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Tunable Dirac points and high spin 
polarization in ferromagnetic-strain 
graphene superlattices
Qing-Ping Wu1,2, Zheng-Fang Liu1,2, Ai-Xi Chen1,3, Xian-Bo Xiao4 & Guo-Xing Miao2

Spin-dependent energy bands and transport properties of ferromagnetic-strain graphene superlattices 
are studied. The high spin polarization appears at the Dirac points due to the presence of spin-
dependent Dirac points in the energy band structure. A gap can be induced in the vicinity of Dirac points 
by strain and the width of the gap is enlarged with increasing strain strength, which is beneficial for 
enhancing spin polarization. Moreover, a full spin polarization can be achieved at large strain strength. 
The position and number of the Dirac points corresponding to high spin polarization can be effectively 
manipulated with barrier width, well width and effective exchange field, which reveals a remarkable 
tunability on the wavevector filtering behavior.

Graphene has attracted enormous attention from experimentalists and theorists since its discovery. In particular, 
the high carrier mobility and small spin-orbit coupling in graphene make it very promising for applications in 
nanoelectronics and spintronics. Recently, it is theoretically predicted that1,2 depositing a ferromagnetic insula-
tor (FI) such as EuO on graphene can induce an exchange proximity interaction1,3, and the exchange proximity 
interaction can be treated as an effective exchange field (EEF). The deposition of EuO on graphene has been 
experimentally realized and its proximity induced ferromagnetization has been confirmed4. Many theoretical 
works on spin transport through ferromagnetic graphene suggest that the spin current can be controlled by 
gate voltages1,2,5, magnetic barriers6,7, and local strain8–10. Particularly, Dell’Anna found that an inhomogeneous 
perpendicular magnetic field together with a strong in-plane spin splitting can produce a wavevector-dependent 
spin-filtering effect6. Zhai showed that ferromagnetic graphene junctions with a modulated substrate strain can 
achieve a strain-tunable spin current8. Recently, Wu has examined that the ferromagnetic graphene system com-
bined with strain or Rashba spin-orbit coupling, or both, can induce a spin band gap and achieve complete spin 
polarization10.

At the same time, graphene superlattices with electrostatic potential or magnetic barrier have also received 
broad theoretical and experimental investigations11–16. In electrostatic potential graphene superlattices, a new 
Dirac point appears in the band structures13,14 and it’s exactly located at zero-averaged wave number (zero-k)15. 
The zero-k gap associated with this new Dirac point is insensitive to both lattice constant and structural disorder, 
resulting in more controllable electronic transport in graphene superlattices. Extra Dirac points in the band struc-
ture at zero-k have been experimentally observed14,17,18. As a comparison, in magnetic graphene superlattices, new 
finite-energy Dirac points are generated in the band structure and the Fermi velocity at zero energy Dirac points 
is isotropically renormalized19–21. Recently, resonant tunneling in ferromagnetic graphene superlattices has been 
studied and its splitting in the transmission gap can be used to generate an efficient wavevector filter22. However, 
ferromagnetic graphene superlattices alone cannot suppress the spin-dependant Klein tunneling23, which results 
in finite spin polarization.

In addition, the pseudo magnetic field induced by the strain is an efficient method to suppress Klein tunne-
ling10,23, and a local strain can be achieved by patterning grooves, creases, steps, or wells in the substrate where 
graphene rests24–26, so that different regions of the substrate interact differently with the graphene sheet, generat-
ing different strain profiles27. Evidence for strain-induced spatial modulations in the local conductance of 
graphene on SiO2 substrates has already been reported in experiment28. Building from these literature works, we 
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now consider a ferromagnetic-strain graphene superlattice, where the spin-dependant Klein tunneling is violated. 
We first discuss the zero-k and finite-energy Dirac points’ locations in the spectrum of a ferromagnetic graphene 
superlattices in detail. When strain is also considered, we observe that a band gap is induced in the vicinity of 
finite-energy Dirac points, and the band gaps for spin-up and spin-down electrons are present in different energy 
regions. The spin-dependent band structure is clearly reflected in the transport properties, which provides a guide 
for enhancing the spin polarization. The position and number of Dirac points, and the corresponding high spin 
polarization, can be effectively manipulated by adjusting the barrier width, well width and EEF strength, which 
demonstrates remarkable tunability on the wavevector filtering behavior.

The paper is organized as follows. In Sec. II, we present the theoretical formalisms and the dispersion relations. 
The numerical results on band structures and transmission for different spins are shown in Secs. III. Finally, we 
draw conclusions in Sec. IV.

Computational Models and Methods. Let us consider a one-dimensional ferromagnetic-strained super-
lattice in graphene formed by a series of EEF barriers and strained barriers. In our case, we consider a series of 
FI strips with z-axis magnetizations deposited periodically on the top of graphene to induce the EEF barriers1,3. 
It has been demonstrated that the EEF between electrons in graphene and localized electrons in an adjacent FI 
layer is about 5 meV1 and can be further enhanced by applying an external electric field perpendicular to the 
graphene sheet3. In this paper, the local strains are assumed inside these FI stripe regions, which can be induced 
by a tension along the y direction applied on the substrate rather than the graphene. It is known that graphene can 
sustain elastic up to 25%29,30. The elastic deformation can be treated as a perturbation to the hopping amplitudes 
and acts as a pseudogauge potential As(r)31,32. Here the pseudogauge potential is induced by the uniaxial strain. 
As a corollary, the pseudogauge potential is a finite and constant, which is defined as As(r) = As(x) = tβε(1 + σ)33, 
and σ = 0.165 is the Poisson’s ratio of graphite, t is the nearest-neighbour hopping parameter, and ε is the tensile 
strain. The constant β = ∂lnt/∂lnδ, where δ is the distance between nearest carbon atoms. Several units of such 
structures are depicted in Fig. 1, and the length of each unit is L = d1 + d2. The low-energy effective Hamiltonian 
for ferromagnetic-strain graphene can be written as

H r i v A x Ms( ) ( ) ( ) , (1)F z x x y y z s y zτ σ σ τ σ= − ∂ + ∂ + +

where vF ≈ 106 m/s is the Fermi velocity, τz = ±1 for K and K' valleys, σi and si (i = x, y, z) are the Pauli matrices 
acting on the sublattice (A, B) and physical spin (↑, ↓) spaces, respectively. Due to the translational invariance in 
the y direction, the wave function in the j th ferromagnetic-strained barrier can be presented as x e( ) ik xyΨ = Ψ
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amplitude of the forward (backward) propagating wave. For the well region, the above equations are still valid and 
only require that Mj = 0 and Asj = 0. Inside the same barrier or well region, the wave functions at any two positions 
x and x + Δx can be related via the transfer matrix16
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with θj = arcsin(kyj/kj). Furthermore, the overall T-matrix for the N regions is simply a product of matrices:

Figure 1. Schematic illustration of the Ferromagnetic-strained graphene superlattices produced by a series of 
FM stripes and substrate strains. W is the width of the graphene sample in the y direction. The length of one unit 
is L = d1 + d2, d1 is the width of the Ferromagnetic-strained graphene, d2 is the width of the normal graphene.
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Here the wj is the width of the jth potential region. And we can connect the input and output wave functions by 
the relation: Ψ(xN) = XΨ(x0), where the Ψ(xN) and Ψ(x0) can be written as:15
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Here, θN is the exit angle at the exit end, Ψi(E, ky) is the incident wave packet of the electron, rs , zτ  is the spin/valley 
resolved reflection coefficient and ts,τz is the spin/valley resolved transmission coefficient, respectively. Solving the 
above two equations, we find the rs,τz and ts,τz can be given
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Once the transmission coefficient is obtained, the spin/valley resolved conductance Gs,τz of the system at zero 
temperature is written as Gs,τz = G0∫0

(π)/(2)Ts,τzcosθ0dθ0, where Ts,τz = |ts,τz
2|, G0 = 2e2mvFLy/ħ2 and Ly is the width of 

the graphene stripe in the y direction. Meanwhile, the spin polarizations are defined as
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Results and Discussion
In order to understand the transport properties, it is instructive to first investigate the electronic band structure 
for the ferromagnetic-strain graphene supperlatice. According to the Bloch’s theorem15, the electronic dispersion 
for any transversal wave number follows the relation:
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Here Ks,τz is Bloch wave vector. Γ1 and Γ2 are the transfer matrixes for one barrier and one well, respectively. 
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Using |cos(Ks,τzL)| ≤ 1, we can find the real solution of Ks , zτ  for passing bands. Otherwise, the non-existence of real 
τKs , z

 indicates a band gap34.
Now let us use the above equations to calculate the electronic band structures under different strain strength. 

The transmissions of electrons in K and K' valleys show mirror symmetry10,23, so we focus only on the spin trans-
port for the valley K. When As = 0 (Fig. 2a,d), we find that the zero-k Dirac point is given at =E sM

2
, ky = 0. When 

strain is considered (Fig. 2b,c,e,f), we find that the zero-k Dirac point is shifted to 
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in k space, but the energy is invariable. Such a result can be solved by the dispersion relation of Eq. (6).
Applying the implicit function theorem, the gradient of the dispersion relation will be zero only if 

sin(q1d1) = sin(q2d2) = 0 and cos(q1d1) = cos(q2d2) = 1. When As = 0, the following equations are satisfied
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Figure 2. Electronic band structures for up spin (a–c) and down spin (d–f) with different strain strength: (a) 
and (d) As = 0 meV; (b) and (e) As = 20 meV; (c) and (f) As = 60 meV; The dotted lines denote the centre position 
of the zero-averaged wave number Dirac point. The round dashed lines denote the centre position of the finite-
energy Dirac points. The other parameters are M = 40 meV, d1 = d2 = 20 nm.



www.nature.com/scientificreports/

5SCIenTIfIC REPORTS | 7: 14636  | DOI:10.1038/s41598-017-14948-y

Here m, n are integers. The equation (6) shows that cos(Ks,τzL) = cos(q1d1 ± q2d2) for ky = 0 and As = 0, which indi-
cates that Ks,τz always has real solutions for any E and M; that is, the location of the crossing point of the bands 
exactly appears at ky = 0. So under the condition of ky = 0 and As = 0, one can get E vsMd

d d F
m n
d d
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1 2 1 2
= + π

+
+
+

. If the 
condition q1d1 =− q2d2 = mπ is satisfied, the solution is =

+
E sMd

d d
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1 2
, which is the so-called zero-k Dirac point15. 

Further when d1 = d2, the zero-k Dirac point is located at =E sM
2

, ky = 0. This way, we can also locate the other 
crossing points corresponding to the finite-energy Dirac points20, at =

+
E sMd
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) and 
ky = 0. From Fig. 2a,d, one can observe that the finite-energy Dirac points for the spin-up (spin-down) band is 
exactly located in E = 71.15 meV, −31.15 meV, −81.15 meV (81.15 meV, 31.15 meV, −71.15 meV). Moreover, 
Fig. 2a,d also suggest that the spin-up and spin-down Dirac points don’t always coincide, which plays a key role 
in spin-dependent transport, but it is noted that the bands always cross at ky = 0.

In addition, if As ≠ 0, one can find
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 is one solution of Eq. (9), which corresponds to the zero-k Dirac point. If d1 = d2, zero-k Dirac 

point is located at E sM
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= , 
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= − . However, it is more difficult to find analytic solutions of the finite-energy 

Dirac points like the analytic results obtained by solving Eq. (7). But numerical calculations show that the 
finite-energy Dirac points are strongly affected by the strain strength. Due to the effects of strain, the finite-energy 
Dirac points are not only shifted in energy but also decreased in number (Fig. 2b,e), even disappear completely 
for large strain strengths (Fig. 2c,f). Then, there emerges an energy gap in the vicinity of the vanished finite-energy 
Dirac points with further increasing the strain strength. And the energy gaps for the spin-up and spin-down 
bands don’t fully overlap. These characters mean that the increasing of As may be used to enhance the spin polar-
ization in ferromagnetic-strain graphene superlattices.

The above discussions on the band structures should be helpful for understanding the spin-dependent transport. 
Figure 3 displays the spin-dependent transmission Ts, spin-dependent conductance Gs and spin polarization along z 
direction Pz of the ferromagnetic-strain graphene superlattices under different strain. Here we only consider As = 0 
and As = 60 meV, and take the superlattice period number n = 10. In the absence of strain (Fig. 3a,b), the transmis-
sion shows a spin-dependent Klein tunneling and embodies the mirror symmetry about θ = 0. But the transmission 
for up-spins is different from that for down-spins, especially at the locations of the Dirac points where the transport 
channels for up-(down-) spins are finite, while the transport channels for down-(up-) spins are large. These charac-
ters ensure that the two spin conductance channels are obviously different at these Dirac points (as seen in Fig. 3e), 
and finite spin polarization appears (as seen in Fig. 3(g)). When strain is considered (Fig. 3c,d), we find that the 
mirror symmetry with θ = 0 is destroyed because of the shifted Dirac points by the strain, and the spin-dependent 
Klein tunneling is suppressed due to the spin-dependent band gap induced by the strain. It is noted that the 
spin-dependent transmission gaps also induce zero-k Dirac points nearby because the spin-dependent waves inside 
the potential barrier are evanescent waves when the relation τ− < +( )E sM k A( ) y z s

2 2
 is satisfied. Then we find 

that the spin-up and spin-down conductances are totally different around those disappeared Dirac points. Especially, 
in the vicinity of E = 20 meV, 71.15 meV (E =−20 meV, −71.15 meV), the spin-depended conductance G↓ (G↑) 
shows a broad peak, while G↑ (G↓) approaches zero (Fig. 3f), so fully spin polarized plateaus with large spin-polarized 
currents are achieved around these Fermi energies (as seen in Fig. 3g). In addition, spin polarization oscillations are 
obtained as seen in Fig. 3g, which can be used as a spin switch by modulating the Fermi energy.

The above discussions show that high spin polarizations always appear in the vicinity of the vanished Dirac 
points. And the positions of Dirac points in (E, ky) space can be controlled by the barrier and well widths. Figure 4a–
c show the band structures with different barrier and well widths. The locations of the zero-k Dirac points move 
towards E = 0 and ky = 0 with gradually reduced d1/(d1 + d2) ratio at fixed heights of potentials. The locations of the 
band gaps around the vanished finite-energy Dirac points move toward E = 0 too. In addition, the number of band 
gaps increases with the increase of the lattice constant d1 + d2. The reason of that is the zero-k Dirac points is exactly 
located =

+
E sMd

d d
1

1 2
, = −

+
ky

Asd
d d

1

1 2
, which is determined by the d1/(d1 + d2) ratio. The finite-energy Dirac points are 

located at = + π
+ +

E vsMd
d d F

l
d d
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, which depends not only on the d1/(d1 + d2) ratio but also the lattice constant 

d1 + d2. So we can modulate the location and number of high spin polarization regions by adjusting the the d1/
(d1 + d2) ratio and the lattice constant.
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Next we consider the spin-dependent conductance Gs (Fig. 4d–f) and spin polarization Pz (Fig. 4h–r) of an 
electron passing through the ferromagnetic-strain graphene superlattices with different width. Comparison 
between Fig. 4a–f indicates that the distribution of transmission spectra is completely consistent with the band 
structures, that is, strong transmission regions correspond to the transmission bands and forbidden transmis-
sion regions correspond to the band gaps. Then, the location of high spin polarization approaches E = 0 with 
the decrease of d1/(d1 + d2) ratio, and the number of high spin polarization regions increases with increasing 

Figure 3. (a–d) Spin-dependent transmission Ts with different strain strength (a) and (b) As = 0 meV, (c) and 
(d) As = 60 meV versus Fermi energy and incident angle; (e and f) spin-dependent conductance Gs and (g) spin 
polarization Pz versus Fermi energy. the periodic number N = 10, and M = 40 meV, d1 = d2 = 20 nm.



www.nature.com/scientificreports/

7SCIenTIfIC REPORTS | 7: 14636  | DOI:10.1038/s41598-017-14948-y

lattice constants (Fig. 4h–r). Therefore the increase of lattice constants makes the spin polarization oscillations 
more obvious.

In addition, the height of potentials can also affect the locations of the Dirac points. Figure 5a shows the spin 
polarization with respect to M and E for d1 = d2 = 20 nm. In the absence of EEF, the spin polarization is zero 
(Fig. 5a) due to the spin degeneracy (as seen in Fig. 5b). And the spin polarization initially increases and then 
decreases with increasing the EEF strength for M ≥ As (Fig. 5a). The reason is that when the EEF strength M ≥ As, 

Figure 4. (a–c) Electronic band structures for up spin and down spin for M = 40 meV with different barrier and 
the well width: (a) d1 = d2 = 30 nm; (b) d1 = 20 nm, d2 = 40 nm; (c) d1 = 20 nm, d2 = 60 nm; (d–f) spin-dependent 
conductance Gs and spin polarization Pz versus Fermi energy with the periodic number N = 10 corresponds to 
the cases in (a–c).
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the gaps around the Dirac points are finite (as seen in Fig. 5c,d) and the crossing points even reappear for larger 
M (as seen in Fig. 5e,f), which leads to both up-spins and down-spins having transport channels around the Dirac 
points therefore the spin polarization is reduced. So too large M does not guarantee effective spin filtering in such 
ferromagnetic-strain graphene superlattices. We also find that the high spin polarization regions are shifted away 
from zero energy owing to the shift of Dirac points away from E = 0 with the increasing of EEF.

Figure 5. (a) spin polarization Pz versus Fermi energy and exchange field strength with the periodic number 
N = 10, (b–f) Electronic band structures for up spin and down spin with different exchange field strength: 
(a) M = 0 meV; (c) and (d) M = 60 meV; (e and f) M = 80 meV; The other parameters are d1 = d2 = 20 nm, 
As = 60 meV.
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Summary
In summary, we studied the spin-dependent band structures and transport properties of graphene under a peri-
odic effective exchange field and strain, where the spin-dependant Klein tunneling is disrupted. We discussed 
the zero wave number Dirac points’ and finite-energy Dirac points’ locations on the spectra of ferromagnetic 
graphene superlattices in detail. The spin-up and spin-down Dirac points are present on the energy spectra alter-
nately, which results in finite spin polarization. When strain is considered, band gaps are induced around the 
finite-energy Dirac points, and high spin polarization is achieved in the vicinity of these Dirac points. The posi-
tion, and number of the Dirac points can be effectively manipulated by adjusting the barrier width, well width 
and EEF strength, which leads to tunable spin polarization. We hope these results are helpful for understanding 
the electronic properties for spin transports and can offer guidance to potential applications of the spin filtering 
devices.
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