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The modulation of ion channels
in cancer chemo-resistance

Jiayu Zhao, Mei Li , Jiao Xu and Wei Cheng*

Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
Ion channels modulate the flow of ions into and out of a cell or intracellular

organelle, leading to generation of electrical or chemical signals and regulating

ion homeostasis. The abundance of ion channels in the plasma and intracellular

membranes are subject to physiological and pathological regulations.

Abnormal and dysregulated expressions of many ion channels are found to

be linked to cancer and cancer chemo-resistance. Here, we will summarize ion

channels distribution in multiple tumors. And the involvement of ion channels

in cancer chemo-resistance will be highlighted.
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Introduction

Drug resistance may be intrinsic (i.e., present prior to chemo-therapy), and tumor

cells are prone to rapidly emerge acquired resistant to conventional therapies. Indeed,

although systemic agents (cytotoxic, hormonal, and immune-therapeutic agents) used for

cancer treatment are usually effective at the very start (e.g., 90% of primary breast cancers

and 50% of metastatic cancers), approximately 30% of breast cancer patients in early-

stage would have recurrence due to acquired resistance (1). Study indicated that tumor

cells have increased resistance to chemo-therapeutic agents in recurrent tumors (2). And

continuous exposures to chemo-therapeutic agents then promote the development of

acquired resistance in these cells, leading to subsequent failure of chemo-therapy (3).

Moreover, residual tumor cells which remain quiescent before resuming still can be

detected in most patients after treatment. And then result in tumor recurrence.

Ion channels are the basic excitatory units on the membranes of many tissue cells,

such as nerves, muscles, and glands, which can generate and conduct electrical signals

and have important physiological functions. Ion channels are not only directly associated

with excitability, but also can further influence and control transmitter release, gland

secretion, and maintenance of constant cell volume and internal environmental stability.

Gating of ion channels and the ensuing ion fluctuation is a highly complex process that

involves in ion homeostasis, the initiation of signaling networks, and changes in

microenvironment. Increasing studies demonstrated that ion channels not only

expressed in excitable nerve cells and tissues, but also distributed in cancer cells and
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tissues. Altered ion channel expression is considered as a

hallmark of several types of cancer, and some ion channels

have been linked with chemo-resistance in cancers (4, 5).

In the present review, we will summarize the involvement of

ion channels in multiple tumors’ chemo-resistance, with

emphasis on their molecular mechanism (6). Deciphering the

mechanisms of ion channels involving in mediating multiple

tumors chemo-resistance may provide new avenues for targeted

cancer treatment.
Ion channels in cancer: Expressions
and their implications

Ion channels were initially divided into two main classes of

voltage-gated channels (VGC) and ligand-gated channels

(LGC). Different VGC channel types are distinguished by the

ions (calcium, potassium, sodium, chloride) through which they

most selectively pass. While LGC channel types are

distinguished according to the signaling molecules (ligand)

which specifically activate them (e.g., GABA, acetylcholine,

glutamate, glycine, 5-hydroxytryptamine). Since LGCs act as

receptors for those signaling molecules, they are often referred to

as their respective receptors as well (7). With the development of

gene cloning technology and the understanding of different

gating mechanisms, ion channels have been linked to physical

(light, temperature, pressure, tension) and chemical (pH, PO2,

contaminants, cooking spices) stimuli, as well as intracellular

factors such as ATP levels, organelle status, presence of second

messengers, thus they may involve in physiological and

pathological functions.
Calcium-permeable ion channels

Ca2+-permeable channels are classified by their intracellular

residence of either on plasma membrane (PM) or in ER

(endoplasmic reticulum) membrane. PM Ca2+-permeable

channels include six major subclasses which distinguished by

their principal activation mechanisms: 1) VGCC for “voltage-

gated calcium channels, Cav” can be further divided into three

subfamilies of Cav1 or L-type (Cav1.1, Cav1.2,Cav1.3, Cav1.4);

Cav2 (Cav2.1 or P/Q-type, Cav2.2 or N-type, Cav2.3 or R-type);

and Cav3 or T-type (Cav3.1, Cav3.2, Cav3.3) (8); 2) LGC for

“ligand-gated channels” (9); 3) SOC for “store-operated

channels” (10); 4) TRP for “transient receptor potential”

channels (11); 5) SMOC for “second messenger-operated

channels” can be divided into two groups of cyclic nucleotide-

gated channels (CNGA1-4, CNGB1, CNGB3) and arachidonate-

regulated Ca2+ channels (IARC) (12–14); and 6) Mechano-gated

channels (15).
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The Cav channels are primarily responsible for the entry of

Ca2+ into excitable cells such as neurons as well as neuron-like

cells and various types of muscle cells. They open during

membrane depolarization and Ca2+ influx through them,

allowing electrical excitation combined with activation of

specific cellular responses. The Cav channels have been found

involved in the development of various types of cancer,

including brain cancer, colorectal cancer, gastric cancer,

pancreas cancer, breast cancer, prostate cancer, bladder cancer,

lung cancer, esophagus cancer, ovarian cancer, cervix cancer,

renal cancer, leukemia, neuroblastoma, glioblastoma, and

sarcoma, etc. In breast cancer and leukemia, the Cav channels

exhibited up-regulated (16, 17). The T-type calcium channels of

Cav3.2 have been observed present in human prostate cancer

cells. During neuroendocrine differentiation, Cav3.2 channels

are up-regulated with increasing basal calcium entry. It suggests

that the Cav3.2 may serve in facilitating prostate cancer

development (18). Similarly, Cav3.1 are found over-expressed

in prostate cancer. Knockdown of Cav3.1 inhibits the cell

proliferation, migration and invasion by suppressing AKT

activity in prostate cancer cells (19).

Less diverse Ca2+-permeable channels on the ER membrane

are classified according to Ca2+-mobilization mechanism: 1) Ca2

+-induced Ca2+ release (CICR) and 2) agonist-induced GPCR-

dependent Ca2+ release. CICR is mediated through Ca2+ release

channels on the ER membrane, termed ryanodine receptors

(RyR). The RyR is a homo-tetramer assembly of subunits for

homologous genes encoded with RyR1 (primarily skeletal

muscle), RyR2 (primarily cardiac), and RyR3 (ubiquitous)

(20). Its primary physiological ligand is intracellular Ca2+ per

se (which is the initiation of the name CICR). Moreover, CICR

also can be activated both via interaction with some members of

Cav family and by cytoplasmic cyclic ADP-ribose (cADPR).

Inositol trisphosphate receptor (IP3R) is an agonist-induced,

GPCR-dependent Ca2+ release channel. Calcium permeable

channels are key players in mediating numerous physiological

and pathological functions. Intracellular Ca2+ homeostasis

affected cell cycle, apoptosis, autophagy, migration. Further, it

also involved in regulation of release of neurotransmitters,

hormones and growth factors in both normal and neoplastic

cells (21–23).
Potassium ion channels

K+ channels comprise voltage-gated K+ channels (Kv),

calcium-activated K+ channels (KCa), inward-rectifier

potassium channels (Kir, IRK), and two-pore domain K+

channels (K2p) (24).

Given its high distribution and functional relevance in

tumor tissues, Kv11.1 (hERG) channel which belongs to the

voltage-gated Kv family has been deemed to potential anticancer

target (25). Arcangeli and co-workers found that hERG channels
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promoted proliferation in neuroblastoma cells via controlling

membrane resting-potential (26). Study revealed that over-

expression of voltage-gated Kv channel of Kv10.1 (EAG1)

enhanced cell proliferation and conferred a transformed

phonotype with oncogenic potential (27). Further, EAG1

channels have been detected in approximately 70% of human

tumor biopsies originated from osteosarcoma, pituitary

adenomas, glioblastoma, head and neck cancer, ovarian

cancer, leukemia, gastric cancer and colorectal cancer (28). To

date, pharmacological targeting EAG1, hERG for the treatment

of cancer have drawn much attention. A monoclonal antibody

specifically against EAG1 has been identified to suppress colony

formation of several cancer cell lines and tumor growth in vivo

via inhibiting channel function (29). Over-expression of hERG

in cancer cells involved in regulating of tumor progression and

migration via co-assembly with b1 integrin related adhesion-

dependent signaling complex (30, 31). Thus, both in vitro and in

vivo models illustrated very convincingly that EAG1 as well as

hERG can be act as promising oncological targets. Studies

targeting other K+ channels also point to an important role of

K+ channels in tumor progression. KCNQ1 encodes the pore-

forming a subunit of voltage-gated potassium channels and they

are considered to be a tumor suppressor in colorectal cancer.

Inhibition of the KCNQ1 channels lead to colorectal cancer cell

proliferation, EMT and tumorigenesis (32). KCNQ1 channels

also act as a tumor suppressors in gastrointestinal and

esophageal cancers (33, 34). Using human A549 lung

adenocarcinoma model, researchers found that either blockade

or suppression of Kv1.3 could significantly inhibit cell

proliferation and reduced tumor volume by 75% in vivo (35).

In addition, calcium-dependent potassium channels and the two

pore TASK-3 channels have been demonstrated possessing

oncological potentials (36, 37).
Sodium ion channels

Na+ channels include VGSC (voltage-gated sodium channel)

and LGSC (ligand-gated sodium channel) subfamilies. VGSC

comprises nine subtypes of Nav1.1 ~ Nav1.9 containing both a
and b subunits.

The expression of VGSC, particularly for Nav1.5, Nav1.6

and Nav1.7 and their splicing variants were found up-regulated

in many cancer types, including prostate, breast, lung, cervical

cancer, and leukemia (38). In breast cancer cells, Nav1.5, Nav1.6

and Nav1.7 are all present. In particular, a novel neonatal

isoform of Nav1.5 (nNav1.5) exhibited up-regulation during

breast cancer progression. And the channel activity of Nav1.5

enhances cellular metastatic cascade both in vitro and in vivo

(39). In addition, another study specified that Nav1.6 channels

expressed in cervical cancer cells and tissues. During cancer
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development, Nav1.6 was significantly up-regulated with

channels activities and then induced the secretion of matrix

metalloproteinase type 2 (MMP-2), promoting cancer cells

invasion and metastasis (40). Moreover, Nav1.5 channels

activities could enhance aggressiveness by stimulating cysteine

cathepsin in breast and NSCLC cancer cells (41).
Transient receptor potential ion channels

Currently, transient receptor potential (TRP) ion channel

proteins are emerging as promising oncological targets (42, 43).

TRP ion channels can be divided into six subfamilies, namely

TRPV (vanilloid), TRPA (ankyrin), TRPM (melastatin), TRPC

(canonical), TRPML (mucolipin) and TRPP (polycystin).

Mammalian TRP subunits can be formed by homo- or hetero-

tetramerization of non-selective cation channels that can be

stimulated by a variety of different factors, including

temperature changes, mechanical stress, osmotic pressure,

changes of O2 and pH, ROS, growth factors and cytokines.

Therefore, they are expected to play critical roles in tumor

microenvironment crosstalk. TRPC channels are activated

through pathways coupled to phospholipase C (PLC), and can

support receptor-operated Ca2+ entry; TRPC1 and TRPC4 can

also contribute to store-operated Ca2+ entry (SOCE) via

relatively non-selective cationic currents.

Several investigations found evidence that TRPC ion

channels function in the regulation of cancer process (44). A

study reported that TRPC1 channels expressed in human glioma

cells as well as glioblastoma biopsies. Knock-down of TRPC1

clearly suppressed cell proliferation and decreased tumor

volume by 40% in a xenograft model using human grade IV

glioma D54MG cells (45). TRPC4 channels expression lost in the

cells of renal carcinoma. The absence of TRPC4 may cause

decreased calcium uptake and then enrich an angiogenesis

inhibitor of the secreted TSP1(thrombopsondin-1) in the

cytoplasm which subsequently suppress angiogenesis during

renal cell carcinoma progression (46). Among TRPVs, the

highly calcium-selective channel of TRPV6 which allows the

passage of heavy metals zinc, manganese and cadmium (47) has

been found expressed in prostate and breast cancers. Its

expression correlates with cancer progression, suggesting that

it drives cancer cell growth. TRPV2 was over-expressed at both

mRNA and protein levels in esophageal squamous cell

carcinoma (ESCC) cell lines. Knockdown of TRPV2 gene

decreased cell proliferation, cell cycle progression and

migration (48). In vitro and in vivo, high levels of TRPV4

expression were associated with tumor metastasis. Proteomics

and bioinformatics analyses have shown that TRPV4 was

involved in regulating the cytoskeleton and Rho protein

pathway of cell migration in endometrial cancer (49).
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Chloride ion channels

Chloride ion channels can be roughly classified into voltage-

gated chloride channel (ClC), ligand-gated chloride channel,

calcium-activated chloride channel (CaCC), High conductance

chloride channels, cystic fibrosis transmembrane conductance

regulator (CFTR), volume-regulated chloride channels (VRCC),

and chloride intracellular channel (CLIC) (50). A study showed

that ClC-3 anion channels promoted brain tumor metastasis

(51). Chlorotoxin purified from Leiurus scorpion, a chloride

channel inhibitor, has been identified to suppress glioma cell

invasion via binding to MMP-2, and voltage-gated chloride

channel were specifically expressed in human astrocytoma and

glioma cells (52, 53). This chloride channel was subsequently

identified as ClC-3, a type of Cl-/H+ exchanger mainly expressed

in endosomal/lysosomal compartments (>95%). And

chlorotoxin may inhibit cell migration and invasion by

interacting with both Cl- channel proteins and MMP-2 in

glioma cells (54, 55).

ANO1/TMEM16A, a member of the CaCC functioned in

maintaining ion and tissue homeostasis via regulating epithelial

secretion and cell volume (56). ANO1/TMEM16A is highly

expressed in several epithelium originated carcinomas,

gastrointestinal stromal tumor, esophageal squamous cell

carcinoma (ESCC) and pancreatic cancer. Knockdown of

ANO1 inhibited cell proliferation, induced cell apoptosis in

breast and lung cancer cells, and reduced tumor growth in

established cancer xenografts (57–59). While decreasing ANO1

confers metastatic phonotype in squamous cell carcinoma of

head and neck. Stable reduction of ANO1 expression enhanced

cell motility and metastases, but decreased tumor proliferation

in an orthotopic mouse model (60). Thus, suppression of

chloride channel may be a hopeful target for clinic practice by

small molecule screening as well as in vivo studies (61, 62).
Ion channels modulate chemo-
resistance through tumor
microenvironment

Cancer progression and metastasis depend on bidirectional

interactions between cancer cells and their environment, which

together form tumor microenvironment (TME) (63). The TME

is a complex, dynamic network composed of cellular and non-

cellular components (64, 65). And the TME has been

characterized by hypoxia, an acidic extracellular pH, high

lactate levels, elevated adenosine concentrations, low levels of

glucose, ATP and nutrients, and the presence of vascular

endothelial growth factor (VEGF) and other cytokines and

growth factors (66–68). Among these factors, hypoxia is of

particular concern. Solid tumors generally contained hypoxic
Frontiers in Oncology 04
regions that can trigger important cellular changes (69).

Moreover, cancer cells metabolize glucose in the form of

glycolysis (‘Warburg effect’), and hypoxia can further

aggravate the dependence on glycolytic fueling, which resulted

in the production of large amounts of lactic acid (70, 71).

Although resistance is a characteristic of cancer cells evolving

in a low-oxygen environment (hypoxia), the mechanisms

involved remain elusive (72).
Calcium-permeable ion channels

Mibefradil is an orally bio-available T and L-type calcium

channel blocker for the treatment of hypertension. The

expression of T-type calcium channel of Cav3.2 was increased

in glioblastoma (GBM) cells and glioblastoma stem-like cells

(GSCs). Mibefradil suppresses Cav3.2 ion channels activity, and

then subdues pro-survival AKT/mTOR pathways and up-

regulate phosphorylation of LKB1 and Tuberin/TSC2, thus

inhibiting cell proliferation. Meanwhile, inhibition of Cav3.2

by mibefradil could activate BAX, caspase-9 and PARP

signalings, enhancing GSCs apoptosis (73).

It is well known that hypoxia can induce stem cell-like

transcriptional program via HIFs (hypoxia-inducible factor),

as described for breast cancer stem cells, prostate and glioma

stem like cells, even human embryonic stem cells (74, 75). Under

hypoxic conditions, Cav3.2 expression was up-regulated in GSCs

with high level of HIFs. Notably, application of calcium channel

blocker of mibefradil could down-regulate the expression of

HIF-1a and HIF-2. It is suggested that mibefradil may suppress

GSC malignant parameters by reducing hypoxic pressure and

inhibiting expression of HIFs (73).
Potassium ion channels

Recent studies have shown that large-conductance, calcium-

activated potassium (BK) channels promoted several aspects of

the aggressive potential induced by hypoxia, such as migration

and chemo-resistance to cisplatin in glioblastoma (GBM) cells,

suggesting it may act as a potential therapeutic target in

GBM (76).

BK channels are expressed in GBM cells and channel activity

could affect tumor aspects, such as migration/invasion, and cell

death. GBMs are also characterized by a heavy hypoxic

microenvironment that exacerbates tumor aggressiveness. In

human GBM U87 MG cells, hypoxia promoted cell migration

as well as spheroids formation, and induced chemo-resistance to

cisplatin. And inhibition of BK channels with paxilline could

diminish cells migration and chemo-resistance to cisplatin

induced by hypoxia. Moreover, BK channels were also found to

be essential for hypoxia-induced differentiation of GBM cells (76).
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Transient receptor potential ion channels

Recent study indicates that over-expression of TRPC6

regulated multi-drug resistance (MDR) by elevation of

intracellular calcium under hypoxia, or stimuli of doxorubicin

and ionizing radiation in hepatocellular carcinoma. In response

to these stimuli, intracellular calcium ions accumulation

persisted, and inhibition of calcium signaling pathways

enhanced cellular sensitivity to various drugs by inhibiting

epithelial-mesenchymal transition (EMT), HIF-1a signaling

pathway and DNA repair. Specifically, the use of siRNA to

down-regulate the expression of Twist, HIF-1a and H2A.X

significantly attenuated MDR. Moreover, blockade of TRPC6

by either siRNA or SKF-96365 can diminish MDR induced by

various stimuli in vitro. An in vivo xenograft model of liver

cancer further confirmed that inhibition of TRPC6 enhanced the

efficacy of doxorubicin. These results suggested that the

regulatory mechanisms of MDR in hepatocellular carcinoma

cells were calcium-dependent via the TRPC6/calcium/STAT3

pathway (77). In addition, TRPC6 was also involved in

regulating tumor malignancy. Under hypoxia, TRPC6

expression increased with a sustained elevation of intracellular

calcium via agonism in glioblastoma U373 MG cells. And it was

required for the development of malignant phenotype of GBM

(78). In hypoxic microenvironment, tumor cells are mainly

regulated by hypoxia-induced transcription factor HIF-1. A

study has showed that TRPM8 over-expressed in advanced

prostate cancer, and TRPM8 promoted cancer cell growth in

vitro hypoxia, drug resistance, and in vivo tumorigenicity, with

increased HIF-1a expression. These effects were further

enhanced by activation of TRPM8 but inhibited by

suppression of TRPM8 (79).

Another study showed that hypoxia can simultaneously

increase the expression of TRPM7 and induce the

accumulation of HIF-1a in androgen-independent prostate

cancer cells. Silencing TRPM7, however, significantly

promoted the degradation of HIF-1a and inhibited EMT

changes in hypoxic conditions (80). Recent studies have

demonstrated that HIF-1a promoted the proliferation,

migration, invasion, angiogenesis and EMT in gastric cancer

(GC) cells (81). In addition, hypoxia can induce autophagy and

an acidic extracellular pH which correlated with GC progression

and chemo-resistance (82–85).
Other ion channels

The truncated voltage-dependent anion channel 1 (VDAC1-

DC), can be found in certain hypoxic cells and were linked to

chemo-resistance via interaction with Bcl-xL and hexokinase I.

The formation of truncated VDAC1 was dependent on HIF-1

and can be inhibited in the presence of the tetracycline
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ant ib io t i c s doxycyc l ine and minocyc l ine (known

metalloproteinase inhibitors). Interestingly, VDAC1-DC has

been detected in lung adenocarcinoma tumor tissue of

patients. Therefore, targeting VDAC1-DC may provide a

strategy for combating chemo-resistance (72) (Figure 1).
Ion channels modulate chemo-
resistance through cancer stem cells

Cancer stem cells (CSCs) have been identified in many

cancer types (86–94). CSC was a small fraction of the cells

that yet remain in the patient after conventional antitumor

therapy completed (95). CSCs have also been described to be

responsible for tumorigenesis as well as stemness maintenance

with characteristics of self-renewal ability, asymmetric cell

division, slow division kinetics, invasion, metastasis, enhanced

tumor formation and proliferation, resisting apoptosis and

resistance to conventional chemo-therapy and radio-therapy

(96–100). CSCs can be recognized by a variety of cellular

markers (87, 101–103). Cell surface markers such as CD133,

CD44, CD87 and ALDH1 are commonly used to isolate and

enrich the CSC populations. Three essential transcription factors

of Oct4, NANOG, and SOX2 expressed in both tumor stem cell-

like cells and embryonic stem cells are described as stem cell

markers. CSCs are thought to evade conventional treatment and

are responsible for chemo-resistance and recurrence of cancer.

Side-population (SP) cells facilitate the extrusion of

exogenous compounds for detoxification of cells by expressing

ATP transporter proteins. The SP cells are clearly enriched in

stem cells, and the SP phenotype may account for the chemo-

resistance of a subpopulation of tumor cells (104–106). Recent

studies on the SP cells have confirmed that this particular group

of cells not only contributed to the resistance of tumor cells to

chemo-therapeutic drugs, but also were closely associated with

proliferation, differentiation and stemness of cancer cells

(107, 108).
Calcium-permeable ion channels

Calcineurin mediating the dephosphorylation and activation

of nuclear factor of activated T-cells (NFAT), originally was

associated with promoting T-cell proliferation but more recently

linked to proliferation, migration and resistance across various

cancer types (109). Studies indicated that calcium influx through

TRP channels as well as other calcium channels modulated the

activations of NFAT and ERK pathways in cancer cells (43, 110,

111). T-type VGCC of Cav3.2 has been observed up-regulated in

the glioblastoma stem-like cells and blockade of these channels

with mibefradil suppressed both growth and stemness of GSCs

(73). Up-regulated Cav3.2 expression in GBMwas associated with
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poor prognosis, suggesting that Cav3.2 has the potential for

treatment of GBM and may improve patient survival.

Mibefradil sensitized GSCs to temozolomide, a key chemo-

therapeutic agent used for GBM treatment. GSCs have been

partially mediating resistance both to chemo-therapy and radio-

therapy. Notably, resistant GSCs survived and maintained

malignant growth of GBM after surgical intervention and

chemo-therapy (112–114). Studies have shown that mibefradil

induced differentiation of GSCs, as evidenced by down-regulation

of stemness markers for CD133, Nestin, Bmi1 and SOX2, and up-

regulation of the differentiation markers for GFAP, Tuj1 and

MAP2. Although Cav3.2 inhibition strongly impaired the

malignant parameters of GSC, it may also affect differentiated

bulk GBM cells, as shown in U87 MG cell line (115).
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Drug resistance in epithelial ovarian cancer has been

attributed to the persistence of tumor stem cells. A small

number of drug-resistant CSCs survived from chemo-therapy,

leading to recurrence and aggressive proliferation of ovarian

cancer (116). Studies have shown that the long-term efficacy of

chemo-therapy depends on the prevention of recurrence via

targeting CSCs (117, 118). Lee and co-workers identified four

voltage-gated calcium channel blockers (manidipine, lacidipine,

benidipine, and lomerizine) that targeted ovarian stem cells via

screening a library of FDA-approved compounds. The four

calcium channel blockers (CCBs) reduced sphere formation,

cell proliferation, and induced apoptosis in ovarian stem cells.

The CCBs disrupted the stemness via inhibiting AKT and ERK

signaling pathways in ovarian cancer stem cells. Study indicated
FIGURE 1

Ion channels modulate chemo-resistance through tumor microenvironment. As inhibitor of T-type calcium ion channels, mibefradil suppresses
Cav3.2 ion channel activity, and then decreases AKT, mTOR and 4EBP1 activities and up-regulated phosphorylation of LKB1 and Tuberin/TSC2,
thus inhibiting cell proliferation. Meanwhile, inhibiting Cav3.2 by mibefradil activates BAX, caspase-9, PARP, thus enhancing GSCs apoptosis.
Cav3.2 can be up-regulated by hypoxia, and application of Cav3.2 inhibitor of mibefradil inhibits HIF-1a and HIF-2 in GSCs. In hypoxia, menthol
or icilin stimulation promotes cell proliferation and invasion. Simultaneous hypoxia stimulation increases fibronectin adhesion and further
enhances menthol treatment. TRPM8 over-expression enhances HIF-1a in hypoxia-exposed prostate cancer cells by reduction of HIF-1a
ubiquitination. Hypoxia increases the expression of TRPC6, then activates AKT/ERK1/2 to promote phosphorylation of STAT3, inducing its
nucleus translocation, triggers the expression of Oct4, SOX2 and NANOG, thus deteriorating chemo-resistance. HIF-1a increases upon BK
channel blocker of Paxilline in GBMs. Hypoxia increased expression and the nuclear translocation of stemness markers of Oct4, NANOG and
SOX2, therefore increasing chemo-resistance to Paxilline in GBMs. Hypoxia increases TRPM7 expression and enriches HIF-1a in prostate cancer
cells. Suppression of TPRM7 enhances phosphorylation of RACK1 and promotes the binding of RACK1 to HIF-1a by competing with HSP90,
then inhibiting downstream signaling of ANXA1 to suppress the migration and invasion, thus weakening chemo-resistance in prostate cancer
cells. GSC, glioblastoma stem-like cells; HIF, hypoxia inducible factors; AKT, protein kinase B; mTOR, mammalian target of rapamycin; BK,
calcium-activated potassium channels; GBM, glioblastoma; PARP, poly ADP-ribose polymerase; ANXA1, Annexin A1; ERK1/2, extracellular
regulated protein kinases1/2; STAT3, signal transducer and activator of transcription 3.
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that three of L- and T-type calcium channels were over-

expressed in ovarian CSCs, and down-regulation of calcium

channels reduced the stem cell-like properties of ovarian cancer

cells. Further, expressions of these calcium channels were

negatively correlated with the survival rate of the patients.

Treatment using CCBs in combination with cisplatin could

effectively inhibit the proliferation of CSCs, suggesting that the

combination therapy could improve the drug sensitivity of the

CSC-enriched epithelial ovarian cancer population. In addition,

combined with manidipine and paclitaxel showed enhanced

effects in a mouse model of ovarian CSCs xenografts. The

results suggested that the four CCBs may be potential

therapeutic agents for the prevention of ovarian cancer

recurrence (119).

Studies have identified a composing subunit of a voltage-

dependent calcium channel of a2d1 as a promising marker for

CSCs. Recent insight from Zhao and co-workers has reported

that a2d1+ cells presented in primary hepatocellular carcinoma

(HCC) cell with CSCs properties. They have found that a2d1
was a functional marker for predicting HCC recurrence and its

monoclonal antibody 1B50-1 can be used as a potential anti-

HCC drug (120). Another study has identified that a2d1 positive
cells possessed tumor stem cell properties that may be associated

with chemo-resistance in small cell lung cancer cells. Also, the

use of 1B50-1 antibody in patient-derived xenograft models

could help overcome chemo-resistance and delay the

recurrence of small cell lung cancer (121). Among them, stem

cell-related transcription factors of SOX2, Oct4, NANOG and

drug resistance-related genes (such as MDR, ABCG2) were

highly expressed in a2d1+ and CD133+ cells, especially in

a2d1+ cells. In addition, a2d1+/CD133+ cells exhibited higher

sphere-forming ability and differentiation characteristics than

CD133+ cells in vitro. Meanwhile, a2d1+ cells showed higher

growth rate and proliferation ability than CD133+ cells.

Moreover, a2d1 over-expression may be associated with

chemo-therapy resistance both in small cell lung cancer as well

as in liver cancer (120, 121). And activation of MAPK pathway

may mediate drug resistance (122).
Potassium ion channels

Recent findings suggested that KCa1.1 in LNCaP spheroids,

which mimic human prostate cancer (PC) stem cells, has the

potential to be a therapeutic target for overcoming anti-

androgen and doxorubicin resistance in PC cells (123). While

another study has evaluated the targeting effect of trimebutine

maleate (TM) on ovarian CSCs. TM is used as a modulator for

gastrointestinal motility, and it is a agonist of peripheral opioid

receptor and a blocker of multiple channels. Voltage-gated

calcium channels (VGCC) and calcium-activated potassium
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channels (KCa) were over-expressed on ovarian CSCs and

targeted by TM, inhibition of both channels reduced the

survival of ovarian A2780-SP cells. TM reduced the expression

of stemness-associated proteins; simultaneous inhibition of

VGCC and KCa could reproduce this trend compared to

single-channel inhibition. In addition, TM inhibited the Wnt/

b-catenin, Notch and Hedgehog pathways, which were

implicated in many features of CSCs. Inhibition of these ion

channels by TM could active b-catenin signaling via ERK1/2

phosphorylation and reduce the expression of transcriptional

factors of Oct3/4 and SOX2, inhibit cell growth of ovarian CSCs,

therefore abating chemo-resistance (124).
Transient receptor potential ion channels

More recently, TRPV2 has been directly linked to self-

renewal of CSCs in a number of cancer types such as

esophagus cancer (125), liver cancer (126) and glioblastoma

(127). Glioma stem cells (GSCs) correspond to a subpopulation

of tumor cells involved in tumor initiation and acquired chemo-

resistance in glioblastoma multiforme (GBM). Currently, drug-

induced differentiation is considered as a promising approach to

eradicate this tumor-driven cell population. Studies have

demonstrated that cannabidiol (CBD) activated the process of

autophagy by triggering the differentiation of GSCs through the

activation of TRPV2. The acute myeloid leukemia (AML) -1a

was up-regulated during differentiation of GSCs. CBD up-

regulated AML-1a expression in a TRPV2 and PI3K/AKT-

dependent manner and eliminated chemo-resistance of GSCs

to Carmustine (127).

Since increased oxidative stress may lead to oxidative

damage of cellular components and result in cell death, cancer

cells surviving from endogenous stress and developing into

tumors must evolve exquisite mechanisms for adaption of

ROS stress. This adaptation can reduce the sensitivity of

cancer cells to chemo-therapy or even develop drug resistance

(128). TRPV2 has been found up-regulated in human

hepatocellular carcinoma cells. And it could significantly

enhance the cytotoxicity of H2O2-mediated oxidative stress,

suggesting up-regulated TRPV2 attenuated oxidative

adaptation in hepatocellular carcinoma cells. Over-expression

of TRPV2 in H2O2-treated hepatocellular carcinoma cells

exacerbated the inhibition of AKT and Nrf2, whereas the

activation of p38 and JNK has been enhanced at the early

stage of cell death. Interestingly, the increased expression of

TRPV2 in HepG2 cells enhanced the effect of stress-related

chemicals to induce cell death. The results suggested that TRPV2

was an important enhancer of H2O2-induced cytotoxicity. These

findings suggested that the inhibition of oxidative adaptation

may abate drug resistance (129) (Figure 2).
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Ion channels modulate chemo-
resistance through cancer cell
metabolism

Abnormal cell metabolism was an important hallmark of

cancer (130). Intracellular metabolism of glucose, amino acids

and lipids support cancer cell growth, metastasis and survival. In

addition, abnormal cellular metabolism contributed to the

acquisition of cancer stem cells (131, 132). Usually cancer cells

increase glucose uptake 10 times more than normal cells, and

convert glucose to lactate even in the presence of oxygen (133).

Glycolysis, the central pathway of glucose metabolism, has been

shown to maintain cancer stemness and induce chemo-

resistance (134, 135).
Transient receptor potential ion channels

Studies have found that up-regulation of TRPC5 expression

is associated with chemo-resistance in human colorectal and
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breast cancers by altering Ca2+ influx (136, 137). Numerous

studies have shown that up-regulation of TRP channels play

inversely roles in cancer, ranging from induction of apoptosis to

facilitation of survival (138). The efflux of intracellular calcium is

an ATP-dependent process. In non-malignant cells, oxidative

phosphorylation was the main source of ATP under

physiological conditions, and inhibition of mitochondrial

metabolism disrupted intracellular calcium homeostasis and

leads to cell death (139, 140). Aerobic glycolysis plays an

important role in tumor progression, metastasis and

recurrence by providing ATP and metabolites (130, 141). In

addition, ATP produced by aerobic glycolysis was recently

shown to play a key role in intracellular calcium efflux and

homeostasis in malignant tumor cells (142). Several studies have

found elevated aerobic glycolysis in drug-resistant cancer cells,

which was essential for maintaining chemo-resistance (143–

146). It is believed that glycolysis-derived ATP is crucial for

drug-resistant cancer cells to cope with sustained chemo-

therapeutic stress (143, 147), including enhanced drug

inactivation, mutation of survival-related genes, deregulation
FIGURE 2

Ion channels involve in chemo-resistance through cancer stem cell. Blockade of Cav3.2 by either mibefradil or ES inhibits cell proliferation and
GSC differentiation. 1B50-1 positive HCCs exhibits tumor-initiating cells property, treatment of the monoclonal antibody of 1B50-1 activates
ERK1/2 signaling pathway to result in apoptosis of TICs, thus overcome chemo-resistance. Voltage-gated calcium channels, sodium channels,
or BK channels are over-expressed in ovarian CSCs. TM inhibits these ion channels’ currents, and reduces transcription factors of Oct3/4 and
SOX2 via b-catenin signaling and ERK1/2 phosphorylation related to stemness and cell growth of ovarian CSCs, therefore abating chemo-
resistance. Inhibition of KCa1.1 by its selective blocker of Paxilline can overcome antiandrogen acquired resistance due to MDM2 in human
prostate cancer stem cells, meanwhile, this inhibition also overcomes acquired resistance of DOX due to MRP5 in LNCaP stem cells
characterized with stemness markers of NANOG, CD44 and KLF4. CBD increases expression of AML-1a which subsequently binds to TRPV2
promoter to enhance transcription, and then induces GSCs differentiation, thus increasing the sensitivity to BCNU by triggering GSCs apoptosis.
GSC, glioblastoma stem-like cells; ES, endostatin; Bcl-2, B-cell lymphoma-2; BAD, Bcl-2 associated death promoter; HCC, hepatocellular
carcinoma; TICs, tumor-initiating cells; ERK1/2, extracellular regulated protein kinases1/2; DOX, doxorubicin; MRP, multidrug-associated protein;
AR, androgen receptors; CBD, cannabidiol; AML, Acute myeloid leukemia; GSC, glioblastoma stem-like cells; BCNU, carmustine; MDM2, murine
double minute 2.
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of growth factor signaling pathways, increased expression of

anti-apoptotic genes and/or activation of intracellular survival

signals (148). Inhibition of glycolysis caused a significant

decrease in ATP production, increased [Ca2+]i levels, caspase-

3 cleavage, and increased apoptosis in colorectal cancer resistant

cells, reversing resistance to chemo-theraputic agent

(Fluorouracil, 5-FU). Since [Ca2+]i efflux is ATP-dependent

and elevated [Ca2+]i levels have been shown to trigger

apoptosis (149–151), a plausible explanation for the increased

expression of cleaved caspase-3 after glycolysis inhibition was

the deprivation of glycolysis-derived ATP, which subsequently

leading to elevated [Ca2+]i levels. Furthermore, BAPTA-AM (a

calcium chelator) reduced 2DG (glycolysis inhibitor) -induced

increase in caspase-3 cleavage and apoptosis rate. This suggested

an important role of increased glycolysis in TRPC5-induced

chemo-resistance by supporting ATP to maintain the dynamic

balance of intracellular [Ca2+]i. Further studies in patients with

advanced colorectal cancer implementing chemo-therapy

showed that the effect of high TRPC5 expression on chemo-

resistance was dependent on high GLUT1 expression. The up-

regulated expression of TRPC5 was shown to activate glycolysis

in human colorectal cancer cells via the Wnt/b-catenin signaling

pathway which has been shown to induce GLUT1 expression

through c-Myc (136, 152). Moreover, TRPC5 activates Wnt/b-
catenin, which promotes glycolysis by mediating Ca2+ influx,

providing ATP and preventing [Ca2+]i overload, thereby

inducing chemo-resistance. Therefore, high “TRPC5

glycolysis” is closer to chemo-resistance than high TRPC5

(153) (Figure 3).
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Conclusions and outlook
Chemo-resistance is a major impediment to cancer therapy

which easily leads to cancer recurrence. Resistance is a complex

phenomenon involving multiple mechanisms, including

activation of signaling pathways, improved anti-apoptotic

capacity, and increased extrusion of therapeutic compounds.

Despite many drugs/therapies are currently available in

oncology, resistance to therapy hinders complete success of

treatment and leads to mid- to long-term recurrence. Ion

fluxes have been reported to modulate the response of cancer

cells to several chemo-therapeutic agents (5). Moreover, the

regulation of apoptosis by ion channels is well described, so it

would be interesting to understand their significance in

therapeutic-resistant compound.

Notably, Ion channels can be modulated by a wealth of

natural compounds and small molecules. Currently, many

classical drugs targeted ion channels for treatments are already

on the market and even on the essential medicine list of WHO. It

has been suggested that repurposing these marketed drugs for

the treatment of cancer may be a practical option, especially for

the refractory cancer with no drugs available (154). And such

attempts may provide a new avenue to tackle chemo-resistance

in cancer therapy.

Of course, when targeting ion channels for chemo-

therapeutic drug development, cardiac safety and risk

mitigation should be considered due to regulatory

requirements. It is well-established that the cardiac K+, Na+,
FIGURE 3

Ion channels develop resistance to chemo-therapy involving cell metabolism. Over-expression of TRPC5 leads to increased intracellular Ca2+

which facilitates the translocation of b-catenin into the nucleus, and induces ABCB1 (MDR1) expression, potentiating resistance to 5-Fu in HCT-
8/5-Fu cells. Up-regulated TRPC5 in human colorectal cancer cells activates the Wnt/b-catenin signaling pathway, which has been shown to
induce GLUT1 expression through its target gene c-Myc, thus exacerbating chemo-resistance. Using glycolysis inhibitor of 2DG can significantly
increase the level of cleaved Caspase-3 in HCT-8/5-FU cells, thereby inducing apoptosis and reverse chemo-resistance. ABCB1, ATP-binding
cassette, subfamily B, member 1; GLUT, glucose transporter; 5-Fu, 5-Fluorouracil; 3-BP, 3-bromopyruvate; 2DG, 2-Deoxy-D-glucose; Wnt/b-
catenin, Canonical Wnt/b-catenin pathway.
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and L-type Ca2+ channels are associated with long QT syndrome

(LQTs). Specifically, mutations in the a subunit of hERG

channels initiate genetic LQTs and inhibition of hERG

channel could lead to cardiac arrhythmia. Accordingly,

strategies should be employed when screening new drug

candidates targeted hERG channels. On the one hand, high-

throughput assays can be used to screen safe hERG inhibitor

without obvious cardiovascular toxicities (155). On the other

hand, specifically targeting hERG in cancer cells without
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affecting hERG in healthy tissues could overcome the critical

difficulties (156). More pertinently, study revealed that blockade

of hERG increased the substrate for arrhythmogenesis, and

concurrently inhibiting L-type Ca2+ channels reduced

arrhythmogenic substrate and EADs (Ca2+-induced early after

depolarizations) which could initiate cardiac arrhythmia. This

contradict effects of both contribution to arrhythmogenesis and

to its amelioration suggest that besides assessment on the

particularly important hERG channel, the safety assays should
TABLE 1 Ion Channels Modulate in Cancer Chemo-resistance.

Channel Expression Modulation in Chemo-resistance Biological Roles Signaling Pathways References

Cav3.2 (↓) GBM Tumor microenvironment Cell proliferation (-) AKT/mTOR (73)

Apoptosis (+) BAX/Caspase-9/PARP (73)

Chemo-resistance (-) (73)

Cancer stem cell Cell proliferation (-) n.d. (73, 112–114)

GSC differentiation (-) (73, 112–114)

KCa1.1 (↑) GBM Tumor microenvironment Cell migration (+) n.d. (76)

Chemo-resistance (+) (76)

KCa1.1 (↓) PC Cancer stem cell Chemo-resistance (-) MRP5/MDM2/AR (123)

OC Cancer stem cell CSC growth (-) Wnt/b-catenin (124)

TRPC6 (↑) HCC Tumor microenvironment EMT (+) STAT3/AKT/ERK1/2 (77)

Chemo-resistance (+) (77)

TRPM8 (↑) PC Tumor microenvironment Fibronectin adhesion (+) n.d. (79)

Cell proliferation (+) (79)

Invasion (+) (79)

TRPM7 (↑) PC Tumor microenvironment Cell migration (-) RACK1/HSP90 (80)

Invasion (-) (80)

Chemo-resistance (-) (80)

VGCC a1d1 (↓) HCC Cancer stem cell Self-renewal (-) ERK1/2/Caspase-3, -8, -9 (120)

Tumor formation capacities (-) (120)

Apoptosis (+) (120)

VGCC a1d1 (↑) HCC Cancer stem cell Self-renewal (+) CXCL11/ERK1/2 (122)

Cell proliferation (+) (122)

Chemo-resistance (+) (122)

L-type VGCC (↓) OC Cancer stem cell CSC growth (-) Wnt/b-catenin (124)

TRPV2 (↑) GBM Cancer stem cell CSC growth (-) AML-1/PI3K/AKT (127)

GSC differentiation (+) (127)

Autophagy (+) (127)

GSC proliferation (-) (127)

Self-renewal (-) (127)

Apoptosis (+) (127)

Chemo-resistance (-) (127)

HCC Cancer stem cell Cell growth (-) AKT/p38/JNK1 (129)

Cell death (+) (129)

TRPC5 (↓) CRC Cancer cell metabolism Chemo-resistance (-) Wnt/b-catenin (136)

TRPC5 (↑) CRC Cancer cell metabolism Chemo-resistance (+) GLUT1/c-Myc (152)
fr
↑, activation; ↓, inhibition; +, increase; -, decrease. AKT, protein kinase B; mTOR, mammalian target of rapamycin; ERK1/2, extracellular regulated protein kinases1/2; STAT3, signal
transducer and activator of transcription 3; PARP, poly ADP-ribose polymerase; MDM2, murine double minute 2; AR, androgen receptors; MRP, multidrug-associated protein; RACK1,
Receptor of activated protein kinase C1; HSP, Heat Shock Protein; CXCL11, Chemokine Ligand 11; Wnt/b-catenin, Canonical Wnt/b-catenin pathway; AML, Acute myeloid leukemia;
JNK, c-Jun N-terminal kinase; GLUT, glucose transporter; Glioblastoma (GBM); Prostate cancer (PC); Ovarian Cancer (OC); Hepatocellular carcinoma (HCC); Colorectal Cancer (CRC);
n.d., not determined.
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concern of screening the effects of drugs on other cardiac ion

channels including Na+ and L-type Ca2+ channels (157–159).

The review reported herein describes the regulatory role of

ion channels in chemo-resistance via different mechanisms of

tumor microenvironment, tumor stem cells, and tumor cell

metabolism (Table 1). Although many studies have reported

the relationship between chemo-resistance and ion channels,

relatively few studies have provided the complete mechanism.

Therefore, it seems necessary to update the understanding of the

mechanism involving ion channels in order to enable potential

therapeutic associations, including ion channel modulators, to

ideally overcome resistance to chemo-therapeutic compounds.

For several decades, the pharmaceutical industry has successfully

developed ion channel blockers for the treatment of cardiac or

psychiatric disorders. However, their therapeutic efficacy has not

been extensively studied in clinical treatment for cancer. Studies

demonstrated that calcium channel blocker of verapamil

significantly improved survival in patients with anthracycline-

resistant metastatic breast cancer when used in combination

with chemo-therapy (160). In addition, the T-type calcium

channel blocker mibefradil hydrochloride acts as a radio-

sensitizer by enhancing the effects of hypofractionated

radiation in patients with recurrent glioblastoma. The sodium

channel blocker of Riluzole has been described for the treatment

of cancer in patients with melanoma brain metastasis (161, 162).

These ion channel modulators are all repurposed as chemo-

therapy drugs. Hopefully, accumulating data on chemo-

resistance conferred by ion channels will help repurpose ion

channel modulators in clinical trials to improve cancer

treatment (6).
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