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Abstract
Background: Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible
for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual
commonly occurring single nucleotide polymorphisms (SNPs) are incremental. However, polygenic models
suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a
greater effect on a disease when considered in combination.

Methods: In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19
SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease
assay. The association between the case-control status and each individual SNP, measured by the odds ratio and
its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the
second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the
interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap
approach, and correction for multiple testing based on the false discovery rate (FDR) principle.

Results: None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated
evidence for gene-gene (SNP-SNP) interaction among these SNPs, which were associated with increased breast
cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-
[Lys751Gln] and IL10-[G(-1082)A]), cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-
[Met108/158Val]), cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln]), and within carcinogen
metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val]) pathways.

Conclusion: The importance of these pathways and their communication in breast cancer predisposition has
been emphasized previously, but their biological interactions through SNPs have not been described. The strategy
used here has the potential to identify complex biological links among breast cancer genes and processes. This
will provide novel biological information, which will ultimately improve breast cancer risk management.
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Background
The existence of dominant predisposition alleles/muta-
tions, conferring a high breast cancer risk, has been con-
firmed with the discovery of BRCA1 and BRCA2 [1,2]. The
functionally defective mutations of BRCA1 and BRCA2
are strongly associated with dramatically increased breast
cancer risk, however, such mutations are found to be rare
(<5%) in unselected breast cancer cases [1-3]. Besides
these rare mutations, commonly occurring single nucleo-
tide polymorphisms (SNPs) have also been shown to
incrementally contribute to breast cancer risk, however,
their individual contributions are relatively small [4-6].

SNPs have been historically classified as commonly occur-
ring (>1%) genetic variation in the general population,
whereas the rare variants with obvious functional conse-
quences on the protein have been classified as mutations.
Compared to mutations, SNPs have been perceived as
functionally insignificant, however, current evidence
emphasizes that a considerable fraction affects the intrin-
sic properties and the function of the proteins to a variable
degree [7-9]. Although the effect of an individual SNP is
generally small, the genetic effect of combinations of
functionally relevant SNPs may additively or synergisti-
cally contribute to increased breast cancer risk. Epistasis or
gene-gene interaction is likely to be a ubiquitous compo-
nent of the genetic architecture of common diseases, such
as breast cancer. The effects of epistasis could dictate func-
tional outcomes over the independent effects of any one
susceptibility gene [10]. Polygenic models have also been
proposed to explain the joint effect of many susceptibility
alleles on breast cancer, but without considering specifi-
cally their possible interactions [11-14].

To estimate breast cancer risk conferred by individual
SNPs, as well SNP-SNP interactions, we have studied 19
SNPs from 18 key cancer genes, involved in DNA repair
(XPD, PTEN, GADD45), cell cycle (CCND1, p27,
BARD1), carcinogen/estrogen metabolism (ESR1, CYP17,
COMT, GSTP1, GSTM3, MTHFR), immune system (IL1a,
IL10, IL13, TNFa, G-CSF) and others (MMP1) (Table 1).
SNPs were initially selected from the best evidence from
published studies in the beginning of the project, in year
2000, and subsequently classified under three categories
(high-, medium- and low- rank), representing SNPs with
a wide range of functional evidence. High-rank SNPs were
supported by studies, which demonstrated the effect of
the SNP on the regulation of expression or protein func-
tion. The medium-rank category is more likely to include
functionally relevant SNPs, as the substitutions are pre-
dicted to significantly affect function, although this was
not confirmed experimentally. This category also includes
SNPs, which were associated with breast cancer risk fac-
tors. The low ranking category, on the other hand, con-
tained SNPs with no functional information. Among the

SNPs studied, XPD-[Lys751Gln], MTHFR-[Ala222Val],
COMT-[Met108/158Val], GSTP1-[Ile105Val] and
CCND1-[Pro241Pro], have been shown to alter the func-
tion or post-translational modification of their encoded
protein [15-27]. MMP1-[1G(-1607)2G] and IL10-[G(-
1082)A] have been shown to alter the transcription and
expression of these genes [28-32]. IL13-[Arg130Gln] has
been suggested to have functional consequences, while
GSTM3-[4595 (3bp ins/del)] was predicted to create a YY1
transcription factor binding site [33,34]. The TNFA-[G(-
308)A] forms a haplotype with some nearby SNPs and
some studies observed increased haplotype dependent
transcriptional activity change while some others do not
[35-38]. CYP17-[C518T], and IL13-[Arg130Gln] were
found to be associated with other cancer related variables,
such as serum estrogen and IgE levels, respectively [39-
41]. BARD1-[Pro24Ser] changes a structurally important
non-polar proline residue to a positively charged serine.
There were no functional speculations for ESR1-
[Ser10Ser], ESR1-[Pro325Pro], PTEN-[(IVS4+109)ins/
delACTAA], IL1A-[Ala114Ser], G-CSF-[Leu185Leu]and
GADD45-[C(IVS3+168)T. Thus, the 19 SNPs studied rep-
resent SNPs with a wide range of functional knowledge
and evidence. The range of the minor allele frequencies of
19 SNPs studied varied between 15-48% in the general
population. The SNPs studied were selected to represent
more commonly occurring variants, in order to gain statis-
tical power to detect SNP-SNP interactions.

Methods
Subject population
A case control study was conducted using biospecimens
and data from the Ontario Familial Breast Cancer Registry
(OFBCR) a participating site in the NIH-funded Breast
Cancer Family Registry [42]. Written informed consent
was obtained from all subjects, and the study protocol was
approved by Mount Sinai Hospital Research Ethics Board.

Cases of invasive breast cancer, pathologically confirmed
and diagnosed between 1996 and 1998 in the province of
Ontario were identified from the population-based
Ontario Cancer Registry. All female cases under 55, a ran-
dom sample (35%) of female cases aged 55 to 69, and all
male cases under age 80 were identified. Physician per-
mission to contact patients was granted for 91% of cases
(7668 of 8453). Patients were then mailed a cancer family
history questionnaire and 65% (4957) completed it. All
respondents who met a defined set of genetic risk criteria
(i.e., Ashkenazi Jewish; diagnosed before age 36 years;
previous ovarian or breast diagnosis; one or more first- or
two or more second-degree relatives with breast or ovar-
ian cancer; one or more second- or third-degree relatives
with either breast cancer diagnosed before age 36 years,
ovarian cancer diagnosed before age 61 years, multiple
breast or breast and ovarian primaries, or male breast can-
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Breast Cancer Association§ Selected Biological 
Processes¶

Yes [83] transcription-coupled nucleotide-
excision repair, ATP-dependent 
DNA helicase activity

Yes [84] neurotransmitter catabolism, 
catecholamine metabolism

Yes [85] Metabolism, glutathione 
transferase activity

Yes† [86] Folate metabolism, methylene-
tetrahydrofolate reductase 
(NADPH) activity

Yes [87] G1/S transition of mitotic cell 
cycle

No collagen catabolism, interstitial 
collagenase activity

No cell-cell signaling, B-cell 
differentiation and proliferation, 
anti-apoptosis.

No response to DNA damage, protein 
ubiquitination, regulation of 
apoptosis

No immune response, inflammatory 
response, signal transduction,

No regulation of cyclin dependent 
protein kinase activity

No Metabolism, glutathione 
transferase activity

No inflammatory response, signal 
transduction, regulation of 
transcription, apoptosis

Yes [4] C21-Steroid hormone 
metabolism,
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14 Table 1: SNPs selected for the study and their functional consequences.

SNPs Minor Allele (%) Interacting SNPs* Alteration Function

Higher Rank (Direct Functional Evidence)

XPD-[Lys751Gln] C: 32.3 Yes Missense Gln (C) allele has decreased DNA 
repair capacity [15-18]

COMT-[Met108/158Val] G: 47.3 Yes Missense Met (A) allele has lower enzymatic 
activity [20,21]

GSTP1-[Ile105Val] G: 31.2 Yes Missense Val (G) allele is associated with 
reduced enzymatic activity [22,23]

MTHFR-[Ala222Val] T: 35.6 No Missense Val (T) allele is associated with 
reduced enzyme activity [19]

CCND1-[Pro241Pro] A: 46.1 Yes Splice Variant (A) allele affects protein stability 
[24-27]

MMP1-[1G(-1607)2G] Ins: 49.7 No Regulatory (Ins) allele shows increased 
transcription [28,29]

IL10-[G(-1082)A] G: 47.6 Yes Regulatory G allele is associated with 
increased expression [30-32]

Medium Rank (Indirect Functional Evidence)

BARD1-[Pro24Ser] T: 37.5 Yes Missense Proline to serine change is a 
significant alteration

IL13-[Arg130Gln] A : 18.3 No Missense Gln allele associated with 
increased IgE levels [41]

p27-[Val109Gly] G: 19.4 No Missense Possible function [33]

GSTM3-[4595 (3bp ins/
del)]

Del: 16.8 No UTR creates recognition site for 
transcription factor YY1 [34]

TNFA-[G(-308)A] A: 17.6 No UTR increased transcriptional activity; 
also no functional change [35-38]

CYP17-[C(518)T] C: 34.3 No Regulatory Associated with increased serum 
estradiol [39,40]
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MAPK signaling pathway, 
regulation of progression through 
cell cycle
regulation of cyclin dependent 
protein kinase activity, DNA 
repair, apoptosis
negative regulation of cell cycle, 
protein tyrosine/serine/threonine 
phosphatase activity
steroid hormone receptor activity, 
signal transduction, regulation of 
transcription
immune response, cell-cell 
signaling, positive regulation of cell 
proliferation
steroid hormone receptor activity, 
signal transduction, regulation of 
transcription

t showed statistically significant overall SNP-disease 
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Lower Rank (No Functional Evidence)

IL1A-[Ala114Ser] T : 27.4 No Missense no published functional evidence No

GADD45-
[C(IVS3+168)T]

C: 31.2 No Intronic no published functional evidence No

PTEN-[(IVS4+109)ins/
del5

Ins: 30.1 No Intronic no published functional evidence No

ESR1-[Ser10Ser] C: 48.5 No Silent no published functional evidence No

G-CSF-[Leu185Leu] G: 38 No Silent no published functional evidence No

ESR1-[Pro325Pro] G: 24.1 No Silent no published functional evidence No

*No and Yes indicates whether the SNP has been shown to be "interacting" or "not interacting" with other SNPs in this study; § The studies tha
risk associations were considered (Ncases > 250 and Ncontrols > 250).
†Cases are women diagnosed with breast cancer before age 40; ¶ GeneCards [88]

Table 1: SNPs selected for the study and their functional consequences. (Continued)
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cer; three or more first-degree relatives with any combina-
tion of breast, ovarian, colon, prostate, or pancreatic
cancer or sarcoma, with at least one diagnosis before age
51 years) were included in the study [43] and a random
sample of 25% of those not meeting criteria were selected
to continue to participate in the OFBCR (n= 2580). This
participation included providing a blood sample (pro-
vided by 62% of all eligible, n = 1601). For the current
study, we restricted the sample to women who identified
themselves as Caucasian and were less than 55 years old.
As we had randomly sampled 25% of those who did not
meet genetic risk criteria, we also randomly sampled 25%
of those who did meet genetic risk criteria in order to cre-
ate a more representative sample of cases. Therefore, the
cases should better represent all cases without enrichment
for genetic risk criteria such as family history. In Table 2,
21.6% of cases in the present study had a first-degree fam-
ily history of breast cancer, which is consistent with the 17
to 22% frequency reported in cases in a number of large
case-control studies [44-46]. Of 459 Caucasian breast can-
cer cases with blood available, 398 were successfully gen-
otyped and included in the study.

Controls were identified by calling randomly selected res-
idential telephone numbers from across the province of
Ontario and were frequency-matched to all female
OFBCR cases by 5-year age group. The number of tele-
phone numbers was 14,653, but 1101 (8%) were invalid
and no contact could be made for 841 (6%). Of the
12,711 households contacted, 7829 (62%) did not have
an eligible individual. No information on eligibility was
provided for 2194 (17%) households. Of the 2688 eligi-
ble individuals identified on the telephone, 1726 (64%)
completed the mailed risk factor questionnaire and 75%
of these agreed to be contacted about providing a blood
sample. The 676 women under age 55 who had agreed to
be approached about blood sampling were asked to pro-
vide a blood sample and 419 (62%) did so. Individuals
who were not Caucasian were excluded from the analysis,
as were those with insufficient DNA or those subsequently
found to be ineligible because of age. The remaining 372
population controls were successfully genotyped in this
study.

Molecular genotyping
All SNPs were analyzed by TaqMan 5'nuclease assay [47]
using the ABI PRISM 7900 HT Sequence Detection System
(version 2.0). Oligonucleotide primers and the dual
labeled allele specific probes were designed using
PrimerExpress version 2.0 (PE Biosystems). Positions of
primers for and probes in their appropriate accession
numbers are given in Additional file 1.

A panel of DNA samples were sequenced for each SNP
region initially, in order to identify control genotypes to

be used in each experiment. PCRs were performed in 96
well plates (AXYGEN) with each plate containing four
control samples for each possible genotype. Genomic
DNA (10 ng) was amplified in a total volume of 10 ul in
the presence of 100 uM of each of the dNTPs, 3 pmoles of
each of the appropriate primers, 2 pmoles of each of the
corresponding dual labelled probes, and 0.025 units of
Platinum Taq DNA Polymerase (InVitrogen). PCR cycling
conditions consisted of 40 cycles of 94°C for 15 sec, 55–
60°C for 15 sec and 72°C for 15 sec. The optimal MgCl2
concentrations and annealing temperatures for each SNP
are given in Additional file 2. The reliability of the results
was determined by re-genotyping a randomly selected
10% portion of the total study population.

Statistical analyses
We sought evidence of association between each of the 19
SNPs and breast cancer risk in a multi-step process. At the
first stage, we calculated crude allele and genotype fre-
quencies for each individual polymorphism and evalu-
ated Hardy-Weinberg equilibrium using a one-degree of
freedom goodness-of-fit test among controls [48]. The
association between the case-control status and each indi-
vidual SNP, measured by the odds ratio (OR) and its cor-
responding 95% confidence interval, was estimated using
unconditional logistic regression after adjustment for age.
Several epidemiological risk factors were also assessed for
association with breast cancer including age, BMI, educa-
tion status, smoking status, family history, menopausal
status, age at menarche, age at menopause, parity and age
at first live birth (Table 2). Some of our analyses were also
carried out adjusting the SNP main effect for the statisti-
cally significant epidemiological risk factors.

All analyses were performed assuming a dominant, reces-
sive and co-dominant effect for each polymorphism. In
the dominant model, both the heterozygous variant and
the rare homozygous variant were combined. In the reces-
sive model, the variant was defined as only the rare
homozygous genotype and in the co-dominant model
both rare homozygous and heterozygous variant effects
were estimated using two dummy variables. In all analy-
ses, the common homozygote genotype in the control
population was defined as the reference category. Age was
considered as a continuous variable. The likelihood ratio
test was used to test the effect of each SNP at the nominal
5% significance level. Akaïke's information criterion [49]
was also used to select the best genetic effect for each SNP.

At the second stage, two-way interactions were investi-
gated using multivariate logistic models. More specifi-
cally, we tested all SNP-SNP interactions. We assumed a
multiplicative interaction effect on the logit scale. Statisti-
cally significant interactions were selected using a forward
stepwise selection procedure to evaluate evidence that
Page 5 of 16
(page number not for citation purposes)



BMC Cancer 2006, 6:114 http://www.biomedcentral.com/1471-2407/6/114
Table 2: Baseline characteristics of breast cancer cases and controls.

Cases Controls P value#

n % n %

Overall 398 372

Age*
≤ 40 79 19.8 69 18.6 0.08

41–45 106 26.6 98 26.4
46–50 144 36.2 113 30.4
51–55 69 17.3 91 24.5
Missing 0 - 1 -

Mean (SD) 44.8 (6.2) 45.2 (6.6) 0.37

BMI
<18.5 7 2.2 4 1.1 0.05

18.5 – 25 178 55.1 166 46.0
25 – 30 81 25.1 116 32.1

> 30 57 17.6 75 20.8
Missing 75 - 11 -

Mean (SD) 25.7 (5.4) 26.3 (5.5) 0.14

Education
Up to high school 122 35.4 101 27.2 0.06
Technical school 27 7.8 34 9.2

Some college/
University

196 56.8 236 63.4

Missing 53 - 1 -

Smoking status
Ever smoked 184 53.2 209 56.3 0.40

Never smoked 162 46.8 162 43.7
Missing 52 - 1 -

Family History
Yes‡ 86 21.6 34 9.2 <10-5

No 312 78.4 337 90.8
Missing 0 - 1 -

Menopausal status
Pre-menopausal 296 84.0 261 82.1 0.42
Post-menopausal 56 16.0 57 17.9

Missing† 46 - 54 -

Age at menarche
Age ≤ 12 154 45.2 177 48.1 0.43
Age > 12 187 54.8 191 51.9
Missing 57 - 4 -

Age period stopped
Pre-menopausal 296 84.6 261 82.1 0.68

Age ≤ 49 39 11.1 42 13.2
Age > 49 15 4.3 15 4.7
Missing 48 - 54 -

Parity (# of live 
births)

Nulliparous 68 19.6 63 17.0 0.85
1 child 56 16.1 57 15.4

2 children 145 41.8 157 42.3
Page 6 of 16
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≥ 3 children 78 22.4 94 25.3
Missing 51 - 1 -

Age at 1st live birth
Nulliparous 68 19.7 63 17.0 0.63
≤ 24 years 126 36.4 136 36.7
> 24 years 152 43.9 172 46.4

Missing 52 - 1 -

*Age of first breast cancer diagnosis for cases and age at interview for controls
†Uncertain or missing data
‡ Women with first-degree relatives with breast cancer
# χ2 test for categorical variables or Student's t test (equal variance) for continuous variables

Table 2: Baseline characteristics of breast cancer cases and controls. (Continued)
specific interactions were independently associated with
breast cancer. The initial model included all SNPs and age
as main effects, and then searched for the most significant
candidate interactions to enter into the model based on
the score statistics at the 5% level. Backward elimination
of variables was then performed using the likelihood ratio
test (LRT) also at the level of 5%. Forward stepwise selec-
tion procedure has proven to be efficient in assessing
interaction effects as compared to backward elimination
when testing multiple interactions. First, it is more time
efficient and second, when using backward elimination, a
relatively large number of predictor variables may increase
the risk of complete separation of the two outcome
groups, which would result in numerical problems in esti-
mating the model parameters [50]. Since the genetic risk
model is uncertain for most of the SNPs considered, we
performed these tests on the co-dominant models only.
Therefore, tests for SNP-SNP interactions have four
degrees of freedom. All these analyses were also per-
formed adjusting the interaction effects for the risk factors
found to be associated with breast cancer risk at a signifi-
cance level of 5% (BMI and family history).

We have also estimated the amount of linkage disequilib-
rium (LD) between the two ESR1 SNPs separated by about
140 kb on chromosome 6 and investigated their haplo-
type effect on breast cancer using the software
"Unphased" from Dudbridge [51].

The large number of interactions (n = 171) analyzed could
lead to false positive results, therefore, we adopted two
different strategies to avoid this problem: The first
approach included the assessment of the selection proce-
dure using bootstrapping and the second one included an
adjustment for multiple testing using detection rate
(FDR). The bootstrap approach selects random samples of
size n (n1 cases + n2 controls) with replacement from the
original data [52]. Repeating the sampling procedure a
large number of times provides information on the varia-
bility and validity of the parameter estimate and model
selection. We repeated the selection procedure on 1,000

random samples (each random sample comprising 398
cases and 372 controls), generated from the original sam-
ple and the number of times a particular interaction was
selected was reported. The achieved significance level
(ASL) from the bootstrap test of hypotheses was also com-
puted. Following Efron and Tibshirani [52], the ASL was
obtained by comparing the observed LRT statistic for a
specific interaction to its null distribution, evaluated by
randomly assigning the case-control status in 1,000 boot-
strap samples. The second approach tries to correct for-
mally for the multiple testing problem using the FDR
principle [53]. This procedure does not control the exper-
iment-wise error rate like the Bonferroni-type correction
(which is known to be conservative) but estimates the
proportion of errors among the rejected null hypotheses.
FDR was applied to both main effect models and interac-
tion models using bootstrap P-values. For these latter
models, bootstrap P-values and FDR-adjusted P-values
correspond to interaction effects in multivariate logistic
models that include all main effects and only the interac-
tion of interest. This is equivalent to the test performed at
the first step of the forward stepwise regression. We also
computed the probability of no true association between
an interaction and the disease status given a statistically
significant result (i.e. the false positive report probability,
FPRP) proposed by Wacholder et al. [54]. This statistic
depends on the observed P-value but also on both the
prior probability that the association between the SNP-
SNP interaction and the disease is real and the statistical
power of the test. The power of the test was determined by
computing the expected value of the likelihood ratio test
statistic, assuming our data were analyzed by the uncon-
ditional age-adjusted logistic model and with the specific
coding of the SNP-SNP interactions using four dummy
variables (see above). This computation was imple-
mented into an R program, following the method
described by Gauderman [55,56]. We used informative
prior probabilities using the functional studies presented
in Table 1 to classify the importance of each SNP. Follow-
ing Wacholder's recommendations [54], the probability
assigned to each SNP was 0.10, 0.01 and 0.001 for the
Page 7 of 16
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high-, medium-, and low-ranked SNPs respectively. The
prior joint probability for each pair of SNPs was just the
product of the individual SNP probability. Finally, we
used the bootstrap P-values in the FPRP computation.

Results
Table 1 gives the minor allele frequencies of 19 SNPs esti-
mated in our control population. None of the SNP distri-
butions showed deviation from Hardy-Weinberg
equilibrium in this sample. The distribution of selected
epidemiologic risk factors in cases and controls is shown
in Table 2. Cases and controls were similar with respect to
the distribution of smoking status, menopausal status, age
at menarche, age at menopause, parity, and age at first
birth. Controls tended to have a higher BMI (p = 0.05) and
level of education (p = 0.06) than cases. Cases were also
more likely to have a positive family history of breast can-
cer than controls, and this difference was highly signifi-
cant (p = < 10-5). Logistic regression analysis was
performed for all SNPs in the context of recessive, domi-
nant and co-dominant models after adjustment for age.
The estimated ORs and 95% CIs for all SNPs under co-
dominant models are shown in Table 3.

Among the 19 SNPs studied, XPD-[Lys751Gln] was the
only one showing a significant main effect in our sample
based on the crude P-value. However, after correction for
multiple testing using FDR, the effect was not significant.
Our results remained unchanged when the models were
also adjusted for BMI and family history. Results of two-
way interaction analyses are shown in Table 4. Since the
genetic risk models are uncertain for most of the SNPs
considered, we performed these tests on the co-dominant
models only. A total of nine SNP-SNP interactions were
consistently selected in at least 30% of the random sam-
ples by the stepwise procedure. Interactions were
observed more frequently for XPD-[Lys751Gln] and IL10-
[G(-1082) (68%), and COMT-[Met108/158Val] and
CCND1-[Pro241Pro] (61%). Interactions between
GSTP1-[Ile105Val] and COMT-[Met108/158Val], CYP17-
[C(518)T] and GADD45-[C(IVS3+168)T], and BARD1-
[Pro24Ser] and ESR1-[Pro325Pro] selected in 54%, 53%
and 51% of the random samples, respectively. All interac-
tions, except BARD1-[Pro24Ser] and ESR1-[Pro325Pro],
and, BARD1-[Pro24Ser] and p27-[Val109Gly], were statis-
tically significant (P < 0.05) based on the bootstrap P-val-
ues.

After correction for multiple testing using FDR principle,
four interactions remained significant at the 5% level;
XPD-[Lys751Gln] and IL10-[G(-1082)A] (p = 0.007),
GSTP1-[Ile105Val] and COMT-[Met108/158Val] (p =
0.007), COMT-[Met108/158Val] and CCND1-
[Pro241Pro] (p = 0.014), and BARD1-[Pro24Ser] and
XPD-[Lys751Gln] (p = 0.014). Based on the False Positive

Report Probability (FPRP) approach, computed using the
functional importance of each SNP, we found that three
interactions were noteworthy at the 0.2 FPRP level (Table
4); XPD-[Lys751Gln] and IL10-[G(-1082)A] (FPRP =
0.092), GSTP1-[Ile105Val] and COMT-[Met108/158Val]
(FPRP = 0.169), and COMT-[Met108/158Val] and
CCND1-[Pro241Pro] (FPRP = 0.093). The effect size of
each SNP-SNP genotype combination for the four signifi-
cant interactions is given in Table 5.

None of these interactions were significant after the more
conservative Bonferroni adjustment. The Bonferroni
adjusted P-values were 0.19 for both XPD-[Lys751Gln]
and IL10-[G(-1082)A], and GSTP1-[Ile105Val] and
COMT-[Met108/158Val] interactions. The P-values for
the COMT-[Met108/158Val] and CCND1-[Pro241Pro],
and BARD1-[Pro24Ser] and XPD-[Lys751Gln] interac-
tions were 0.38.

The results of our multivariate analyses adjusted for age,
BMI and family history confirmed the role of the most
important interactions. The bootstrap P-values associated
with XPD-[Lys751Gln] and IL10-[G(-1082)A], COMT-
[Met108/158Val] and CCND1-[Pro241Pro], GSTP1-
[Ile105Val] and COMT-[Met108/158Val], and BARD1-
[Pro24Ser] and XPD-[Lys751Gln] were all significant
(respectively, P = 0.014, P = 0.020, P = 0.022 and P =
0.020), however the significance of the tests decreased due
to the high proportion of individuals missing BMI infor-
mation. Therefore, only the analyses adjusted for age are
presented in Table 4.

The amount of LD between the two ESR1 SNPs was rela-
tively small, with a D' [57] of 0.07 in cases and 0.15 in
controls, and none of the four haplotypes was signifi-
cantly associated with breast cancer. Therefore, only the
interaction effect between the two SNPs is presented.

Discussion
In this study, we have analysed the contribution of 19
SNPs from 18 cancer-related genes, to breast cancer risk in
a case-control study of 398 breast cancer cases and 372
population controls, sampled from the population-based
OFBCR. All cases and controls were Caucasian women
under age 55. We found that among 19 SNPs, XPD-
[Lys751Gln] substitution was the only one showing a sig-
nificant association with breast cancer risk. However, after
correction for multiple testing, the effect became insignif-
icant, suggesting that this finding might be due to chance.
Overall we found little evidence of breast cancer risk con-
ferred by individual commonly occurring SNPs in this
dataset.

Our main focus was to understand the contribution to
breast cancer risk of functionally relevant SNP-SNP inter-
Page 8 of 16
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Table 3: Analysis of individual SNP effects on breast cancer. Estimated odds-ratios (OR) and 95% confidence intervals (CI) associated 
with each of the 19 polymorphisms selected under co-dominant age-adjusted main effect models (the significant associations are in 
bold).

SNP Genotype Cases n (%) Controls n (%) OR* 95% CI

COMT AA 94 (23.6) 96 (25.8) 1.0. -
Met108/158Val AG 202 (50.8) 196 (52.7) 1.3 (0.9–1.9)

GG 102 (25.6) 80 (21.5) 1.3 (0.9–2.0)

CCND1 GG 104 (26.1) 114 (30.6) 1.0. -
Pro241Pro AG 203 (51.0) 178 (47.8) 1.3 (0.9–1.9)

AA 91 (22.9) 80 (21.5) 1.3 (0.9–1.8)

IL13 GG 240 (60.3) 252 (67.8) 1.0. -
Arg130Gln AG 144 (36.2) 105 (28.2) 0.8 (0.4–1.8)

AA 14 (3.5) 15 (4.0) 1.2 (0.9–1.6)

IL1A GG 204 (51.3) 179 (48.1) 1.0. -
Ala114Ser GT 155 (38.9) 164 (44.1) 1.0 (0.7–1.3)

TT 39 (9.8) 29 (7.8) 1.7 (1.0–2.8)

G-CSF AA 146 (36.7) 138 (37.1) 1.0. -
Leu185Leu AG 193 (48.5) 182 (48.9) 1.0 (0.7–1.3)

GG 59 (14.8) 52 (14.0) 1.1 (0.7–1.8)

ESR1 TT 107 (26.9) 97 (26.1) 1.0. -
Ser10Ser CT 200 (50.3) 187 (50.3) 1.1 (0.7–1.6)

CC 91 (22.9) 88 (23.7) 1.1 (0.7–1.4)

TNF-A GG 274 (68.8) 237 (63.7) 1.0. -
G(-308)A AG 113 (28.4) 120 (32.2) 0.9 (0.4–2.1)

AA 11 (2.8) 15 (4.0) 0.9 (0.7–1.2)

CYP17 TT 170 (42.7) 172 (46.2) 1.0. -
C(518)T CC 60 (15.1) 49 (13.2) 1.5 (1.0–2.4)

CT 168 (42.2) 151 (40.6) 1.3 (0.9–1.7)

BARD1 CC 174 (43.7) 142 (38.2) 1.0. -
Pro24Ser CT 188 (47.2) 184 (49.5) 0.8 (0.6–1.1)

TT 36 (9.0) 46 (12.4) 0.8 (0.5–1.2)

XPD AA 146 (36.7) 165 (44.3) 1.0. -
Lys751Gln AC 194 (48.7) 167 (44.9) 1.3 (0.9–1.7)

CC 58 (14.6) 40 (10.8) 1.6 (1.0–2.6)

IL10 AA 90 (22.6) 107 (28.7) 1.0. -
G(-1082)A AG 205 (51.5) 194 (52.2) 1.1 (0.7–1.5)

GG 103 (25.9) 71 (19.1) 1.1 (0.7–1.6)

ESR1 CC 243 (61.1) 213 (57.3) 1.0. -
Pro325Pro CG 126 (31.7) 138 (37.1) 1.0 (0.7–1.3)

GG 29 (7.3) 21 (5.6) 1.0 (0.5–1.8)

MTHFR CC 162 (40.7) 160 (43.0) 1.0. -
Ala222Val CT 170 (42.7) 161 (43.3) 1.1 (0.8–1.5)

TT 66 (16.6) 51 (13.7) 1.3 (0.8–2.0)

GSTP1 AA 208 (52.3) 175 (47.0) 1.0. -
Ile105Val AG 149 (37.4) 161 (43.3) 1.1 (0.8–1.5)

GG 41 (10.3) 36 (9.7) 1.3 (0.8–2.0)
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actions within and between different cancer pathways.
Recently, there has been increasing evidence regarding the
joint effect of commonly occurring SNPs on cancer risk,
supported by polygenic breast cancer models [11-14].
Although this model was originally based on the additive
effects of multiple risk alleles [14,58] (each with a low to
moderate risk) it can be generalized by considering inter-
action effects between the susceptibility alleles.

In this study, we have shown several statistically signifi-
cant interactions between SNP pairs. Despite the low false
discovery rates observed for certain interactions and
small-unadjusted P-values, caution should be used when
interpreting these results. First, the statistical modeling of
interactions through a product term might not corre-
spond to or reflect any biological interaction such as syn-
ergy or antagonism [59,60]. Second, as in any association
study, epidemiologic limitations such as selection bias or
confounding have the potential to lead to false-positive
results. Cases were selected from a population-based can-
cer registry and although selection may have occurred,
there was no evidence of selection related to family his-
tory of breast cancer [43,61]. This analysis was also
restricted to Caucasians who had the highest response
rates and also minimizes the potential for population
stratification.

To assess the robustness of interaction models, we used
two different strategies: an internal validation procedure
based on bootstrap re-sampling methods [52] and a cor-
rection for multiple testing using the FDR principle [53].

The first approach allowed us to prioritize nine "candi-
date" SNP-SNP interactions that were consistently
selected by the stepwise procedure across the bootstrap
samples (i.e. in more than 30% of the 1,000 random sam-
ples) and that were significant based on the age adjusted
bootstrap P-values. This method can be used to assess the
variability of our model selection but does not control for-
mally for the multiple testing problem. Although correc-
tion for multiple testing can be performed under the
bootstrap framework [62] or using the familiar Bonfer-
roni correction, these procedures can be very conservative.
We therefore used the FDR principle that does not control
the experiment-wise error rate but estimates the propor-
tion of errors among the rejected null hypotheses. Using
this correction, none of the SNP main effects were signifi-
cant, but four 2-way interactions had adjusted P-values
lower than 5%. The stepwise selection procedure applied
to our original data set without validation or correction
would have detected 14 significant SNP-SNP interactions
at the 5% level. Based on our validation procedures, ten of
these are likely to be false positive results. This shows the
importance of model validation in studies of gene interac-
tions [63]. Although this validation was internal (i.e.
using the same data set), we intend to replicate our results
using an external data set.

To interpret our positive results, we should also remember
that our SNPs were selected from genes involved in can-
cer, and enriched by SNPs that are likely to affect the func-
tion of the encoded protein. Using a Bayesian approach,
Wacholder [54] recently showed how the probability of

GADD45 TT 189 (47.5) 177 (47.6) 1.0. -
C(IVS3+168)T CC 32 (8.0) 43 (11.6) 0.8 (0.5–1.3)

CT 177 (44.5) 152 (40.9) 0.9 (0.7–1.2)

P27 TT 256 (64.3) 235 (63.2) 1.0. -
Val109Gly GG 17 (4.3) 15 (4.0) 1.0 (0.5–2.0)

GT 125 (31.4) 122 (32.8) 1.0 (0.7–1.3)

MMP1 Del/del 110 (27.6) 104 (28.0) 1.0. -
1G(-1607)2G Ins/ins 92 (23.1) 94 (22.6) 0.8 (0.6–1.3)

Ins/del 196 (49.2) 184 (49.5) 1.0 (0.7–1.4)

PTEN Del/del 171 (43.0) 196 (52.7) 1.0. -
(IVS4+109) ins/

delACTAA
Ins/ins 47 (11.8) 38 (10.2) 1.3 (0.8–2.1)

Ins/del 180 (45.2) 138 (37.1) 1.2 (0.9–1.7)

GSTM3 Ins/ins 271 (68.1) 272 (73.1) 1.0. -
4595 (3bp ins/del) Del/del 7 (1.8) 9 (2.4) 0.9 (0.4–2.1)

Ins/del 120 (30.1) 91 (24.5) 0.9 (0.7–1.3)

*Age-adjusted odds ratios from unconditional logistic regression analyses.

Table 3: Analysis of individual SNP effects on breast cancer. Estimated odds-ratios (OR) and 95% confidence intervals (CI) associated 
with each of the 19 polymorphisms selected under co-dominant age-adjusted main effect models (the significant associations are in 
bold). (Continued)
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no true association between a genetic variant and disease
given a statistically significant result (i.e. the false positive
report probability (FPRP) depends on the prior probabil-
ity that the association is real and also on the statistical
power of the test. Although the determination of a prior
probability is quite challenging [64], selecting SNPs based
on their functions clearly reduce the FPRP. Based on this
approach, we found that three out of the four significant
interactions were noteworthy at the 0.2 FPRP level: XPD-
[Lys751Gln] and IL10-[G(-1082)A], GSTP1-[Ile105Val]
and COMT-[Met108/158Val], and COMT-[Met108/
158Val] and CCND1-[Pro241Pro]. More complex
approaches to account for the prior knowledge of the
functional importance of each SNP have also been pro-
posed [65-68]. We intend to use some of these methods to
confirm our results in future analyses. Another problem to
consider is the chance for false negative results. SNPs that
were considered as negative after our conservative multi-
ple comparison adjustment might still be worthy of inves-
tigation in other data sets. Therefore, some of our results
must be viewed as hypothesis generating. Validation of
our results (positive and negative) in an independent data
set will provide further insight into the role of these SNPs
in breast cancer etiology.

The novelty of our study is the demonstration of statisti-
cally significant interactions between SNPs that did not
have an effect on breast cancer risk individually. Most
studies have investigated the main effects of commonly
occurring SNPs and categorized them as "not associated",
and thus not important in breast cancer risk. However,
our study suggests that SNPs without main effects or with
main effects, too small to detect, may interact with others
and confer an increased risk for breast cancer. Larger stud-
ies will allow a better application of our model, in which

more complex interactions could be investigated. SNP-
SNP interactions in breast cancer development have been
also reported in other studies, which targeted the SNPs of
the carcinogen metabolism genes, including GSTM1,
GSTT1, GSTP1, GSTM3 and CYPs [69-73]. These reports
support our findings regarding SNP-SNP interactions on
breast cancer risk, although they were only limited to the
interactions of SNPs within a single cancer pathway.

In the context of breast cancer predisposition, our study
suggests there is cross talk between the alleles of proteins
of different cancer pathways including DNA repair and
the immune system (XPD-[Lys751Gln] and IL10-[G(-
1082)A]), cell cycle and estrogen metabolism (COMT-
[Met108/158Val] and CCND1-[Pro241Pro]), cell cycle
and DNA repair (BARD1-[Pro24Ser] and XPD-
[Lys751Gln]) as well as within a single pathway such as
estrogen metabolism (GSTP1-[Ile105Val] and COMT-
[Met108/158Val]). Among the four interactions identi-
fied, COMT and XPD seem to play a central role since they
interacted with different proteins in our set. XPD interac-
tion was identified with both IL-10 and BARD1; whereas
COMT interaction was identified with CCND1 and
GSTP1. Estimation of odds ratios for particular genotype
combinations can show considerable increase in the risk
associated with breast cancer. For example the combina-
tion of rare genotypes of BARD1-[Ser24] (TT genotype)
and XPD-[Gln751] (CC genotype) resulted in a relative
risk of 7.4 (95% CI: 1.3-12.4). This is an excellent example
where rare genotype combinations are associated with
increased cancer risk. Such findings would have been
missed in the absence of interaction analysis. These results
emphasize the need for larger studies where the risk asso-
ciated with such rare genotype combinations can be vali-
dated.

Table 4: Analysis of two-way SNP interaction effects on breast cancer.

Two-way Interactions between polymorphisms Crude P-values‡ Bootstrap 
frequency of 

stepwise variable 
selection*

Bootstrap
P-values†

FDR adjusted
P-values§

FPRP¶

XPD-[Lys751Gln] and IL10-[G(-1082)A] 0.035 68% 0.001 0.007 0.092
COMT-[Met108/158Val] and CCND1-[Pro241Pro] 0.010 61% 0.002 0.014 0.169
GSTP1-[Ile105Val] and COMT-[Met108/158Val] 0.036 54% 0.001 0.007 0.093
CYP17-[C(518)T] and GADD45-[C(IVS3+168)T] 0.024 53% 0.018 0.062 0.999
BARD1-[Pro24Ser] and ESR1-[Pro325Pro] 0.039 51% ns|| ns -
TNFA-[G(-308)A] and p27-[Val109Gly] 0.016 49% 0.025 0.079 0.996
BARD1-[Pro24Ser] and p27-[Val109Gly] 0.021 44% ns ns -
BARD1-[Pro24Ser] and XPD-[Lys751Gln] 0.024 36% 0.002 0.014 0.671
ESR1-[Ser10Ser] and ESR1-[Pro325Pro] 0.028 30% 0.097 ns 0.999

‡ Probability to enter the model in the stepwise multivariable model based on the score statistic in the original data set.
*Proportion of times the interaction is selected by the stepwise multivariable model in the 1,000 bootstrap samples.
†P-values estimated by bootstrap analysis in the 1,000 random samples.
§False Discovery Rate (FDR) adjusted P-values.
||ns: p > 0.10.
¶False Positive Report Probability
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We have further investigated the biological relationships
between XPD and COMT interactions with other SNPs
using protein-protein interaction databases and a litera-
ture search. As seen in Figure 1, statistical interaction
between XPD-[Lys751Gln] and BARD1-[Pro24Ser] can be
accounted for by protein-protein interactions among

ERCC2 (XPD), TP53, BRCA1 and BARD1 [74,75]. Simi-
larly the statistical interaction between XPD-[Lys751Gln]
and IL10-[G(-1082)A] can be accounted for by protein-
protein interactions among XPD(ERCC2), BRCA1, TP53,
STAT5A, JAK1, IL-10RA and IL-10 [74-77]. It is important
to point out that interaction of XPD (ERCC2) with IL-10

Table 5: Estimated odds-ratios (ORs) and 95% confidence intervals (CIs) associated with the genotype combinations of the four 
significant two-way SNP-SNP interactions.

SNP-SNP interaction SNP Genotypes Cases n Controls n OR† 95% CI†

XPD IL10

XPD-[Lys751Gln] and IL10-[G(-1082)A] AA AA 40 57 1.0 -
AC AA 45 39 1.7 [0.9–2.7]
CC AA 21 8 3.7 [1.6–9.7]
AA AG 74 89 1.2 [0.8–1.9]
AC AG 99 71 1.9 [1.3–3.1]
CC AG 22 22 1.4 [0.8–3.1]
AA GG 41 26 2.2 [1.3–3.9]
AC GG 42 50 1.2 [0.7–2.4]
CC GG 14 10 2.2 [0.8–5.5]

BARD1 XPD

BARD1-[Pro24Ser] and XPD-[Lys751Gln] CC AA 66 60 1.0 -
CT AA 68 90 0.7 [0.4–1.1]
TT AA 21 22 0.9 [0.4–1.8]
CC AC 82 67 1.1 [0.7–1.8]
CT AC 89 69 1.2 [0.7–1.9]
TT AC 15 24 0.6 [0.3–1.2]
CC CC 23 13 1.6 [0.7–3.4]
CT CC 27 26 1.0 [0.5–1.9]
TT CC 7 1 7.4 [1.3–12.4]

COMT CCND1

COMT-[Met108/158Val] and CCND1-[Pro241Pro] AA GG 21 40 1.0 -
AG GG 57 53 1.9 [1.3–4.6]
GG GG 25 21 2.4 [1.0–4.9]
AA AG 48 36 2.6 [1.3–4.5]
AG AG 110 92 2.3 [1.3–4.5]
GG AG 38 45 1.6 [1.0–3.2]
AA AA 22 29 1.4 [0.7–3.3]
AG AA 43 37 2.2 [1.1–4.3]
GG AA 34 19 3.3 [1.9–7.2]

GSTP1 COMT

GSTP1-[Ile105Val] and COMT-[Met108/158Val] AA AA 30 49 1.0 -
AG AA 46 48 1.5 [0.9–2.8]
GG AA 15 8 3.4 [1.1–11.4]
AA AG 95 92 1.7 [1.0–2.6]
AG AG 91 69 2.2 [1.4–3.6]
GG AG 24 21 1.8 [0.9–4.8]
AA GG 54 36 2.6 [1.4–4.2]
AG GG 36 41 1.5 [0.9–2.7]
GG GG 7 8 1.6 [0.5–4.2]

†OR and CIs estimated by bootstrap analysis in the 1,000 random samples.
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and BARD1 revolves around the protein-protein interac-
tion of BRCA1 and TP53. As shown previously, mutations
in these two proteins lead to predisposition to hereditary
breast cancer [1,78]. This supports the observation that
SNPs of XPD (ERCC2), BARD1 and IL-10 may be good
candidates for breast cancer predisposition, which may
also modify the effect of BRCA1 in carriers. On the other
hand, statistical interaction of COMT-[Met108/158Val]
with GSTP1-[Ile105Val] and CCND1-[Pro241Pro]
revolves around estrogen metabolism and cell prolifera-
tion (Figure 2). Estrogen is an important risk factor for
breast cancer. Estrogen is broken down into reactive spe-
cies by phase I enzymes, which are then inactivated by
phase II enzymes such as the methylation of catechol
estrogens by COMT or the conjugation of oxidized estro-
gen-quinones by GSTP1. The relation between COMT and
GSTP presumably depends on reduced inactivation of the
aforementioned reactive estrogen intermediates, because
of decreased activities of both enzymes [4,22,23]. The reg-
ulated level of estrogen might in turn influence the cell
proliferation through CCND1 transcription [4,24-27,79].

The biological pathways investigated in this study have
been previously implicated in breast cancer development;
however, their genetic interactions, detected through vari-
ant alleles (SNPs), have not been previously described.
These data and the statistical approaches applied to them
have the potential to assist in the identification of com-
plex biological relationships among cancer processes dur-
ing the development of breast cancer. When moving into
the era of "genetic dissection of complex traits [80]", we
will need to abandon the concept of single genetic deter-

minants to favor the idea of a "web of causation [81]"
involving multiple and complex pathways, which in turn
could implicate many genes and environmental factors.
This study provides a possible framework for a functional
SNP-SNP interaction-based model for breast cancer risk.

Conclusion
Our focus in this study has been to uncover SNP-SNP
interactions, which additively or synergistically contribute
to breast cancer risk. From our small pool of SNPs, we
have shown significant statistical interactions suggesting
biological cross talk among genes/SNPs from DNA repair,
cell cycle, immune system and carcinogen metabolism
pathways. Our immediate task is to apply this strategy to
a larger sample, with the aim of replicating our findings
and investigating more complex interactions (involving
three or more SNPs). This line of research has the poten-
tial to identify important cross talk between members of
the cancer pathways in the disease state. This study not
only provides insight into the analysis of the multi-genic
nature of breast cancer, but also provides important infor-
mation regarding how cell function relates to breast can-
cer development. We believe that these and other
interactions in breast cancer will one day be identified and
used in clinics to identify individuals at increased risk of
breast cancer and develop preventive strategies.
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Evaluation of statistical interactions of XPD with IL-10 and BARD1 on the bases of protein-protein interactions of their intermediate proteinsFigure 1
Evaluation of statistical interactions of XPD with IL-
10 and BARD1 on the bases of protein-protein inter-
actions of their intermediate proteins. Solid lines and 
dashed lines are used wherever there is a protein-protein or 
a statistical interaction, respectively. The protein-protein 
interaction map has been obtained using a protein-protein 
interaction database [82].

A simplified drawing showing the roles of COMT and GSTP1 enzymes in estrogen metabolismFigure 2
A simplified drawing showing the roles of COMT and 
GSTP1 enzymes in estrogen metabolism. The figure is 
modified from [4] with permission.
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