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Abstract: The purpose of this study is to evaluate the various control parameters of a modeled
fast non-local means (FNLM) noise reduction algorithm which can separate color channels in light
microscopy (LM) images. To achieve this objective, the tendency of image characteristics with
changes in parameters, such as smoothing factors and kernel and search window sizes for the FNLM
algorithm, was analyzed. To quantitatively assess image characteristics, the coefficient of variation
(COV), blind/referenceless image spatial quality evaluator (BRISQUE), and natural image quality
evaluator (NIQE) were employed. When high smoothing factors and large search window sizes were
applied, excellent COV and unsatisfactory BRISQUE and NIQE results were obtained. In addition, all
three evaluation parameters improved as the kernel size increased. However, the kernel and search
window sizes of the FNLM algorithm were shown to be dependent on the image processing time
(time resolution). In conclusion, this work has demonstrated that the FNLM algorithm can effectively
reduce noise in LM images, and parameter optimization is important to achieve the algorithm’s
appropriate application.

Keywords: fast non-local means (FNLM) using separable color; various control parameters of FNLM;
noise reduction; light microscopy (LM) image; quantitative evaluation of image characteristics

1. Introduction

Light microscopy (LM) is employed to capture magnified high-resolution images of
objects invisible to unaided sight. In addition, LM hardware and software technologies
have rapidly advanced for application in various fields. In particular, LM images have
considerably contributed to the comprehension of human mechanisms by providing func-
tional and structural information on specimens, such as cells and tissues, in biomedical
research [1,2]. Although the technologies and application methods for LM images have
been actively developed, the analysis of several colorless and transparent specimens is
difficult because the structures are indistinct and the background contrast is insufficient.
To clearly examine such specimens, various staining techniques have been developed to
obtain color LM images [3,4] in which the contrast between the specimen and background
is high and the separation among various tissues is distinct [5,6].

In capturing LM images, hardware defects, such as focal length and lens misalignment,
and the physical properties of light, such as scattering and quantum discreteness, typically
generate noise [7]. Noise leads to the inaccurate analysis of observed specimens because
the structure and component information of images are distorted [8]. To resolve this,
various algorithms to reduce noise have been developed [9–11]. However, the application
of conventional noise reduction algorithms causes a blurring effect that negatively affects
the sharpness and resolution of LM images [12,13]. In particular, the blurring effect on
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LM images has been pre-generated owing to the refraction and diffraction of the light
source. Moreover, the application of noise reduction algorithms can aggravate the effect of
this undesirable phenomenon [14–16]. Accordingly, noise reduction algorithms using the
latest technologies, such as total variation, wavelet transform, deep-learning, and non-local
means (NLM), have been proposed to minimize the blurring effect and selectively remove
only noise [17–20]. Among the noise reduction algorithms mentioned above, the NLM
algorithm is a known method that can smooth the pixel value inside the edge structure and
maintain the high-frequency signal by calculating the intensity and distance of neighboring
pixels [21–23].

However, the practical implementation of the NLM algorithm to various fields, in-
cluding LM systems, is difficult, because the calculation of distance weights is excessively
time-consuming [24,25]. In particular, the application to color LM images is more exi-
gent due to the increase in the amount of data that has to be acquired from at least three
channels (e.g., red, green, and blue (RGB) channels) [26–28]. To overcome the excessive
time consumption of the NLM algorithm, the fast non-local means (FNLM) algorithm
with the vectorization of a two-dimensional distance-weighted equation to one that is
one-dimensional is proposed. In contrast to the NLM algorithm, the operational amount of
the FNLM algorithm, to which an improved weighting equation is applied, is determined
independently of the local patch size. The improved operational amount provides an effi-
cient and fast image processing time. In particular, the advantage for the processing time of
the FNLM algorithm can be applied effectively to color LM images with a high resolution
and multiple channels. In addition, the modeled FNLM algorithm has various parameters,
such as smoothing factor, search window, and kernel size [29,30]. These parameters should
be appropriately set for the situation and purpose of the image analysis, because they
considerably influence the image resolution and characteristics.

Thus, the purpose of this study was to analyze the tendency of image characteristics
with changes in the various parameters for the effective application of the proposed FNLM
algorithm in color LM images.

2. Materials and Methods
2.1. Acquisition of Light Microscopy Image

The LM images of immunohistochemically stained gingival sections showing the dis-
tribution of the anti-Ki-67-labeled cells were obtained using a digital microscope (DM500;
Leica Microsystem, Heerbrugg, Switzerland), Leica ICC50 E camera (Leica Microsystem,
Heerbrugg, Switzerland), and the Leica LAS EZ software (Leica Microsystem, Heerbrugg,
Switzerland). Ki-67, as a proliferation marker, labeled proliferating nuclei in a brown color. A
counterstain was performed with hematoxylin to make the immunohistochemically stained
tissue structure easily visible. Hematoxylin gives clear nuclear staining. The acquired image
showed brown (for immunopositive) and blue (for immunonegative) nuclei.

2.2. Fast Non-Local Means Algorithm Modeling

The conventional local filters exhibited an excellent performance in noise reduction.
However, a blurring effect occurred because only the calculated pixel values inside the set
kernel were reflected. To solve this problem, A. Buades et al. proposed the use of the NLM
algorithm, which can calculate the intensity difference and relative distance between the
target and neighboring pixels. The operation of the proposed image processing algorithm
can eliminate the noise and maintain high-frequency signals, such as those found in the
edge regions, as follows:

NL[ f ](m) = ∑
n=I

w(m, n) f (n), (1)

where f denotes the noisy image; m and n are the pixel values in the noisy image; and
w(m, n) is the distance weight that depends on the similarity of pixels m and n, satisfying
the condition 0 ≤ w(m, n) ≤ 1. The similitude between m and n is related to the similarity
of the intensity of gray level vectors, v(km) and v(kn), where ki denotes the square-shaped
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kernel centered on pixel i. In addition, the distance weight, w(m, n), in Equation (1) is
as follows:

ω(m, n) =
1

Z(m)
e−
‖v(km)−v(kn)‖22,a

d2 , (2)

where Z(m) is the normalizing constant, and

Z(m) = ∑
n

e−
‖v(km)−v(kn)‖22,a

d2 , (3)

where ‖v(km)− v(kn)‖2
2,a denotes the weighted Euclidean distance, in which the Gaussian

kernel with a standard deviation of a is applied and d is the smoothing parameter that
controls the degree of filtering. However, the NLM algorithm inefficiently calculates the
distance weight; thus, we have attempted to improve this estimation process. The distance
weight can be interpreted as follows:

ω(m, n) =
1

Z(m) ∑
n

e−
Ga(λ)‖ f (m+λ)− f (n+λ)‖22

d2 , (4)

where Ga(λ) denotes the Gaussian distribution size, a2, for the number of pixels, λ, of
the set kernel, and ‖ f (m + λ)− f (n + λ)‖2

2 is the intensity difference between pixels m
and n based on the Euclidean distance. The FNLM algorithm was modeled by replacing
the distance weight, which was calculated in the two-dimensional equation using a one-
dimensional equation. The equation of the modified distance weight is as follows:

ω̌(m, n) =
1

Z(m)
Si( f (m + P)− f (n− P)), (5)

Si(p) =
p

∑
τ=0

e−
‖ f (τ)− f (τ+λ̌)‖22

d2 , (6)

where P denotes the local patch size when the image is vectorized in one dimension and λ̌
and p are defined as n−m and m + λ̌, respectively. If the required operational quantity of
the NLM algorithm is O(P)dimension, then the FNLM algorithm with the proposed equation
is determined as O(2dimension). Modeling the FNLM algorithm based on the modified
distance weight can improve the time resolution of image processing to reduce noise.

2.3. Application of Fast Non-Local Means Algorithm

The modeled FNLM algorithm has various parameters. Among these, the smoothing
factor is set to determine the filtering degree. This filtering degree is mutually exclusive
with the sharpness and resolution of images; hence, an appropriate smoothing factor value
should be used with the FNLM algorithm. In addition, the search window and kernel sizes
are controlled to yield distance weights based on the Euclidean function. These parameters
determine the computational complexity, which has a major role in image processing.

To analyze the image characteristics according to the change in the FNLM algorithm
parameters, an experiment on the smoothing factor, which has the most considerable
effect on noise reduction, was preferentially performed by the authors. The experiment
was performed using various smoothing factor values (i.e., 0.01, 0.0125, 0.015, 0.02, 0.025,
0.03, 0.035, 0.04, 0.045, and 0.05) in the FNLM algorithm for the color LM image. The
search window and kernel sizes were set as 7 × 7 and 21 × 21, respectively. Thereafter, an
experiment on the search window and kernel sizes was conducted. For this, the kernel
sizes were 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11, and the search window sizes were
11 × 11, 21 × 21, 31 × 31, and 41 × 41; the optimized smoothing factor values derived
through the preferential experiments. To employ the FNLM algorithm, the RGB channels
of the color LM image were separated. Then, using the same parameters, the algorithm
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was applied to each of the separated channels. Finally, the filtered color LM image was
acquired by combining each of the three channels to which the FNLM algorithm is applied.
Figure 1 shows the simplified flowchart of applying the FNLM algorithm to the color
LM image.
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2.4. Quantitative Evaluation

The coefficient of variation (COV) was measured to evaluate the denoising perfor-
mance of the FNLM algorithm, as follows:

COV =
σr

µr
, (7)

where σr and µr are the standard deviation and mean in the set region of interest, respectively.
In addition, the blind/referenceless image spatial quality evaluator (BRISQUE) and

natural image quality evaluator (NIQE), which are blind image quality assessment factors,
were used to evaluate the degree of image restoration. The BRISQUE learned mapping
with the measured features based on the converted luminance using the mean subtracted
contrast normalized (MSCN) coefficient. The MSCN coefficient is as follows [31]:

ˆ
f (m, n) =

f (m, n)− ˆ
µ(m, n)

ˆ
σ(m, n) + C

, (8)

ˆ
µ(m, n) =

K

∑
k=−K

L

∑
l=−L

ϕk,l fk,l(m, n), (9)

ˆ
σ(m, n) =

√√√√ K

∑
k=−K

L

∑
l=−L

ϕk,l

(
fk,l(m, n)− ˆ

µ(m, n)
)2

, (10)
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where C = 1 is a constant for preventing the denominator from becoming 0 and
ˆ
µ(m, n) and

ˆ
σ(m, n) are the local mean field and local variance field, respectively, obtained by applying
the Gaussian filter, ϕk,l . Moreover, the empirical distribution of the pairwise products of
MSCN coefficients was obtained along the four directions and used to model the statistical
relationship between two neighboring pixels as follows:

H(m, n) =
ˆ
f (m, n)

ˆ
f (m, n + 1), (11)

V(m, n) =
ˆ
f (m, n)

ˆ
f (m + 1, n), (12)

D1(m, n) =
ˆ
f (m, n)

ˆ
f (m + 1, n + 1), (13)

D2(m, n) =
ˆ
f (m, n)

ˆ
f (m + 1, n− 1). (14)

The features of the acquired paired products were extracted based on the asymmetric
generalized Gaussian distribution model. The acquired features were learned using a
support vector regressor to measure the image quality score.

The NIQE shows the image quality as a score by analyzing the probability density
function of the multivariate Gaussian distribution for the derived features with selected
multiple patches. To model the NIQE, the MSCN coefficients of the image were obtained
and divided into equally sized patches. Then, the features were derived using the same
method as the BRISQUE. The derived features were employed to calculate the mean vector
and covariance matrix. Finally, the similarity was measured based on the calculated average
vector and covariance matrix, as well as the MSCN coefficient of the original image, as
follows [32]:

D(v1, v2, ∅1,∅2) =

√
(v1 − v2)

T
(
∅1 +∅2

2

)−1

(v1 − v2), (15)

where v1, v2 and ∅1, ∅2 are the mean vectors and covariance matrices of the origi-
nal image, respectively. Smaller mean values of the NIQE and BRISQUE can improve
image characteristics.

3. Results
3.1. Smoothing Factor Experiment

The immunohistochemically stained gingival sections were imaged at on-microscope
magnifications of 400× conditions. Subsequently, an experiment was performed to analyze
the effect of the FNLM algorithm with various smoothing factors on the color LM image
characteristics. Figure 2 presents the magnified regions (corresponding to Box A in Figure 1)
of the filtered color LM images using the FNLM algorithm with different smoothing factors.

Figure 3 shows the COV, BRISQUE, and NIQE results of filtered color LM images
using the FNLM algorithm with various smoothing factors. All three evaluation parameters
exhibited a consistent trend as the smoothing factor increased.

3.2. Search Window and Kernel Size Experiment

An experiment was conducted to analyze the effect of the FNLM algorithm with
various search window and kernel sizes on image characteristics. In analyzing the COV,
BRISQUE, and NIQE results according to the smoothing factor, no significant differences be-
tween the 0.01 and 0.0125 values were observed. Thus, the image using a 0.0125 smoothing
factor, which showed slightly better results in NIQE, was used as the reference to confirm
the change in image quality according to the search window and kernel sizes. Figure 4
presents the magnified regions and Figure 5 shows the COV, BRISQUE, and NIQE results
of the filtered color LM images using the FNLM algorithm with various search window
and kernel sizes.
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4. Discussion

Noise is typically generated when LM is employed to capture images. Moreover, in
the biomedical field where cells and tissues with complex structures and functions are
analyzed, the presence of noise is fatal [33,34]. Although various conventional algorithms
have been developed to reduce and solve noise problems, these processes have deteriorated
the sharpness and resolution of LM images [35–37].

The NLM algorithm estimates new pixel values by assigning distance weights to
neighborhood pixel values using an evaluation based on similarity; hence, it can overcome
the disadvantages of conventional noise reduction algorithms. However, estimating the
distance weights using the NLM algorithm requires substantial amounts of calculation,
which consume excessive computational time [38–40]. This problem is further aggravated
when processing high-resolution LM images, because such images contain large amounts
of data. In particular, the color LM image of a stained specimen has more than three times
the amount of data of a single-channel LM image. Thus, the use of the modified method in
the NLM algorithm to process color LM images is necessary.

Accordingly, the FNLM algorithm was modeled by the vectorization of the one-
dimensional equation for distance weight and applied to color LM images by separating
each channel. In addition, various evaluation factors were measured to confirm the effect
of the FNLM algorithm parameters on color LM images.

An experiment on the smoothing factor, which has the foremost influence on denoising
efficiency among the parameters, was preferentially conducted. As shown in Figure 3a,
the COV exponentially decreases as the smoothing factor increases because the degree of
smoothing also increases. In particular, the COV exhibits a virtually constant value when
the smoothing factor exceeds 0.02. The measured COV values were about 0.012, 0.005, and
0.027 when smoothing factors of 0.01, 0.02, and 0.05 were used, respectively. This means
that although the degree of noise reduction is limited, the FNLM algorithm with a high
smoothing factor is effective [41]. In addition, we have confirmed that the blurring effect
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on filtered color LM images is intensified when an FNLM algorithm with a high smoothing
factor is applied, as shown in Figure 3. Thus, using an excessively high smoothing factor
in the FNLM algorithm can degrade the image characteristics, contrary to the expected
effect. As shown in Figure 3b,c, the BRISQUE and NIQE results quantitatively demonstrate
the degradation of image characteristics, respectively. As the smoothing factor increases,
the NIQE and BRISQUE also continue to increase. The measured BRISQUE values were
about 49.44, 57.25, and 60.21 when smoothing factors of 0.01, 0.02, and 0.05 were used,
respectively. In addition, the NIQE values were measured as about 4.63, 5.17, and 5.77
when the smoothing factors were set to 0.01, 0.03, and 0.05, respectively. The NIQE and
BRISQUE results, which estimate the degree of noise distortions and blur on the image,
clearly explain the repercussion of setting excessively high smoothing factors [42,43].
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Next, the authors conducted an experiment on the search window and kernel sizes for
the FNLM algorithm. As shown in Figure 5a, the increase in the search window and kernel
sizes improved the COV, although the effect was less than that of the change in the smoothing
factor. Furthermore, the degree of improvement in the COV is more sensitive to the change
in the kernel size than that in the search window size. The COV values measured at kernel
sizes of 3 × 3 and 11 × 11 are about 0.019 and 0.017 when the search window size was set to
11 × 11, and at window sizes of 11 × 11 and 31 × 31 they are about 0.018 and 0.016 when the
kernel size is set to 5 × 5, respectively. However, similar to the smoothing factor experiment,
as the search window and kernel sizes increase, the degree of improvement in the COV
continues to decrease [44]. As shown in Figure 5b,c, the BRISQUE and NIQE show improved
results when a small search window size and a large kernel size are applied, respectively.
Especially, the BRISQUE values measured at kernel sizes of 3 × 3 and 11 × 11 are about 51.22
and 50.47 when the search window size is set to 11 × 11, and at window sizes of 11 × 11 and
31 × 31 they are about 50.89 and 53.11 when the kernel size is set to 5 × 5. In addition, the
NIQE values measured at kernel sizes of 3 × 3 and 11 × 11 are about 4.66 and 4.53 when the
search window size is set to 11 × 11, and at window sizes of 11 × 11 and 31 × 31 they are
about 4.59 and 4.68 when the kernel size is set to 5 × 5, respectively. These results indicate
that the search window and kernel sizes have a more considerable influence on the blur and
noise in the image, respectively [45]. Generally, the search window and kernel sizes of the
FNLM algorithm can be set more flexibly when applied to images with regular and repetitive
structures; however, in color LM images the structure of specimens is complex and variable.
Thus, the search window and kernel sizes should be carefully considered when the FNLM
algorithm is applied to color LM images with improved characteristics.

In addition, the search window and kernel sizes are closely related not only to image
characteristics, but also to the calculation time (i.e., time resolution) [46,47]. Figure 6 shows
the time resolution results of various search window and kernel sizes.
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According to the results, the time resolution increases as the search window and
kernel sizes increase. In particular, the time resolution is approximately 7.39 times the
computation times consumed using the lowest (search window size = 11 × 11 and kernel
size = 3 × 3) and highest (search window size = 41 × 41 and kernel size = 11 × 11) window
and kernel sizes for the FNLM algorithm. Thus, setting high search window and kernel
sizes to improve denoising efficiency should be carefully considered, because it can lead to
extremely long time resolutions.

Moreover, the time resolution of the FNLM algorithm was compared with that of the
NLM algorithm to analyze the applicability of the former to color LM images. Figure 7
shows the time resolution results obtained by applying the FNLM and NLM algorithms to
color LM images.
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As shown in Figure 7, although the results may vary depending on the applied image
features, such as matrix size and number of channels, the FNLM algorithm exhibits more
improved time resolution results than the NLM algorithm when applied to the same color
LM image [48]. In this study, the calculated time resolution of the FNLM algorithm was
approximately 9.80 times better than that of the NLM algorithm. The foregoing shows that
FNLM algorithm can process color images, which generally have three channels, faster
than the NLM algorithm can process single-channel images.

In summary, we derived and analyzed the results with quantitative evaluation for the
image characteristics and time resolution of the FNLM algorithm with various experiments.
Among these, experiments for image characteristics proved that the FNLM algorithm
shows effective effects of noise reduction and reconstructing images in color LM images. In
addition, we have shown that the appropriate setting of various parameters is important to
increasing the effectiveness of the FNLM algorithm. These results confirmed the feasibility
of applying the FNLM algorithm to various medical and scientific fields, such as diagnosis
using medical images and optical imaging for nanoscale particle study as well as LM
images. However, the color channel separation methods for applying the FNLM algorithm
are very classical, and the derived results were not quite satisfying enough to provide
dramatic novelty. Furthermore, although the time resolution of the FNLM algorithm
showed improved results compared to the conventional NLM algorithm, it showed an
insufficient performance to apply to high-frame color LM images for analyzing structural
and functional changes of specimens in real time. In the future, we intend to make efforts,
such as formula improvement and new framework modeling, to overcome the limitations
of the FNLM algorithm mentioned above.

5. Conclusions

The authors were led to various conclusions by performing two experiments to analyze
the feasibility of the color LM image processing of the FNLM algorithm. First, the high-
value parameters of the FNLM algorithm degrade the overall image reconstruction even
though the noise problem is improved. Second, excessive parameters settings deteriorated
the time resolution of the FNLM algorithm, although the calculation time of the FNLM
algorithm was significantly reduced compared to the conventional NLM algorithm. In
conclusion, we confirmed that FNLM algorithms with appropriate parameters, considering
image characteristics and time resolution, can be usefully applied in color LM images.
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