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In Brief

Ion mobility helps resolve com-
plex proteomics samples, but
data structures can be
unwieldy and lead to long post-
acquisition analysis times. We
adapted the fast search engine
MSFragger for timsTOF data,
and developed IonQuant for
accurate quantification. These
tools are part of a complete
pipeline that is well suited for
the analysis of timsTOF in
terms of identification sensitiv-
ity, quantification accuracy, and
runtimes. We additionally dem-
onstrate complex analyses,
including semi-enzymatic data-
base search to monitor gas-
phase fragmentation in early
timsTOF data.
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� MSFragger now supports raw timsTOF PASEF data.

� IonQuant performs fast and accurate feature detection and quantification.

� MSFragger and IonQuant provide excellent performance for timsTOF PASEF data.

� Flexibility allows for complex analyses, such as semi-enzymatic and open search.
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Fast Quantitative Analysis of timsTOF PASEF
Data with MSFragger and IonQuant
Fengchao Yu1,‡ , Sarah E. Haynes1,‡ ,Guo Ci Teo1 , Dmitry M. Avtonomov1 ,
Daniel A. Polasky1 , and Alexey I. Nesvizhskii1,2,*

Ion mobility brings an additional dimension of separation
to LC–MS, improving identification of peptides and pro-
teins in complex mixtures. A recently introduced timsTOF
mass spectrometer (Bruker) couples trapped ion mobility
separation to TOFmass analysis.With the parallel accumu-
lation serial fragmentation (PASEF) method, the timsTOF
platform achieves promising results, yet analysis of the
data generated on this platform represents a major bottle-
neck. Currently, MaxQuant and PEAKS are most used to
analyze these data. However, because of the high com-
plexity of timsTOF PASEF data, both require substantial
time to perform even standard tryptic searches. Advanced
searches (e.g. with many variable modifications, semi- or
non-enzymatic searches, or open searches for post-trans-
lational modification discovery) are practically impossible.
We have extended our fast peptide identification tool
MSFragger to support timsTOF PASEF data, and devel-
oped a label-free quantification tool, IonQuant, for fast and
accurate 4-D feature extraction and quantification. Using a
HeLa data set published by Meier et al. (2018), we demon-
strate that MSFragger identifies significantly (~30%) more
unique peptides than MaxQuant (1.6.10.43), and performs
comparably or better than PEAKS X1 (~10% more pep-
tides). IonQuant outperforms both in terms of number of
quantified proteins while maintaining good quantification
precision and accuracy. Runtime tests show thatMSFragger
and IonQuant can fully process a typical two-hour PASEF
run in under 70min on a typical desktop (6 CPU cores, 32 GB
RAM), significantly faster than other tools. Finally, through
semi-enzymatic searching, we significantly increase the
number of identified peptides. Within these semi-tryptic
identifications, we report evidence of gas-phase fragmenta-
tion beforeMS/MSanalysis.

A major challenge to identification and quantification of
proteins from tissue or cultured cells is the immense com-
plexity of the peptide mixtures that result from enzymatic
preparation of these samples for liquid chromatography-
mass spectrometry (LC–MS) analysis. Ion mobility spectrom-
etry brings an additional dimension of separation to LC–MS

proteomics, significantly improving peptide identification. Fol-
lowing electrospray ionization, ion mobility differentiates gas-
phase peptide ions by their size and charge before mass
analysis. Ion mobility separation occurs on the millisecond
timescale, improving selectivity without adding to analysis
times. Recently, a commercially available instrument that
couples trapped ion mobility spectrometry (TIMS) to time-of-
flight (TOF) mass analysis (1) has achieved promising depth
of coverage, routinely identifying over 6000 proteins from
individual 120-min LC gradients (2, 3).

Owing to the dual TIMS design of this instrument, where
the first region is used for storing ions and the second for ion
mobility separation, peptides can be continually selected for
sequencing with minimal reduction in duty cycle. This data
acquisition method has been termed parallel accumulation-
serial fragmentation (PASEF) (2, 3). For typical data-depen-
dent acquisition (DDA) measurements, a survey scan is per-
formed, and the N-highest abundance precursor ions are
targeted for tandem mass spectrometry (MS/MS) analysis
based on their m/z and mobility. Fast quadrupole switching
times allow multiple peptide ions to be targeted for fragmen-
tation during a single ion mobility scan. As a target precursor
exits the TIMS region, the quadrupole switches to transmit
the corresponding m/z determined by the survey scan. Syn-
chronization of the TIMS device and quadrupole mass filter
reduces chimeric spectra and enables removal of singly-
charged contaminant ions. Additionally, because of the fast
acquisition speed (50–200 ms for a full scan), low-abundance
precursors can be repeatedly re-targeted to improve MS/MS
spectrum quality (2, 3).

A current major limitation of the PASEF proteomics
method is long post-acquisition analysis time because of the
high dimensionality of the data and large number of acquired
MS/MS scans. MaxQuant (4, 5) and PEAKS (6) are both ca-
pable of processing PASEF data but require roughly three
hours to perform a standard tryptic search given a raw data
file from a two-hour gradient. Neither MaxQuant nor PEAKS
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are practical for nonspecific digest searches or open
searches (7, 8), which are helpful in discovering post-transla-
tional modifications. We have recently introduced a fragment
ion indexing method and its implementation in an ultrafast
database search tool MSFragger (8). The speed of MSFragger
makes it well suited for the analysis of large and complex
data sets such as those from timsTOF PASEF. As conver-
sion from Bruker's raw liquid chromatography-ion mobil-
ity-MS (LC-IMS-MS) format (.d) to an open, searchable
format (.mzML) represents another significant computa-
tional challenge (up to 90 min per single two-hour LC–MS
gradient raw file), we also extended MSFragger to read the raw
format directly. Here we demonstrate that MSFragger can now
perform peptide identification from raw timsTOF PASEF data
in a fraction of the time required by other tools.

A second challenge is related to quantification of timsTOF
PASEF data. Because of the added ion mobility dimension,
previously developed quantification tools need to be ex-
tended to LC-IMS-MS data. In MaxQuant this is done by slic-
ing a 4-D space (ion mobility, m/z, retention time, and inten-
sity) into multiple 3-D sub-spaces (m/z, retention time, and
intensity) and tracing peaks within each sub-space (5).
Though MaxQuant only uses every third TOF scan in feature
detection, it represents a significant fraction of the overall
analysis time. Similarly, PEAKS (6) has extended its function-
ality to support quantification of timsTOF PASEF data, with
analysis times like those of MaxQuant. To address this chal-
lenge, we introduce IonQuant, a tool that takes Bruker's raw
files and database search results as input to perform fast
extracted ion chromatogram (XIC)-based quantification. Using
spectral data indexing for XIC tracing in retention and ion mo-
bility dimensions, IonQuant requires ;10 min per file on a
desktop computer. IonQuant is integrated seamlessly with
MSFragger (8) and the Philosopher validation toolkit (9).

Using timsTOF PASEF HeLa data published by Meier et al.
(3) and three-organism mixture data published by Prianichnikov
et al. (5), we show the application of MSFragger and IonQuant
to measure the analysis speed and quantitative reproducibility
across replicate injections, and compare these results to
PEAKS and MaxQuant. We demonstrate how more compre-
hensive (including semi-enzymatic and open) searches with
MSFragger enable deep dives in these data, revealing interest-
ing trends and recovering large numbers of peptides missed in
the original analysis. Additionally, our pipeline has spectral
library building capabilities and is fully compatible with the Sky-
line environment for subsequent visualization and targeted ex-
ploration of the data. Overall, we showcase a fast, flexible, and
accurate computational platform for analyzing timsTOF PASEF
proteomics data.

EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale—We used data
from five experimental conditions (25, 50, 100, 150, and 200 ms
TIMS accumulation time) published by Meier et al. (3) in the experi-

ments. Each experimental condition has four technical replicates.
Meier et al. (3) concluded that the 100 ms accumulation time gave
the best identification results. We used these four replicates with 100
ms accumulation time extensively (performing closed tryptic search,
closed semi-enzymatic search, open search, and label free quantifi-
cation comparisons). We also used data generated from a mixture of
three organisms (H. sapiens, S. cerevisiae, and E. coli) published by
Prianichnikov et al. (5). There are two experimental conditions (A and
B) that contain the following ratios of each organism with respect to
one another: 1:1 (H. sapiens), 2:1 (S. cerevisiae), and 1:4 (E. coli). We
used these data to evaluate the quantification accuracy of IonQuant.
For identification, we estimated the false-discovery rate (FDR) using
the target-decoy approach (10, 11). For quantification, we evaluated
the quality with coefficient of variation (CV) and Pearson correlation
coefficient.

Data Analysis—Raw data files from four replicate injections each
of HeLa lysate acquired at five different TIMS ramp (accumulation)
times on a Bruker timsTOF Pro (3) were downloaded from Proteome-
Xchange (12) (PXD010012). For all searches, a protein sequence data-
base of reviewed Human proteins (accessed 09/30/2019 from UniProt;
20463 entries including 115 common contaminant sequences) was
used unless otherwise noted. Decoy sequences were generated and
appended to the original database for MSFragger. PEAKS and Max-
Quant only need target sequences. Tryptic cleavage specificity was
applied, along with variable methionine oxidation, variable protein N-
terminal acetylation, and fixed carbamidomethyl cysteine modifica-
tions. The allowed peptide length and mass ranges were 7–50 residues
and 500–5000 Da, respectively. PEAKS and MaxQuant search parame-
ters were set as close as possible to those used by MSFragger. For
MSFragger searches, peptide sequence identification was performed
with version 2.2 and FragPipe version 12.1 with mass calibration and
parameter optimization enabled. PeptideProphet and ProteinProphet in
Philosopher (version 2.0.0; https://philosopher.nesvilab.org/) were used
to filter all peptide-spectrum matches (PSMs), peptides, and proteins
to 1% PSM and 1% protein FDR. Quantification analysis was per-
formed with IonQuant (version 1.1.0). For PEAKS X1 searches, version
10.5 was used, and PSMs and peptides were filtered to 1% peptide
FDR by clicking the FDR button on the “Summary” page. Because
there is no option in PEAKS to automatically filter the proteins, we tried
different protein “-10logP” scores from the smallest to the largest until
the reported protein FDR was equal to 1%. MaxQuant version
1.6.10.43 was used. The PSMs and peptides were filtered to 1% PSM
FDR, and the protein groups were filtered to 1% protein FDR, which
are the default settings. Entries from decoy proteins and “only identi-
fied by site” were removed.

Raw data files from the mixture of three organism (5) were down-
load from ProteomeXchange (12) (PXD014777). Three HeLa-only
quality control samples (20190122_HeLa_QC_Slot1-47_1_3219.d,
20190122_HeLa_QC_Slot1-47_1_3220.d, and 20190122_HeLa_QC_
Slot1-47_1_3221.d) from this same publication and repository were
also used to examine gas-phase fragmentation in more recently-
acquired data. In the three-organism quantification benchmarking
data set, there are two experimental conditions with three replicates
each. We used MSFragger (version 2.2) coupled with FragPipe (ver-
sion 12.1) and Philosopher (version 2.0.0) to perform a closed search.
The protein sequence database was the combination of reviewed H.
sapiens, S. cerevisiae, and E. coli proteins (accessed 04/18/2020
from UniProt; 61576 entries), with decoy sequences added. We used
IonQuant (version 1.1.0) to perform quantitative analysis. For bench-
marking, we downloaded MaxQuant results with the folder name
“Tenzer.nomatching_MaxQuant” from https://www.ebi.ac.uk/pride/
archive/projects/PXD014777. We also re-analyzed these data using
MaxQuant (version 1.6.14.0) and the protein database used by
MSFragger. Decoy sequences were deleted before passing it to
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MaxQuant. The minimum ratio count was set to 2 (default value
in MaxQuant). Remaining parameters were identical to those used in
the HeLa lysate analysis.

Closed Searches—Within MSFragger, precursor tolerance was
set to 50 ppm and fragment tolerance was set to 20 ppm, with mass
calibration and parameter optimization enabled. Two missed clea-
vages were allowed, and two enzymatic termini were specified. Iso-
tope error was set to 0/1/2. 50 ppm precursor tolerance coupled
with 0/1/2 isotope error encompasses deamidation (0.98 Da). Deami-
dated peptides are a common artifact of sample preparation and
handling, so there is no need to separate these peptides from
unmodified ones given the aims of this study. Additionally, this
slightly wider precursor tolerance results in more candidate PSMs,
which benefits expectation value estimation in MSFragger. The mini-
mum number of fragment peaks required to include a PSM in model-
ing was set to two, and the minimum number required to report the
match was four. The top 150 most intense peaks and a minimum of
15 fragment peaks required to search a spectrum were used as initial
settings. Parameters used in PEAKS and MaxQuant were set as
close as possible to those used by MSFragger.

Semi-Enzymatic Searches—The parameters used by MSFragger
for semi-tryptic searches were equivalent to those used in the
closed searches (detailed above) but with only one enzymatic
peptide terminus required. MaxQuant does not allow any missed
cleavages with semi-tryptic searching. For further investigation of
the identified semi-tryptic peptides, variable pyro-glutamic acid and
pyro-carbamidomethyl cysteine (217.03 Da from glutamine and cys-
teine), and variable water loss (218.01) on any peptide N terminus
were also included in the semi-enzymatic MSFragger search parame-
ters. These same parameters were used to search three HeLa injec-
tions from PXD014777 (5).

Open Searches—Precursor mass tolerance was set from 2150
to 1500 Da, and precursor true tolerance and fragment mass toler-
ance were set to 20 ppm. Mass calibration and parameter optimiza-
tion were enabled. Two missed cleavages were allowed, and the
number of enzymatic termini was set to two. Isotope error was set to
0. The minimum number of fragment peaks required to include a
PSM in modeling was set to two, and the minimum number required
to report the match was four. A minimum of 15 fragment peaks and
the top 100 most intense peaks were used as initial settings.

Label-Free Quantification—As there are numerous spectral pre-
processing procedures, such as peak centroiding, mass calibration,
and retention time alignment/calibration before peak tracing and fea-
ture extraction, tolerance settings for quantification are unlikely to
translate directly between quantification tools. Thus, we decided to
use the default settings for each tool, which have been optimized
to perform the best in most cases. In IonQuant, mass tolerance was
set to 10 ppm, retention time tolerance was set to 0.4 min, ion
mobility (1/K0) tolerance was set to 0.05, normalization was
enabled, and minimum isotope count was set to 2 by default.
Minimum ion counts 1 and 2 were tried. In PEAKS, identification
directed quantification was performed with retention time align-
ment, with no CV filter nor outlier removal. Mass error and ion
mobility tolerances were set to 20 ppm and 0.05 1/K0, respec-
tively. The retention time shift tolerance used in alignment was
set to 20 min as recommended by the documentation. In Max-
Quant, Fast LFQ was performed with large ratio stabilization, min-
imum ratio count set to two (except where noted), three minimum
neighbors, and six average number of neighbors by default. The
remaining parameters were also set to default values.

Protein Quantification with MSstats—MSstats (13) was used to
calculate protein abundances from the ion abundances reported by
each tool. For MSFragger and PEAKS, ions (filtered at 1% PSM and
1% protein FDR for MSFragger; 1% peptide FDR for PEAKS) were

provided to MSstats. For MaxQuant, evidence.txt (filtered at 1%
PSM FDR) and proteinGroup.txt (filtered at 1% protein FDR) were
provided to MSstats. The dataProcess function with log10 intensity
transformation was used to calculate protein abundances.

Runtime Comparisons—MSFragger (version 2.2, via FragPipe
version 12.1) and MaxQuant (version 1.6.10.43) were compared on a
desktop with Intel Optane SSD 900P series hard disk, Intel Core i7-
8700 3.2 GHz 6 CPU cores (12 logical cores), and 32 GB memory.
Because of installation and licensing constraints, PEAKS Studio X1
was used on an Intel Xeon Gold 2.4 GHz 20 CPU cores (40 logical
cores) workstation with 96 GB RAM.

RESULTS AND DISCUSSION

Workflow Overview—An overview of the computational
workflow in shown in Fig. 1. MS/MS spectral files acquired in
PASEF mode can be read directly by MSFragger. MSFragger
loads the raw format (.d) using our original spectral reading
library MSFTBX (14), extended here to interact with the
Bruker's native library. During loading, Bruker's native library
(timsdata.dll or libtimsdata.so) functions are called to perform
scan combining, peak picking, and de-noising. MSFTBX
passes the loaded scans to MSFragger without any additional
processing. After loading, MSFragger writes all extracted
scans into a binary format, mzBIN, for fast data access in any
future re-analyses of the same data. After database searching
with MSFragger (see Experimental Procedures), PSMs are
saved in the pepXML file format. PSMs are processed using
PeptideProphet (15) and ProteinProphet (16) as part of the
Philosopher toolkit. Philosopher is also used for FDR filtering,
and for generating summary reports at the PSM, peptide ion,
peptide, and protein levels (Fig. 1A). Finally, IonQuant (see
below) is used to extract peptide ion intensities for all PSMs,
and adds quantification information to the PSM, peptide, and
protein-level tables.

IonQuant Algorithm—Spectral files generated by timsTOF
PASEF are large and structurally complex because of the fast
TOF scan rate and additional ion mobility dimension. Ion-
Quant, written in Java, traces and quantifies features from
the four-dimensional space (ion mobility, m/z, retention time,
and intensity) quickly and accurately using indexing technol-
ogy (Fig. 1B). IonQuant first digitizes the ion mobility dimen-
sion with a predefined bin width (0.002 1/K0; Vs/cm

2). Then,
IonQuant indexes all peaks within this 4-D space according
to their ion mobility, m/z, and retention time, which reduces
memory usage and accelerates subsequent peak tracing.
Given theoretical m/z, precursor ion mobility, and retention
time from an identified MS/MS spectrum, IonQuant first
locates the indexes corresponding to the precursor ion mo-
bility with a user-defined tolerance. Then, it collects the m/z
indexes within the tolerance of the theoretical m/z. With these
two index-querying steps, IonQuant only needs to look at a
small fraction of the whole data. Finally, it traverses all quali-
fied peaks within the retention time range and generates a
curve by tracing and performing Gaussian smoothing. After
tracing all peaks in the retention time and m/z dimension,
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IonQuant traces the ion mobility dimension by clustering adja-
cent peaks to form 4-D features. Finally, IonQuant reports the
boundaries, apex location, and volume of each detected ion
feature. Given the theoretical m/z from a PSM, IonQuant tries
to extract up to three 4-D features corresponding to 0, 11,
and 12 isotopes. Then, it uses the summation of these fea-
tures’ volumes as the quantified intensity. By default, IonQuant
requires at least two isotopes (minimum isotope count 2).

IonQuant takes spectral files (.d, Bruker's raw format, using
MSFTBX as in MSFragger) and peptide identifications (pepXML)
as input and outputs a csv file containing quantified
results for each spectral file. When used with Philosopher
summary tables as input, IonQuant adds quantification
information directly to the tables containing validated
PSM, peptide, and protein results. We observed that some
data have nonlinear and intensity-dependent experimental
errors. To get a better normalized result, we developed a
piecewise normalization algorithm in IonQuant. Given all
quantified runs, IonQuant first finds a “reference run” with
the most ions. For each of the other runs, IonQuant calcu-
lates log-ratios of the ions overlapped with the reference
run. Then, it divides the log-transformed intensities into 10
ranges. In each range, it adjusts the intensities according
to the median of the log-ratios within one median absolute
deviation.

In computing protein intensities from peptide ion intensities
across multiple experiments, IonQuant first discards proteins
with fewer quantified ions than the threshold (default 2).
Then, IonQuant uses an approach like that of DIA-Umpire
(17). Each protein’s intensity is the summed intensity of top n
ions identified in t percentage of all experiments, where n
and t are parameters with default values of 3 and 50%,
respectively. In addition, IonQuant also uses the quantified
features and the PSM table from Philosopher to generate an
MSstats-compatible file for downstream analysis.

MSFragger Has High Sensitivity in Peptide and Protein Identifi-
cation—We monitored runtime and sensitivity of database
searching and quantification using four replicate injections of
HeLa cell digest (see Experimental Procedures). The data set
was analyzed using MSFragger with IonQuant and compared
with the results from MaxQuant and PEAKS. MSFragger iden-
tified 58,954 peptides and 6525 proteins from a standard
tryptic search, more than the other tools (Table I, Fig. 2A,
supplemental Table S1–S4). Uniqueness of the peptide identi-
fications obtained by PEAKS, MaxQuant, and MSFragger
from four replicate injections of HeLa cell digest is shown in
Fig. 2B. MSFragger with IonQuant also required significantly
less total analysis time than PEAKS or MaxQuant (Fig. 2C).
Furthermore, when MSFragger was used to perform subse-
quent searches on the same raw files (i.e. starting with mzBIN
files), total processing times were under 20 min per file, more
than nine times faster than PEAKS or MaxQuant (Fig. 2C). We
also note that a similarly fast speed can be achieved when
using MGF files as input to MSFragger (generation of MGF
files can be scheduled as an additional step in the instru-
ment’s Data Analysis software immediately following data ac-
quisition). In such a workflow, protein quantification would be
limited to MS/MS-based spectral counts only, which is never-
theless sufficient for certain applications such as sample qual-
ity control or interactome analysis using affinity-purification MS
(18).

Precise Protein Quantification with IonQuant—We evaluated
the quantitative performance of MSFragger with IonQuant
and compared with MaxQuant and PEAKS, using the tryptic
search results (see Experimental Procedures) from the same
four HeLa replicates (Table I). Because each tool groups pep-
tides and performs protein quantification differently, we used
MSstats to independently calculate protein abundances
from ions quantified by these tools. Across the four replicate
injections, IonQuant with MSstats demonstrated excellent

FIG. 1. Overview of the analysis workflow. A, Raw Bruker timsTOF data are converted (to mzBIN format) and searched with MSFragger to
identify peptides from MS/MS spectra. Identifications are processed with Philosopher (PeptideProphet, ProteinProphet, FDR estimation) and
FDR-filtered reports are generated at the PSM, peptide ion, peptide, and protein levels. IonQuant performs quantification and generates final
reports.B, Schematic of the IonQuant algorithm. RawBruker timsTOFdata are loaded and indexed. Then, IonQuant traces peaks and clusters fea-
tures (for all identified peptide ions) in ionmobility and retention time dimensions. Finally, IonQuant locates the apex of each peak (peptide ion) and
reports its volume. Given an ion, IonQuant traces up to 3 features corresponding to 0,11, and12 isotopes. The total volume is reported as the ion
intensity.
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reproducibility, with Pearson correlation between replicates
of 0.97 or above (Fig. 3A), higher than that from PEAKS and
MaxQuant (supplemental Fig. S1). The distribution of CVs for
each protein among the tools is shown in Fig. 3B. Consider-
ing proteins quantified in at least two replicates, IonQuant

with MSstats quantified the most proteins (5923) while exhib-
iting the smallest median CV across replicates of 0.049, com-
pared with PEAKS-MSstats (0.070) and MaxQuant-MSstats
(0.072). Protein abundances reported by IonQuant correlated
with those reported by PEAKS and MaxQuant with Pearson

FIG. 2. Feature identification and run time comparison. PEAKS Studio X1 (“P”), MaxQuant v1.6.10.43 (“MQ”), and MSFragger 2.2 (“MSF”)
results for four HeLa replicates acquired with 100ms accumulation time. Hatching indicates results from semi-enzymatic search. A, Peptide (left)
and protein (right) identifications.B, Comparison of nonredundant peptide sequences identified by each tool.C, Total analysis times for each tool.
MSF* denotes MSFragger search when mzBIN files are available. MSFragger analysis times are broken down into raw file reading (i.e. conversion
tomzBIN), database searching, filtering, and quantification with IonQuant.

TABLE I
Comparison of identification and quantification between the tools

Tool
Identified
peptides

Identified
proteins

MSstats proteins
quantified

MSstats
CV

Native proteins
quantified

Native
CV

Tryptic search PEAKS 53480 6543 5227 0.070 5359 0.203
MaxQuant min 1 ratio 44351 5960 5261 0.072 5335 0.072

min 2 ratios 4040 0.057
MSFragger-IonQuant min 1 ion 58954 6525 5923 0.049 5900 0.073

min 2 ions 4810 0.064
Semi-tryptic search PEAKS 87437 6549 5406 0.066 5527 0.194

MaxQuant min 1 ratio 48606 5432 4740 0.072 4839 0.071
min 2 ratios 3526 0.054

MSFragger-IonQuant min 1 ion 93466 6729 6083 0.046 6053 0.073
min 2 ions 4977 0.063

Numbers of identified peptides, identified proteins, quantified proteins with/without MSstats, and median protein coefficient of variation (CV)
across replicates are shown. The number of quantified proteins refers to those quantified in at least two replicates. For all searches, two missed
cleavages are allowed except for MaxQuant's semi-enzymatic search that only support zero missed cleavage. For MaxQuant, minimum 1 and 2
ratios are applied in Fast LFQ. For IonQuant, minimum 1 and 2 quantified ions are applied in native protein quantification. Because such filtering
is applied in protein intensity calculation, it does not impact results fromMSstats.
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correlations of 0.84 and 0.83, respectively (Fig. 3C, supple-
mental Fig. S2 shows the ion-level correlation). Each tool,
including IonQuant, can also perform peptide to protein roll-up
and report protein-level quantification (‘native’ quantification in
Table I). However, our analysis shows that post-processing
using MSstats performed as well as or better than native pro-
tein-level quantification methods for all three tools. For Max-
Quant, applying an additional filter of 2 minimum peptides per
protein for quantification (the default setting in MaxQuant)
reduced the mean protein CV to 0.057. However, this was
associated with a significant drop in the total number of pro-
teins quantified in at least two replicates (from 5335 to 4040,
Table I). IonQuant has a similar option (minimum ion count pa-
rameter) for its native quantification method. Requiring at
least 2 quantified ions per protein, the median protein CV
reduced to 0.064 with a corresponding reduction in the
number of quantified proteins to 4810 (Table I).

Quantification Accuracy Evaluation Using Three-Organism

Data—After showing the good precision (CV across repli-
cates) of IonQuant, we used data from the mixture of three

organisms (H. sapiens, S. cerevisiae, and E. coli) published
by Prianichnikov et al. (5) to evaluate our tool’s accuracy.
The data set consists of two samples (A and B) with differ-
ent amounts of each proteome, such that the resulting
ratios between A and B are 1:1 (H. sapiens), 2:1 (S. cerevi-
siae), and 1:4 (E. coli). There are three technical replicates
of each sample. We first performed a closed search on
these data using MSFragger (version 2.2) coupled with
FragPipe (version 12.1) and Philosopher (version 2.0.0),
then quantified using IonQuant (version 1.1.0), trying both
minimum ions set to 1 and 2. We also used MSstats to
calculate the protein abundance as a comparison. Max-
Quant results as provided by the authors are used as the
benchmark. After removing decoy proteins and those “only
identified by site” there are 4369 proteins quantified by Max-
Quant in both experimental conditions. We also reanalyzed the
data using MaxQuant (version 1.6.14.0) with the protein data-
base used by MSFragger and minimum ratio count 2 and
obtained similar results (a total of 4454 proteins were quanti-
fied in both conditions).

FIG. 3. Protein quantification (with MSstats). A, Correlation of quantified proteins between four technical replicates, MSFragger-Ion-
Quant results. Each paired comparison is labeled in the bottom right-hand corner of the plot. B, Protein coefficient of variation across the
four replicates, comparing PEAKS, MaxQuant, and MSFragger-IonQuant. Replicates are labeled in the bottom right-hand corner of each
plot. C, Comparison of MSFragger-IonQuant protein abundances to PEAKS and MaxQuant for each replicate. Log-transformed intensities
from IonQuant are shown on the x axis.

Analysis of timsTOF PASEF Data with MSFragger and IonQuant

1580 Mol Cell Proteomics (2020) 19(9) 1575–1585

https://doi.org/10.1074/mcp.TIR120.002048
https://doi.org/10.1074/mcp.TIR120.002048


We used LFQbench (19) to evaluate the quantification
results and generate plots without applying any additional fil-
tering. In Fig. 4, S. cerevisiae proteins are shown in orange,
H. sapiens in green, and E. coli in purple. Box plots to the
right of each scatter plot show the distribution of the protein
intensities. Both IonQuant and MaxQuant could recover the
ratios between organisms well, but IonQuant quantified more
proteins with the same minimum ion/ratio count of 2. With a
minimum ion count of 1, IonQuant quantified significantly
more proteins (6582 compared with 4890 with minimum ion
count 2), albeit with an increased number of outliers.
Because the minimum ion count filtering is only applied to
native protein intensity calculation, the number of proteins
from MSstats is close to native protein quantification with
minimum ion count 1. MSstats, however, results in fewer out-
liers than native IonQuant method because of its more
advanced peptide to protein roll-up algorithm.

Open Search Analysis—Using MSFragger and IonQuant,
we performed a quantitative open search on the four HeLa
replicates acquired with 100 ms accumulation time. After
statistical evaluation and filtering by Philosopher, mass
shifts corresponding to water and ammonia losses (217
and 218 Da, respectively) were the most prominent, fol-

lowed by a 152.91 Da mass shift that corresponds to sub-
stitution of three protons with Fe(III), possibly an artifact
from sample handling. Open search also revealed the pres-
ence of many semi-tryptic (neutral loss) peptides. Plots dis-
playing the number of PSMs for each of these mass shifts
are shown in supplemental Fig. S3 (supplemental Table
S5–S6). MSFragger and IonQuant analysis times were not
significantly longer for open search.

Semi-Tryptic Peptide Monitoring—From the open search, we
observed a significant number of semi-tryptic PSMs, and
PSMs with water and ammonia loss. Intrigued by these
observations, we investigated whether this was indicative of
ion activation before MS/MS analysis. To this end, we per-
formed semi-enzymatic searches (also allowing 217 and
218 Da losses, see Experimental Procedures) on the HeLa
data acquired with different TIMS accumulation times (3),
during which trapping in the first TIMS region and mobility
separation in the second occur. Across the five different
accumulation times tested in the publication (25, 50, 100,
150, and 200 ms), we observed that the number of PSMs
with only one enzymatic terminus increases with accumula-
tion time (Fig. 5A). The relationship between accumulation
time and semi-tryptic peptides is likely due in part to increased

FIG. 4.Protein intensities from IonQuant andMaxQuant from the three organismbenchmarking data set.S. cerevisiae proteins are shown
in orange,H. sapiens in green, E. coli in purple. The ground truth ratios are shown in the colored dashed lines (2:1, 1:1, and 1:4, forS. cerevisiae,H.
sapiens, and E. coli respectively). Box plots on the right of each scatter plot show the distributions of the intensities for each organism. A, Max-
Quant result published by Prianichnikov et al. 2020. B, IonQuant result with minimum ion count equals 2. C, IonQuant result with minimum ion
count equals 1.D, IonQuant result withMSstats calculating the protein intensity.
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sensitivity. The number of peptide ions that can be tar-
geted for fragmentation increases with accumulation time
(3), so low-intensity ions are more likely to be detected
when longer accumulation times are used. This can be
seen in Fig. 5B, where the share of total ion intensity from
semi-tryptic peptides increases as the instrument has
more time to interrogate these lower-abundance ions. We
also monitored the abundance ratio of each tryptic pep-
tide to its corresponding semi-tryptic peptide and found

the same trend across accumulation time reflected in this
pairwise comparison (supplemental Fig. S4).

At 100 ms accumulation time, which was selected as opti-
mal by the authors of the original manuscript, a semi-enzy-
matic MSFragger search resulted in an astonishing ;60%
increase in the number of identified peptides (from 58954 to
93466 across four replicates, or 95967 with ammonia and
water losses as variable modifications), counting overlapping
semi-tryptic and fully tryptic peptides as distinct (Fig. 2 and
Fig. 5C). The number of identified proteins from the MSFrag-
ger search increased as well (from 6525 to 6729, or 6749
with ammonia and water losses as variable modifications).
Both PEAKS and MSFragger identified more unique peptides
with a semi-enzymatic search (Fig. 2A, 2B), PEAKS identified
;63% more and MSFragger identified ;59% more, whereas
MaxQuant results did not reflect a noticeable increase. This
may be partially attributed to the fact that MaxQuant does
not allow missed cleavages in semi-enzymatic searches. Of
those peptides with a single enzymatic terminus identified by
the semi-enzymatic search, the majority (67%) were found
alongside their full-length tryptic form. We also demonstrate
that MSFragger with IonQuant quantifies more proteins in
semi-tryptic versus tryptic search without compromising ac-
curacy (Table I). It is also worth noting that, because of fast
fragment ion indexing (less than 10 s for closed and open
tryptic searches, maximum of 80 s for semi-tryptic searches),
MSFragger’s runtime advantage over MaxQuant and PEAKS
is even greater when performing more complex search tasks,
such as semi-enzymatic searches (Fig. 2C).

We further investigated the source of observed semi-tryp-
tic peptides. We compared the apex retention times of
unmodified semi-tryptic peptides to their corresponding fully-
tryptic peptide and found that, across the entire data set
(four replicates each of five different accumulation times),
76% were within 60 s of one another, indicating that these
semi-tryptic peptides largely originated within the instrument.
Among all identified semi-tryptic peptides, proline was most
likely to be found C-terminal to the cleavage site, consistent
with known fragmentation behavior of positively-charged pep-
tides (20, 21). Furthermore, in the semi-enzymatic searches,
we allowed a neutral loss of H2O from any N-terminal residue.
We observed an increase in the percentage of PSMs contain-
ing a water loss with longer accumulation times (Fig. 5D), as
would be expected for a gas-phase fragmentation event. As
described previously (22–25), water loss from N-terminal gluta-
mine and glutamate is frequently observed following collision-
induced dissociation (CID) of peptides. Of the peptides identi-
fied with N-terminal semi-tryptic cleavages, we observed that
water loss occurred preferentially when glutamine or glutamate
were present C-terminal to the cleavage site (Fig. 5E). As the
semi-tryptic peptides identified in these data set display neutral
losses characteristic of CID, it appears peptide ion activation
occurred in the dual TIMS device, resulting in the majority of
the semi-tryptic peptides we observe.

FIG. 5. Semi-tryptic searching with MSFragger monitors frag-
mentation within dual TIMS device. The total number of semi-tryptic
PSMs (A) and the percentage of total precursor intensity from semi-
tryptic PSMs (B) increase with accumulation time. (C) More peptides
and proteins are identified using semi-tryptic search with MSFragger
(four pooled HeLa replicates, 100ms accumulation time). For semi-
tryptic search, variable pyro-glutamic acid and pyro-carbamidomethyl
cysteine (217.03Da from glutamine and cysteine), and variable water
loss (218.01) allowed on any peptide N terminus were added. D, The
percentage of PSMs displaying neutral water loss increases with accu-
mulation time. E, Water losses for each amino acid following the cleav-
age site are plotted against the total occurrences of the amino acid in
the data set. For each line plot, shaded areas represent the 95% confi-
dence interval from four replicates.
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The high rates of semi-tryptic PSMs may be specific to the
timsTOF data sets used in this work, and these analyses
should be repeated as more data sets become publicly avail-
able. In general, we expect improvements in instrument tun-
ing to provide gentler peptide ion handling and therefore less
fragmentation within the instrument. Indeed, when examining
three replicate injections of HeLa digest (60100 6 200 unique
peptide identifications on average) from a recently published
timsTOF PASEF DDA data set (5), we find that the percent-
age of semi-tryptic peptides decreases, from 28% to 17%,
when the same accumulation time (100 ms) is used. For cer-
tain applications, e.g. in HLA peptidome profiling studies that
require precise characterization of peptide sequences (26,
27), further reduction in in-TIMS fragmentation with altered
tuning settings may be necessary. On the other hand, reduc-
ing the energy imparted by the source and initial ion optics
can reduce ion transmission, in some cases dramatically. In
many analyses it may thus be preferable to use higher ener-
gies in the instrument source (or later ion optics such as the
TIMS device itself) to improve transmission efficiency despite
increased fragmentation of some peptides, making a semi-
enzymatic search necessary to recover the identities of all
peptides analyzed (28) and maximize the sensitivity of the
instrument. Furthermore, certain analyses, such as those of
glycopeptides (29) may benefit from in-source pseudo-MS3

capabilities to enable advanced acquisition methods. As the
in-TIMS fragmentation level seems to be tunable, the instru-
ment appears to have the capability to perform these pseudo-
MS3 methods as well.

Spectral Library Generation—The search results from
MSFragger (after processing with Philosopher/PeptidePro-
phet) can also be fed into Skyline (30) to generate spectral
libraries and inspect peptide features in three dimensions
(supplemental Fig. S5). Skyline can also be used to perform
MS1-based quantification, as well as targeted quantification
from data independent acquisition (DIA, diaPASEF) data (31).
By providing Skyline with 1% FDR filtered protein list (gener-
ated by Philosopher, in FASTA format), Skyline libraries can
be effectively created with desired protein level and peptide
ion FDR filters (e.g. 1% protein FDR and 1% peptide ion
FDR). A detailed tutorial for importing and visualizing the
results from MSFragger search in Skyline can be found
on the MSFragger webpage (https://msfragger.nesvilab.org/
tutorial_pasef_skyline.html). Further, the spectral library build-
ing tool EasyPQP (https://github.com/grosenberger/easypqp)
has been adapted to be used with ion mobility data, and we
incorporated this capability into the MSFragger user interface
FragPipe. This feature allows building spectral libraries from
DDA data as part of DIA workflows, e.g. for subsequent
quantification from DIA data using OpenSWATH (32), Spec-
tronaut (19), or DIA-NN (33) (limited support for diaPASEF
data at the time of writing). Running EasyPQP on MSFragger
tryptic search results of the four HeLa replicates (100 ms

accumulation time) resulted in a spectral library containing
58931 peptides.

CONCLUSIONS

Because of the efficient parallel accumulation strategy
and the added selectivity of trapped ion mobility, the tim-
sTOF PASEF method has achieved sensitive proteomics
measurements. We have extended MSFragger to directly
read raw PASEF data for rapid database searching, and
developed IonQuant to accurately quantify peptides and
proteins from these data. For standard tryptic searches,
MSFragger requires less than half the analysis time
needed by other tools that currently support PASEF data,
and is three to five times faster for semi-enzymatic search-
ing while still annotating the greatest number of peptides
among the tools compared. MSFragger is the only PASEF-
compatible search engine with the ability to conduct open
searches in reasonable time. The flexibility afforded by
MSFragger’s modest analysis times can be applied for
post-translational modification (PTM) discovery or screen-
ing for artifacts of sample preparation or data acquisition.
Overall, we report data analysis times two- to 5-fold
shorter than existing tools that remove a primary bottle-
neck in the usability of timsTOF PASEF data. MSFragger
and IonQuant enable fast, sensitive, and precise quantita-
tive proteomic analyses, including semi-enzymatic and
open searches, as well as spectral library generation for
diaPASEF analysis workflows. A match-between-runs
(MBR) capability for IonQuant, including MBR FDR control,
is under development and will be described in future work.
This entire pipeline can be accessed through a graphical
user interface FragPipe (http://fragpipe.nesvilab.org/) or
with the command line for high-throughput applications.
Outputs are also compatible with tools such as Skyline,
MSstats, and with proteomics data viewer PDV (34) for
visualization of peptide assignments to MS/MS spectra,
enabling a variety of complete workflows.
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