially important taxa in the core rhizobiome 
(Fig. 4; Table S6). For all rhizobiome studies, highly interconnected taxa (defined here as “hub” ASVs) were 
identified as belonging to both taxonomic and functional core rhizobiomes but were associated with different 
genera based on the type of core rhizobiome (Table S6). Thus, by looking at only hub taxa in the taxonomic or 
functional approach we may not identify all the potentially important taxa in the core rhizobiome which could 
subsequently affect the design of future agricultural microbiome experiments. Multiple microbes affiliated with 
the hub taxa detected in the taxonomic and functional core rhizobiomes (e.g. those of the genera Azospirillum, 
Azotobacter, Bradyrhizobium, Burkholderia, Nitrospira, Nitrosomonas, Pseudomonas, Rhizobium, and Streptomy-
ces) have been identified as plant beneficial microbes, and might help maintain plant hormone balance, control 
root development, facilitate nutrition acquisition, and prevent disease in the plant host39,59. Future research is 
needed to experimentally verify the role of those potentially important taxa to a specific plant’s health. In addi-
tion, numerous significant and non-linear associations between ASVs belonging to taxonomic and functional 
core rhizobiomes were detected in the microbial network analysis. In the rhizosphere, interactions between 
microbial species are often non-linear and can be either regulated by factors within the microbial community 
itself or by environmental factors32,47,59,60. To what extent the recruitment of particular microbial groups in the 
core rhizobiome is controlled by the plants or is also indirectly affected by abiotic environmental and soil physico-
chemical factors remains to be investigated.

The use of a taxonomic or functional approach also provided different insights into functional redundancy in 
the core rhizobiome. We detected a significantly greater number of ASVs (Table S2), pathways, and KOs (Fig. 2; 
Table S5; Supplementary Data 2) in functional rather than taxonomic core rhizobiomes, and functional core 
ASVs were also affiliated with different phyla (Fig. 2) and genera (Fig. S3). These results illustrate less functional 
redundancy in the functional rather than taxonomic core rhizobiomes. This is not unexpected, as the recruitment 
of microbial populations belonging to different taxa but sharing the ability to ensure key functions for the host 
plant has been identified in Arabidopsis43, barley22, cumbuber26, and Jacobea vulgaris47. In addition, pathways 
and KOs in the functional core rhizobiomes were mainly assigned to central metabolism functions of bacteria. 
These functions are probably not specific to the rhizosphere and are likely present in other microbiomes (e.g., 
aquatic sediments, animal, and water treatment plants).

We detected similar core microbiome members and predicted functions among phylogenetically related 
plants such as maize and sugarcane, citrus #1 and citrus #2, and to a lesser extent rice, wheat, and tomato (Figs. 2 
and 3; Supplementary Data 261). These similarities not only support the frequently reported theory that plant 
genotypes recruit microbial functions to complement their own functions (e.g.39,62,63), but also offer exciting 
opportunities to determine if there is a common host-independent core microbiome. To begin this exploration, 
we provide a list of potentially important microbes of the core rhizobiome (Table S5) for investigation into spe-
cific plant-microbiome interactions of crops. This information is required to isolate and inoculate plants with 
selected microbes5. For example, these microorganisms could be automatically inoculated to plants using the 
RootChip64 or layered microfluidic devices65, which place sterilized seeds/seedlings on the culture/co-culture 
media of selected core microbes. The use of high-coverage sequencing techniques should also be prioritized in 
the future to identify these potentially important taxa at the species taxonomic level and to try to isolate them 
using cultivation-based efforts.

There are currently two primary methods available to determine microbial community functions: (1) software 
such as PICRUSt2 or Tax4Fun66 that predict microbial community functions from taxonomic profiles (amplicon 
sequences), since microbial functional profiles cannot be directly identified using 16S rRNA gene sequence 
data owing to strain variation; and (2) shotgun metagenome sequencing which provides information on the 
relative abundance of the taxonomic composition as well as functional genes. Although the utility of PICRUSt2 
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for inference of predicted functions was validated using both amplicon and metagenome sequencing37, recent 
studies have shown that the performance of PICRUSt2 may be limited outside of human samples67,68. However, 
the tools remain useful for predicting microbial functions of environmental studies and providing initial assess-
ments of the core rhizobiome, as has been shown in examination of core rhizobiomes28, rhizosphere soil (e.g.69), 
water (e.g.70), fish (e.g.71), and human gut (e.g.72). Use of these software tools is particularly helpful for initial crop 
core rhizobiome studies because the current cost of metagenome sequencing hinders its application, as a large 
number of samples are necessary in order to ensure adequate statistical power for detecting true differences73. 
Additionally, metagenome sequencing can be very challenging for low biomass samples or samples that are 
dominated by non-microbial DNA74. Currently, the use of shotgun metagenome sequencing to characterize core 
rhizobiomes is limited23,26,31, but in the future it could likely provide more reliable identification of the microbial 
community composition and functions in the core rhizobiome, and may further refine our findings as functions 
were predicted from taxonomy in our study.

In summary, our results illustrate that a combined analysis of the taxonomic and functional description of 
the core rhizobiome rather than the use of a single taxonomic or functional approach provides a more complete 
characterization of agricultural crop core rhizobiomes, as previously suggested14,39. A better characterization of 
core microbiomes and their potentially important microbial drivers may provide increased understanding of 
host-microbe interactions occurring not only in the rhizosphere but also in other ecological subjects such as 
animal ecology20. In addition, the identification of taxonomic and functional core rhizobiomes might be impor-
tant for understanding the potential impacts of agricultural practices (e.g., conventional vs. organic), soil types, 
and abiotic factors on plant–microbe interactions of high-value crops35, which could be utilized to understand 
soil quality75,76 and improve agriculture sustainability. So far, the characterization of core rhizobiomes of crops 
have been mainly focused on bacterial communities. Few studies have looked at the potential role of fungi23,32, 
archaea30, protist, and viruses in the core rhizobiome. A better understanding of the relationships between 
archaeal, bacterial, and fungal communities in the core rhizobiome of crops may provide additional insights 
into the host-microbiome interactions that contribute to increased plant nutrient uptake and resistance to biotic 
and abiotic stresses77 and help to optimize and maximize future agricultural microbiome engineering solutions5.

Methods
Sequencing data.  Raw sequencing reads of the 16S rRNA gene from previously published rhizobiome 
studies of rice30 (Oryza sativa), wheat34 (Triticum aestivum), maize24 (Zea mays), citrus23 (Citrus sinensis) (herein 
citrus #1), surgarcane32 (Saccharum officinarum), and tomato33 (Solanum lycopersicum) were obtained from 
the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database (Table 1). 
Details of planting, handling, and collection of the rhizosphere samples can be found in the original references. 
In addition, we included a subset of 624 samples from the rhizosphere of citrus (C. sinensis; C. paradise; C. 
reticula; and C. grandis) in Florida (herein citrus #2; Table 1), whose information on sample collection, DNA 
extraction, and sequencing is available in the Supporting Material (Methods S1; Table S1).

Sequencing analysis.  Raw reads from the 16S rRNA gene obtained from each rhizobiome study were 
analyzed individually due to different primer pairs (Table 1). All bioinformatic analyses were performed study 
by study. Raw sequence reads were analyzed using QIIME2 v2018.478. Reads were trimmed where the average 
quality score dropped below 25, and dereplicated using DADA279 with paired-end setting, resulting in ASV 
tables containing read counts. ASVs were assigned to the SILVA 132 database80, using naïve Bayes classifier in 
QIIME281, which produced taxonomy tables. ASVs matching “Chloroplast” and “Mitochondria” were removed 
from the data set. Good´s coverage index for each sequencing sample was estimated as 1 – (S/N), where S is the 
number of unique ASVs and N the number of observed ASVs. A total of 777,812,889 raw sequence reads were 
obtained from the 5842 samples used in this study (Table 1), of which 330,180,919 high-quality sequences were 
retained after the sequencing analysis (Table S2).

Identification of the taxonomic core rhizobiome and its potential functional traits.  A flow-
chart describing how the taxonomic core rhizobiomes were identified and characterized is shown in Fig. S1A. 
For each rhizobiome study, ASVs present in at least 75% of the samples were identified using the QIIME2 fea-
ture-table core-features command and named “taxonomic core ASVs.” To better understand the potential func-
tions of the detected taxonomic core ASVs, each ASV table was filtered using the QIIME2 feature-table filter-
features and feature-table filter-samples commands to specifically select for the taxonomic core ASVs present 
in each sample. Filtered samples were renamed “taxonomic core rhizobiomes.” For each rhizobiome study, the 
functional potential of the taxonomic core rhizobiome containing the taxonomic core ASVs was determined 
using the PICRUSt2 script pathway_pipeline.py at both the pathway and KO levels as previously described by 
Douglas et al.37. Taxonomic core ASVs assigned to different KOs were identified in this analysis to account for 
functional redundancy48. To date, methods to determine microbial community functions are primarily based on 
tools such as PICRUSt237 or Tax4Fun51 that predict functional profiles from 16S rRNA gene sequences. Shotgun 
metagenome sequencing can also be used to characterize the functions of a microbial community but its high 
cost and low resolution when there is low microbial biomass limits its use52. While the accuracy of these predic-
tion tools appears to vary across samples types and functional categories52, they can still provide a method to 
explore potential functional differences in microbial communities.

Identification of the functional core rhizobiome and its potential functional traits.  A flow-
chart describing how the functional core rhizobiomes were identified and characterized is shown in Fig. S1B. 
For each rhizobiome study, the functional potential of the samples was first determined using the PICRUSt2 
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pathway_pipeline.py script37. The analysis created a ko_metagenome.qza output file which contained the KO 
rhizobiome predictions (rows are KOs and columns are samples). KOs present in at least 75% of the samples 
were identified as “core KOs.” We then selected ASVs assigned to core KOs in at least 75% of the samples using 
PICRUSt2 and the QIIME2 feature-table core-features command and named those ASVs as “functional core 
ASVs.” ASVs assigned to more than one core KO were also included in this analysis to account for functional 
redundancy48. Each ASV table was then filtered using the QIIME2 feature-table filter-features and feature-table 
filter-samples commands to specifically select for the functional core ASVs present in each sequencing sample. 
Filtered samples were renamed “functional core rhizobiomes.” To look at the overlap of functional traits between 
the taxonomic and functional core rhizobiomes, for each rhizobiome study the functional potential of the func-
tional core rhizobiome containing the functional core ASVs was determined using the PICRUSt2 pathway_pipe-
line.py script at both the pathway and KO levels37.

While the cut-off value of 75% has been previously used to select for the taxonomic or functional core 
rhizobiome of at least three crops (e.g.23,28,32), cut-off values of 85%33, 95%24, and 100%25 have also been used. As 
there is not a consensus on cut-offs to characterize core rhizobiomes on the basis of taxonomic and/or functional 
traits18,20, we first assayed the effect of cut-offs ranging from 70 to 90% on the taxonomic and functional compo-
sition of the core rhizobiome. Regardless of the rhizobiome study, significant differences in the taxonomic and 
functional composition for each taxonomic and functional core rhizobiome were not observed with cut-offs of 
75% or above for all rhizobiome studies (data not shown). Thus, cut-offs of 75% were used in this study (Fig. S1).

Statistical analyses.  For each rhizobiome study, the bacterial community composition of the taxonomic 
and functional core rhizobiomes were ordinated by principal coordinates analysis (PCoA) on Bray–Curtis and 
unweighted UniFrac distance matrices82 using the pcoa() function from the R package Ape83. Sequencing sam-
ples were not rarified in our study as suggested by McMurdie and Holmes84, but clustering in the PCoA was not 
due to different number of sequences between samples (data not shown). Differences in bacterial community 
composition between core rhizobiomes were tested by analysis of similarities (ANOSIM). Variations in the func-
tional composition of the rhizobiome between the taxonomic and functional core rhizobiomes at the pathway 
and KO levels were assayed using the Adonis test (999 permutations) for each rhizobiome study85. To do this, the 
output files “ko_metagenome.qza” and “pathway_abundance.qza” of the PICRUSt2 analysis were transformed to 
Biological Observation Matrix (BIOM) tables and used for the generation of beta-diversity (weighted Bray–Cur-
tis dissimilarity) metrics. Significant differences in the number and relative abundance of ASVs at the phylum 
and genus levels, and predicted functions at the pathways and KOs levels between the taxonomic and func-
tional core rhizobiomes were calculated using the Welch’s t-test86 and the Benjamini–Hochberg False Discovery 
Rate (FDR) multiple-test correction87 using the R package ‘sgof ’. Phyla, genera, pathways, and KOs showing 
significant differences between taxonomic and functional core rhizobiomes (p-values < 0.05) were retained69,88. 
The Benjamini–Hochberg FDR multiple-test correction was used to avoid type 1 and 2 errors. Sequences of the 
ASVs identified in the taxonomic and functional core rhizobiomes were used for phylogenetic analyses. Dis-
tances were calculated according to Kimura’s two-parameter model89 and phylogenetic trees were inferred using 
maximum-likelihood (ML) and the MEGA 7.090 software.

Co‑occurrence network construction and analysis.  For each rhizobiome study, a co-occurrence 
network was constructed to provide insights into the structure and putative ecological interactions between 
taxonomic and functional core ASVs belonging to taxonomic and functional core rhizobiomes, and to study 
whether hub taxa can belong to one or both types of core rhizobiomes. BIOM tables containing taxonomic and 
functional core ASVs served as an input matrix for the co-occurrence network analysis. We first used the Habi-
tat Filtering (HF) correction algorithm as implemented in the HabitatCorrectedNetwork.py script91 as some of 
the samples included in this analysis were collected from different fields/locations. The HF is a novel correction 
algorithm that reduces habitat effects (e.g., sample site), and has been used to construct co-occurrence net-
works from microbial sequencing data91,92. Second, the maximal information-based non-parametric exploration 
analysis32,90 was performed to detect significant associations between taxonomic and functional core ASVs. For 
each rhizobiome study, the maximal information coefficient (MIC90) was measured to determine the depend-
ence of ASVs in the core rhizobiome using the pair’s relative abundance in all samples. Significant MIC scores 
(adjusted p < 0.05) were determined by the Benjamini and Hochberg procedure using a false discovery rate of 
5% as previously described32. Significant associations were visualized using Cytoscape v3.7.193. Highly intercon-
nected ASVs (i.e., potential hub taxa49,50) were identified within each microbial network as the ASVs with the 
highest values for degree (number of neighbours/correlations in the network), closeness centrality (1/[(distance 
to all other nodes]), and betweenness centrality (fraction of shortest paths the node is on)32,48,94,95, as calculated 
in Cytoscape v3.7.193.
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