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Abstract: Arthropod-borne apicomplexan pathogens remain a great concern and challenge for disease
control in animals and humans. In order to prevent Babesia infection, the discovery of antigens that
elicit protective immunity is essential to establish approaches to stop disease dissemination. In
this study, we determined that poly-N-acetylglucosamine (PNAG) is conserved among tick-borne
pathogens including B. bovis, B. bigemina, B. divergens, B. microti, and Babesia WA1. Calves immunized
with synthetic ß-(1→6)-linked glucosamine oligosaccharides conjugated to tetanus toxoid (5GlcNH2-
TT) developed antibodies with in vitro opsonophagocytic activity against Staphylococcus aureus.
Sera from immunized calves reacted to B. bovis. These results suggest strong immune responses
against PNAG. However, 5GlcNH2-TT-immunized bovines challenged with B. bovis developed acute
babesiosis with the cytoadhesion of infected erythrocytes to brain capillary vessels. While this antigen
elicited antibodies that did not prevent disease, we are continuing to explore other antigens that may
mitigate these vector-borne diseases for the cattle industry.
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1. Introduction

Infection with tick-borne apicomplexan parasites such as Babesia spp. has a negative
impact on animal and human health worldwide. The parasites are transmitted by infected
ticks during their blood meal and then invade and replicate exclusively in the erythrocytes
of the mammalian host (reviewed in [1,2]). Following development of the parasites to
merozoites, infected erythrocytes lyse and release the merozoites, which continue the cycle
by invading uninfected erythrocytes (reviewed in [1,2]). Without a protective immune
response, the mammalian host suffers severe babesiosis, which is characterized by high
fever, hemolytic anemia, anorexia, cachexia, hemoglobinuria, icterus, and, in some cases,
death [3]. Mammalian hosts that survive acute infection become persistently infected for
life and are reservoirs from which the biological vector can acquire the parasite and can
subsequently transmit it to naïve hosts, as reviewed in [4].

In particular, Babesia bovis causes significant economic losses for livestock producers
in tropical and subtropical regions because both the pathogen and its tick vector, Rhipi-
cephalus microplus, are endemic. Preventive strategies for bovine babesiosis caused by
B. bovis in these endemic regions are limited to the use of live attenuated vaccines and
acaricides [1,5,6]. Drawbacks to these methods include well-recognized problems with the
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use of live attenuated vaccines such as possible reversion to virulence, the transmission
of contaminating blood-borne pathogens, the need for a well-controlled cold chain to
preserve vaccine viability, and induction of severe disease and death in cattle older than
6–9 months of age [4–8]. The emergence of R. microplus populations that are resistant to
multiple acaricides as well as potential problems with environmental contamination from
acaricides is also problematic [5]. Therefore, the identification of protective antigens for
use in subunit vaccines is a priority for the field.

Recent work has demonstrated that a conserved polysaccharide, poly-N-acetylglucosamine
(PNAG), is present on bacteria, viruses, and protozoan parasites and is hypothesized to
be a potential antigen for a universal vaccine [9,10]. Natural IgG antibodies against
PNAG are found in human and animal sera; however, these antibodies poorly activate
the complement system and thus are not usually protective against infection [11–13].
However, immunization with PNAG that has been modified by reducing the acetylation
of the glucosamine monosaccharides (dPNAG) or synthetic ß-(1→6)-linked glucosamine
oligosaccharides conjugated to tetanus toxoid both induce antibodies that fix complement,
have antimicrobial killing activity, and provide protective immunity [9,14]. Of particular
interest was the finding that mice infused with polyclonal antibodies raised against a
synthetic ß-(1→6)-linked glucosamine oligosaccharide conjugated with tetanus toxoid
(9GlcNH2 –TT) and challenged with virulent Plasmodium parasites failed to develop cerebral
disease, which is also a feature of bovine babesiosis caused by B. bovis; these mice also lived
longer than the controls [9]. These results suggest that PNAG could be used as a target
in a vaccine to prevent disease caused by B. bovis and possibly other Babesia spp. In this
study, we examined several Babesia spp for the expression of PNAG and tested whether
the immunization of calves against PNAG resulted in protection from clinical babesiosis
caused by challenge with a virulent strain of B. bovis.

2. Materials and Methods
2.1. Immunofluorescence Assays

Direct immunofluorescence was used to demonstrate the presence of PNAG on vari-
ous Babesia spp. Archived thin blood smear slides that were prepared as described in [15]
and stored at −80 ◦C at the Animal Disease Research Unit, Agricultural Research Ser-
vice, United States Department of Agriculture, Pullman, WA, USA, of B. bovis Texas [16],
B. bovis Australia [17], B. bigemina Mexico [18], B. divergens [19,20], B. microti [21], and
Babesia WA1 [21] were used for the assay. Slides were probed with IgG1 Alexa Fluor
488 conjugated fully human IgG1 monoclonal antibodies specific for PNAG (F598) or
Pseudomonas aeruginosa alginate (F429) [11,22] at a concentration of 5.2 µg/mL for 4 h at
room temperature (RT). SYTO 83 orange fluorescent nucleic acid stain (Molecular Probes)
diluted to 500 nM in 0.5% bovine serum albumin in phosphate-buffered saline (BSA in
PBS) with a pH of 7.4 was added to the slides without washing for the final 15 min in order
to localize the parasite nuclei. The blood smears were washed, mounted with a coverslip,
and antibody reactivity was visualized using confocal microscopy [9].

Indirect immunofluorescence was used to demonstrate that the sera from calves
who had been immunized with 5GlcNH2-TT, a synthetic ß-(1→6)-linked glucosamine
oligosaccharide conjugated to a tetanus toxoid, reacted with B. bovis. Thin smears of
infected B. bovis red blood cells were prepared from the cultures. Slides were incubated
with a 1:100 dilution of the pre- or post- immunization sera from either the control (C1587,
C1588, C1598) or from the 5GlcNH2-TT-immunized calves (C1590, C1594, C1595) for 4 h at
RT. A secondary FITC conjugated (Bethyl A10-102F) rabbit anti-bovine IgG (H+L) antibody
was added to the experimental samples at a 1:100 dilution for 2 h at RT along with 500 nM
of SYTO 83 that had been added without washing for the last 15 min at RT in 0.5% BSA/PBS
pH 7.4. Samples were prepared as described above for confocal microscopy.
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2.2. Pathogen and Animals

The highly transmissible Texas strain of B. bovis (T2Bo) was used in this study. This
parasite strain originated from a quarantined animal in Texas [16]. Six seven-month-old
Holstein steers were used in this study and were determined to be B. bovis free by serology
and PCR targeting of the rhoptry-associated protein 1 (RAP-1) and rap-1 gene, respectively,
as previously described [23,24].

2.3. Immunization

Calves received three intramuscular injections using 1 1/2in needles in the left side
of the neck approximately 21 days apart, at days 0, 21, and 49, with either 5GlcNH2-TT
plus adjuvant or adjuvant alone. The immunized group received 200 µg of 5GlcNH2-TT
(AV0328 from Alopexx Vaccine, LLC, Concord, MA, USA) in PBS plus 0.1 mL of Montanide
Pet Gel A per injection (SEPPIC, Inc, Courbevoie, France). The adjuvant group received
0.1 mL Montanide Pet Gel A adjuvant diluted in PBS per injection. Montanide adjuvant
was used because in a preliminary experiment, a calf who had been immunized with
5GlcNH2-TT and the adjuvant Specol (Thermo-Fisher Scientific, Waltham, MA, USA) failed
to develop antibodies with in vitro opsonophagocytic activity (data not shown). Blood was
collected prior to each immunization, and samples stored at −20 ◦C.

2.4. Enzyme-Linked Immunosorbent Assay

Total antibody titer was determined by PNAG-ELISA using sera from calves who had
been immunized with either 5GlcNH2-TT or adjuvant alone. PNAG was isolated from
Acinetobacter baumannii, as described in [25]. The optimization of the ELISA encompassed
checkerboard titrations of PNAG and monoclonal antibody F598 to PNAG to determine
the amount of PNAG that was needed to coat the ELISA plate in order to obtain maximal
OD405 nm readings [11].

In brief, PNAG (0.6 µg/mL) was diluted in 0.04 M NaH2PO4 and 0.04 M Na2HPO4,
which had a pH of 7.2, that had been added to the wells of Immulon 4 ELISA plates
(Fisher, Hampton, NH, USA), and the samples were incubated overnight at 4 ◦C. The
plates were washed three times with PBS containing 0.05% Tween 20 (wash buffer). The
antigen-coated plates were blocked with PBS plus 2.5% bovine serum albumin for 1 h at
37 ◦C. PBS containing 1% BSA and 0.05% Tween 20 (dilution buffer) was used to dilute all
of the sera. To determine antibody titer, pre- and post-immunization sera from immunized
or adjuvant groups were diluted 1:100 with subsequent two-fold dilutions. Diluted sera
were added to the wells and were incubated for 1 h at 37 ◦C. Plates were washed three
times with wash buffer, and a 1:5000 dilution of alkaline phosphatase-conjugated rabbit
anti-bovine IgG in dilution buffer was added and incubated for 1 h at RT. Plates were
washed as before, a 4-nitrophenyl phosphate disodium salt hexahydrate tablet (Sigma)
was dissolved in 15 mL of 20 mM NaHCO3, 28 mM Na2CO3, and 1 mM MgCl2 (substrate
buffer), and this was then added to the wells. The plates were incubated in the dark for
1 h at 37 ◦C, and the optical density (OD) at 405 nm was measured. End-point titer was
calculated by subtracting the average negative OD from the average sample OD, with a
value above 0.4999, considered positive and was reported as the reciprocal of the highest
dilution providing a positive value.

2.5. Opsonophagocytic Killing Assay. In Vitro Killing of Staphylococcus aureus

MN8 was performed as previously described [9,26]. Controls included mAb F429
against alginate with human phagocytic cells and 10% bovine complement, mAb F598
against PNAG and 10% bovine complement without phagocytic cells, mAb F598 and
phagocytic cells without bovine complement, and mAb F598 with phagocytic cells and
complement. Percent killing was calculated as the ratio of the number of colony-forming
units (CFU) in the tubes containing bacteria as well as the complement, phagocytic cell, and
post-immunization sera to the number of CFU in the tubes containing bacteria, complement,
phagocytic cell, and pre-immunization sera.
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2.6. Challenge with B. bovis Texas T2Bo Stabilate

Twenty-seven days after the last immunization, the calves were challenged via the
intravenous injection of 107 B. bovis-infected erythrocytes in 5 mL of diluent (Puck’s Saline
G with 10% normal bovine serum). Rectal temperature, appetite, attitude, packed cell
volume (PCV), and parasitemia, were monitored daily via PCR beginning on day 5 post-
infection. When a rectal body temperature > 40.3 ◦C [27] was measured, the calves were
administered flunixin meglumine (1.1–2.2 mg/kg; Merck Animal Health, Kenilworth, NJ,
USA). When the animals were off-feed or lethargic, oral electrolytes were offered twice a
day in order to avoid/combat dehydration (due to pyrexia and decreased water intake) and
to provide some energy and electrolyte intake (due to anorexia) as well as to help determine
the overall status of the animals. Reluctance or refusal to take the electrolytes indicated that
animals were experiencing the worsening of acute disease. The calves were euthanized if
the body temperature remained >40.3 ◦C for 3 days and/or if the PCV dropped below 14%
and/or if inappetence and lethargy were progressing.

2.7. PCR to Detect B. bovis Post-Challenge

Nested PCR was conducted as previously described in order to detect rap-1 [23,24].
Quantitative PCR was used to detect the merozoite surface antigen 1 gene (msa-1) and was
conducted essentially as described; however, the final reaction volume was 25 µL [28,29].

2.8. Statistical Analysis

PNAG antibody titers were analyzed using a mixed model with the fixed effects of
treatment and the day of sampling, and animal was used as the random variable. The
parameters for infection in the vaccinated and control groups of calves were compared with
Student’s t-test (peak decrease in packed cell volume, days to develop fever, peak parasite
copy numbers) and the Mann–Whitney rank sum test (days to detection of parasitemia).

2.9. Ethics Statement

This study was approved by the Institutional Animal Care and Use Protocol Com-
mittees of the University of Idaho, Moscow, Idaho (protocol #2018-16), in accordance with
institutional guidelines based on the U.S. National Institutes of Health (NIH) Guide for the
Care and Use of Laboratory Animals.

3. Results
3.1. Expression of PNAG on Babesia parasites

Immunofluorescence assays using the PNAG-specific mAb F598 demonstrated that
PNAG was present on the blood stages of the bovine Babesia spp., B. bovis, and B. bigemina;
the zoonotic pathogen, B. divergens; and the human parasites B. microti and Babesia WA1
(Figure 1, αPNAG, green). In contrast, isotype control mAb F429 showed no reactivity
with the Babesia parasites (Supplemental Figure S1). The co-localization of the anti-PNAG
antibodies with Babesia was determined by DNA labeling using SYTO 83 (Figure 1, DNA
stain, red). Merged images showed the specific reactivity of mAb F598 to the Babesia
parasites (Figure 1, Merge, yellow).

3.2. Characterization of PNAG-Specific Antibodies in Immunized Calves

All three animals who had been immunized with 5GlcNH2-TT developed specific
antibodies against PNAG, which were measured using ELISA, while the control animals did
not (p < 0.001, Figure 2). Immunofluoresence assays using pre-immune sera (Figure 3A,B,
Pre) and sera from cattle in the adjuvant group (Figure 3A, Post) showed no antibody
reactivity against PNAG on the B. bovis Texas strain. In contrast, sera from the immunized
group recognized PNAG on the B. bovis Texas strain (Figure 3B, Post). Immunization also
induced antibodies with opsonophagocytic killing activity against S. aureus (Figure 4).
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Figure 3. Recognition of B. bovis blood stages by sera from immunized cattle demonstrated using indirect immunofluores-
cence. Each set of four panels arranged starting at upper left going clockwise are SYTO 83 DNA stain, calf serum, merged
image, phase contrast. (A) Reactivity of sera from control calves with thin blood smears of B. bovis-infected red blood cells.
(B) Reactivity of sera from 5GlcNH2-TT-immunized calves with thin blood smears of B. bovis-infected red blood cells. Arrow
heads in C1590 Post indicate parasite without serum reactivity. Arrows in C1594 Post indicate serum reactivity without
DNA staining. Closed arrows in C1595 indicate co-localization of DNA stain and serum reactivity. Pre = Pre-immune sera;
Post = sera 72d post-immunization. White bars are 10 µm.
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3.3. Development of Babesiosis in Immunized Calves

All of the animals in both the vaccinated and control groups suffered severe clinical
signs of bovine babesiosis regardless of the antibody titer or killing ability of the antibodies
(Tables 1 and S1–S3). Severe disease caused by B. bovis is the result of cerebral babesiosis,
in which parasitized erythrocytes are sequestered in the capillary vessels of the brain.
Histological evaluation of the brain from all of the calves revealed high levels of infected
B. bovis erythrocytes in the capillaries of the cerebrum and midbrain, indicating that the
antibody to PNAG did not affect the sequestration of the B. bovis-infected erythrocytes.
Representative histological images from a control calf (Figure 5 Control) and vaccinated
calf are shown (Figure 5 Immunized).

Table 1. Development of babesiosis in calves inoculated with B. bovis.

Adjuvant 1 PNAG 2 Test, p Value

Parameter

Median days to detect
parasitemia 6 DPI 3 7 DPI Mann–Whitney rank sum test,

p = 0.2

Mean peak decrease in PCV 4 37.76% 45.43% Student’s t-test, p = 0.537

Mean days to develop
fever ≥ 39.4 ◦C 7.7 8.3 Student’s t-test, p = 0.519

Mean peak parasite copy
numbers ± SD 1.82 × 106 ± 2.26 × 106 8.64 × 105 ± 2.26 × 105 Student’s t-test, p = 0.508

1 Adjuvant = animals immunized with adjuvant only, 2 PNAG = animals immunized with 5GlcNH2-TT. 3 DPI = days post inoculation with
B. bovis, 4 PCV = packed red cell volume, SD = standard deviation.
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Figure 5. Detection of B. bovis-infected erythrocytes in the capillaries of the (A) cerebrum and
(B) midbrain of an adjuvant-only control calf (Control) and a PNAG-immunized calf (Immunized)
challenged with B. bovis. Arrows indicate B. bovis-infected erythrocytes. Images are representative of
all calves.

4. Discussion

The immune control of B. bovis infection in cattle is thought to include both innate
and adaptive responses [4,30]. In young calves who are up to about 6–10 months of age,
resistance to severe acute disease is mediated by splenic innate immune cells that also lead
to adaptive responses, CD4+ T-cells, and memory B-cells that protect against disease from
subsequent infections as the animal ages. This innate immune resistance allows the safe
use of live vaccines in young calves. Immunologically naïve older cattle generally do not
display a strong innate immune response and succumb to acute disease [4,8,30–32], which
precludes the use of live vaccines in older animals.

Subunit vaccines avoid the problem of live vaccine-induced disease, and studies have
looked at using recombinant proteins alone, as reviewed in [30], or recombinant proteins
followed by a boost with a virus vector encoding the antigen [33] in order to stimulate
protection against the clinical disease that is caused by B. bovis. Despite the stimulation
of antigen-specific CD4+ T-cells and antibodies, none of the vaccine regimens resulted
in protection from disease when the cattle were challenged with virulent B. bovis [30,33],
illustrating the complexity of developing vaccines against B. bovis [6].

Early work, most of which was focused of the role of humoral immunity against
babesiosis, demonstrated that passively transferred antibodies protected the cattle against
disease caused by homologous strains of B. bovis [4]. We sought to identify an antigen
conserved among different strains and species of Babesia that could be used to provide a
broadly protective antibody response against severe clinical disease.

Numerous studies have demonstrated the induction of protective antibody responses
against bacteria by immunization with dPNAG or synthetic ß-(1→6)-linked glucosamine
oligosaccharides that have been conjugated to carrier proteins (reviewed in [10]) as well as
a few eukaryotic pathogens, including the apicomplexan parasite Plasmodium berghei [9].
Specifically, the anti-PNAG antibodies prevented cerebral malaria, decreased parasitemia,
and significantly prolonged the survival of mice who had been infected with P. berghei [9].
Because B. bovis-infected red blood cell sequestration in brain capillaries is a prominent
feature of clinical babesiosis in infected cattle, we hypothesized that antibodies to PNAG
would provide protection against B. bovis, similar to what was seen in mice.
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The immunization of calves with PNAG stimulated high-titer, specific antibody re-
sponses with opsonophagocytic killing activity against a control bacterium, S. aureus MN8,
which is known to express PNAG. However, despite the documented display of PNAG by
the parasite, this antibody response did not protect calves who had been challenged with
B. bovis-infected erythrocytes against the severe clinical manifestation of bovine babesiosis.
All of the PNAG-immunized animals developed clinical babesiosis with parasite sequestra-
tion in brain capillaries and peripheral parasite loads that were indistinguishable from the
control animals. This result differs from the results of the study by Cywes-Bentley et al. [9].

The protection mechanism that is induced by PNAG antibodies is achieved via the
deposition of complement components onto the target cell(s), leading to the opsonic killing
of the pathogen [9,10,14]. Thus, this requires babesial PNAG to be physically accessible to
the antibodies. Although the blood stages of Babesia exit the erythrocytes in order to infect
new red blood cells in order to perpetuate the merozoite propagation cycle, it is possible
that the antigen is not surface exposed, either due to location or because it is masked by
known surface proteins such as merozoite surface antigens.

Finally, the immune correlates of disease protection, including the full elucidation
of the role of different T-cell subsets in the protection against bovine babesiosis, remain
elusive. Interestingly, Jaramillo Ortiz et al. observed antigen-specific CD8+ T-cells in cattle
who had been immunized with a live vaccine [33]. However, since B. bovis only resides
in erythrocytes, it is unclear what role the CD8+ T-cells have in controlling disease. More
studies examining the mechanisms of innate and acquired immune responses in calves to
B. bovis infection are needed and will lead to improved vaccination strategies in the efforts
to control babesiosis in cattle and to prevent economic losses for livestock producers.

5. Conclusions

Developing safe and effective vaccines to protect cattle from babesiosis is a top priority
for animal health researchers. Identifying conserved antigens that can induce immunity
against different Babesia species and strains is challenging. Poly-N-acetyl-glucosamine is
a conserved surface polysaccharide that is expressed by a great diversity of organisms,
including the apicomplexan parasites P. berghei and P. falciparum, and antibodies against
PNAG provided protection from disease in a mouse malaria model. In our study, we
showed that Babesia spp express PNAG, making it an attractive and potential target for a
universal vaccine against babesiosis. Despite the development of anti-PNAG antibodies in
calves following immunization with 5GlcNH2-TT, no protection against acute babesiosis
was detected. However, it was important to experimentally test the possibility that anti-
PNAG antibodies could provide some protection from disease, and the result of this work
does not preclude testing as to whether PNAG is useful against other protozoan parasites.
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