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A novel and convenient method utilizing the Aubé reaction to access a new class of compounds that are similar to carbocyclic

nucleosides is reported. The azido alcohol derived from Vince lactam undergoes the Aubé reaction with various cyclic ketones to

give cyclopentenyl-substituted lactams. Upon dihydroxylation, this affords the N-cyclopentenyl-lactam compounds in racemic

form. Given the numerous uses of nucleosides and related compounds, we were interested in the synthesis of carbocylic nucleoside

mimics. The attempts and results are described herein.

Introduction

One popular method for the synthesis of N-substituted lactams
is the Aubé reaction [1-4]. Over the last few decades, this reac-
tion has gained popularity and resulted in the production of a
variety of chemical structures and generated new techniques in
chemistry [5-10]. Additionally, it was applied to the synthesis

of different natural products of biological importance [11-15].

In the Aubé reaction, an intermolecular reaction takes place

between an azido alcohol and a ketone to provide lactams

through an in situ-generated hemiacetal as a temporary tether.

This helps the azide addition in an intramolecular fashion,
followed by ring expansion (Scheme 1) [1-4].

Recently, we applied this reaction for the synthesis of
sugar—lactam conjugates starting from an azido-alcohol
embedded in sugar derivatives and cyclic ketones [16]. In
continuation of this work (and also to expand the potential of
this chemistry), a new class of compounds were prepared.
These cyclopentenoid—lactams, which look like carbocyclic
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Access to sugar—lactam conjugates using the Aubé reaction

(previously reported by our group)
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Scheme 1: The Aubé reaction and its selected applications.

nucleosides, were prepared using the Aubé reaction where it
was planned to use an azido alcohol embedded in a cyclopen-
tenoid system. It is well established in the literature that carbo-
cyclic nucleosides and related compounds are important to
pharmaceuticals and these compounds have been the focus of
many studies and a number of reported syntheses [17-30]. Some
selected compounds and their important associated activities are
highlighted in Figure 1.

0.0
HO OH
OH

sugar—lactam conjugate

N-cyclopentenyl-lactam

Results and Discussion

To our knowledge, there are no reports of the synthesis of
cyclopentenoid lactams, likely due to the lack of suitable
methods to synthesize these compounds. This gives the oppor-
tunity to explore the Aubé reaction, which evolves an entirely
new family of compounds by using simple chemistry. In this
paper, efforts towards target molecules and the details of new
chemistry developed during this process are discussed. To begin
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Figure 1: Selective carbocyclic nucleoside analogues from the literature and our initial designs.

with, the azido alcohol 3 required for the present work was
envisaged from Vince lactam (+)-1. The known amino alcohol
[31] (prepared from Vince lactam by following literature pro-
cedures) was treated with triflyl azide or imidazole sulfonyl
azide [32,33] using standard conditions to furnish the desired
azido alcohol (+)-3 as an 8:1 regioisomeric mixture. However,
we could neither purify nor isolate compound (£)-3 in pure
form, which was always accompanied by an undesired isomeric
compound. To confirm whether it is a diastereomer or regio-
isomer, we performed two derivatization reactions. Firstly,
reduction of the azido functionality in compound (£)-3 to the
corresponding amine followed by Boc protection resulted in
two compounds. Fortunately, these were separable by silica gel
column chromatography to give compound (+)-4 and (£)-4’ in
good yields. The major compound (+)-4 was known in the
literature and the data were compared with that reported [34].
The structure of the minor diastereomer (+)-4> was assigned
based on 2D NMR correlations. Secondly, the azido alcohol
(£)-3 was subjected to a click reaction with phenylacetylene
under standard conditions and the resulting two compounds,
(£)-5 and (£)-5°, were again separable by column chromatog-
raphy and subsequently characterized. The NMR analysis
and comparison with literature data [35] confirmed the struc-

tures of the major (+)-5 and minor isomer (£)-5° (based on

2D NMR analysis), as shown in Scheme 2. These two experi-
ments proved that the major azido alcohol is the desired 1,3-
substituted cyclopentenyl derivative (+)-3, with the minor being
(+)-3.

As we could not separate the isomers of azido alcohol (+)-3
[36], we decided to proceed with the mixture. The Aubé reac-
tion was performed under similar conditions as the previous
work [16]. Cyclohexanone was reacted with azido alcohol (£)-3
in dichloromethane with varying amounts of BF3-OEt; and the
results are summarized in Scheme 3 and Table 1. We were able
to achieve a moderate yield of cyclic lactam (+)-6 with excess
ketone, Lewis acid and longer reaction times. While this
research was underway, Aubé et al. proposed that an unfavor-
able catalyst—product interaction results in product inhibition,
thus deterring the progress of the reaction under catalytic condi-
tions, which leads to the use of excess Lewis acid in super stoi-
chiometric amounts [37,38]. They reported that the use of hexa-
fluoroisopropanol (HFIP) can reduce the Lewis acid require-
ment. Accordingly, by varying a few conditions, we were able
to optimize the reaction as summarized in Table 1. The opti-
mized conditions are: 2.5 equiv of ketone, 4-5 equiv of HFIP
and one equiv of BF3-OEt, followed by hydrolysis with aq.
KOH.
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Scheme 3: Aubé reaction of cylopentenyl azido alcohol 3 with cyclohexanone.

Table 1: Optimization of Aubé reaction conditions.

BF3-Et,0 Solvent Reaction time Yield
0.2 equiv CHJCl, 15h =10%
1.5 equiv CHJCl, 1d 20%
2.5 equiv CHCl, 1d 60%
0.2 equiv HFIP 15h =10%
0.5 equiv HFIP 7h =10%
1.0 equiv HFIP 2h 72%

Upon careful examination of the spectral data and on the basis
of the recent results from the Aubé group [37,38], the initially
anticipated 1,3-substituted structure was revised to 1,2-substi-

tuted cyclopentenoid lactams (+)-6, as drawn in Scheme 3.

With the optimized conditions in hand, we then tested the scope
of the reaction using different cyclic ketones. Thus, the reaction
of the azido alcohol (+)-3 with cyclobutanone and cyclopen-
tanone afforded the corresponding cyclopentene-substituted
lactams (+)-7 and (+)-8 in good yields. The 2D NMR analysis
and HMBC correlations for one of the products (+)-8 are shown
in Scheme 4 and confirmed the 1,2-substitution in the cyclopen-
tene ring of the product. Similarly, lactam (+)-9 was prepared

from 4-pyranone with (+)-3 and obtained in moderate yield.

To further broaden the scope of this method, the reaction
was also performed with substituted cyclic ketones to give
corresponding lactam products in only moderate yields.
Unfortunately, in most cases, the desired lactams could not be

isolated in pure form and were contaminated with cleaved sec-
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Scheme 4: Substrate scope of the reaction: preparation of cyclopen-
tene-substituted lactams and key NMR correlations (HMBC) of com-
pound (+)-8.

ondary amides, diastereomers, regioisomers, etc. Finally, the
reaction of the constrained symmetrical ketone 6,6-dimethyl-bi-
cyclo[3.1.0]hexan-3-one [39] with (£)-3 resulted in compound
(+)-10 in 40% yield. Since all synthesized compounds contain a
1,2-substituted cyclopentene ring in their structures, it is
suggested that the starting 1,3-azido alcohol 3 undergoes a 1,3-
shift to give the corresponding 1,2-azido alcohol under the
Lewis acid-mediated reaction conditions.

We envisage that the 1,2-substituted cyclopentenoid lactams
obtained from the Aubé reaction result from the 1,3-allylic
rearrangement of compound (£)-3 to (+)-3°. There is a report of
allylic azide shift in cyclic sytems by Carell et al. in 2007 [40].
The work of Aubé on AAC (azide—alkyne cycloaddition) chem-
istry also gives a good indication that equilibrating allylic azide
stereoisomers can selectively participate in reactions [37-45]. In

2000, Aubé et al. proposed a mechanism for the intermolecular

Beilstein J. Org. Chem. 2015, 11, 1060-1067.

ring-expansion reaction of hydroxy azides with cyclic ketones.
This involves the Lewis acid-promoted formation of an
N-diazonium intermediate, which undergoes rearrangement to
give an iminium ether intermediate that can be hydrolyzed by a
base [8,41]. Along these lines we have proposed the mecha-
nism below based on products we isolated from the Aubé reac-
tion (Scheme 5).

allyl-azide rearrangement followed by Aubé reaction
in the cyclopentene system

HO
HO o\w, -~
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Scheme 5: Proposed mechanism for the Aubé reaction for azido alco-
hols embedded in a cyclopentene system.

After having access to cyclopentenyl-substituted lactams, the
double bond present in these products was dihydroxylated under
standard conditions using catalytic osmium tetroxide and NMO
(Scheme 6) [42-44].

The corresponding triols (+)-11 to (+)-15 were readily formed
and obtained as single diastereoisomers, indicating that the
reaction proceeded in a highly selective manner. The triols
(£)-14 and (#)-15 also resulted from corresponding substituted
lactams. The observed selectivity of the dihydroxylation can be
explained by the reagent approach from the opposite side of
both substituents present on the cyclopentene ring. We have
assigned the structure based on the spectral data (see Experi-
mental). In addition, crystals of the triol (£)-12 were obtained
and single crystal X-ray analysis further established the
assigned structure without any ambiguity, as shown in Figure 2
and Supporting Information File 2 [46,47]. The synthesized
trihydroxylated amides (+)-11—(%)-15 can be considered as
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mimics of 1,2-carbocyclic nucleosides due to close structural
resemblance with that of molecules documented in the litera-
ture [29,30].

Conclusion

In conclusion, we have developed an efficient method to
synthesize a new class of racemic cyclopentylated lactams
using the Aubé reaction where the bases are replaced by lactam
rings. We originally planned to synthesize 1,3-substituted
cyclopentyl-substituted lactams; however, based on an
allyl-azide rearrangement, we obtained lactams with an 1,2-
substituted cyclopentane on the nitrogen instead. These com-
pounds can be useful tools as they are structurally close to

nucleosides and may have pharmaceutical relevance.

Experimental

General procedure for the Aubé reaction
using BF3-OEty

Boron trifluoride etherate (0.07 mL, 0.71 mmol) was added to a
solution of azido alcohol 3 (0.10 g, 0.71 mmol) and ketones
(2.0 mmol, 3 equiv) in HFIP (0.2 mL) cooled to 0 °C. The mix-
ture was warmed to room temperature and stirred for 2-5 h.
Upon completion, the reaction was quenched with 15% aq.
KOH solution diluted with CH,Cl, and the mixture was
extracted with CH,Cl, (3 x 5 mL). The organic layer was
washed with brine, dried over anhydrous Na,SO4 and concen-
trated in vacuum. The obtained crude oil was subjected to silica
gel column chromatography using ethyl acetate/methanol 9:1 as
eluent to afford cyclic amides in 40-70% yield.

1-(5-(Hydroxymethyl)cyclopent-2-en-1-yl)azepan-2-
one (6)

IR Vpnax (film): 2930, 1618, 1476, 1444, 1039 cm™!; 'H NMR
(500 MHz, CDCl3) 5 6.15 (dd, J = 3.0, 4.5 Hz, 1H), 5.73 (d, J =
1.5 Hz, 1H), 5.34 (d, J = 8.0 Hz, 1H), 3.56-3.52 (m, 1H), 3.33
(t, J = 10.0 Hz, 1H), 3.21-3.12 (m, 1H), 3.02 (dd, J = 6.3,
14.0 Hz, 1H), 2.65-2.56 (series of multiplets, 3H), 2.46-2.39
(m, 1H), 1.93-1.79 (series of multiplets, 4H), 1.72—1.54 (m,
4H); 13C NMR (125 MHz, CDCl3) § 178.5, 137.0, 129.6, 62.1,
60.8, 45.3, 45.1, 37.7, 34.4, 29.8, 29.0, 23.4; HRMS calculated
for C1,H gNO5, [M + Na]*: 232.1308, found 232.1316.

General procedure for the dihydroxylation reaction

0.2 mL of OsOy4 (2.5% in tert-butanol, 1 mol %) was added to a
solution of cyclic lactam (0.27 mmol) and NMO (0.3 mmol,
1.1 equiv) in tert-butanol at room temperature and stirred for
2-5 hours. Upon completion of the reaction, Na,S (diluted with
MeOH) was added, and the mixture was filtered and passed
through a short pad of celite. After concentration, the residue
was purified by silica gel column chromatography using ethyl

acetate/methanol 10:1 as eluent to afford triols in good yield.
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1-(2,3-Dihydroxy-5-(hydroxymethyl)cyclopentyl)aze-
pan-2-one (11)

IR vngy (film): 3385, 2927, 1623, 1567, 1450, 1358 cm™!;
'H NMR (400 MHz, CD;0D) & 4.60—4.58 (m, 1H), 4.35 (dd,
J=15.0,10.0 Hz, 1H), 4.08-4.05 (m, 1H), 3.60 (dd, J = 7.0,
16.0 Hz, 1H), 3.50-3.36 (series of multiplets, 3H), 2.73-2.67
(m, 1H), 2.56-2.49 (m, 2H), 1.91-1.83 (series of multiplets,
5H), 1.74-1.61 (series of multiplets, 3H); '3C NMR (100 MHz,
CD;0D) 6 178.6, 73.7, 70.5, 62.6, 61.8, 47.3, 37.5, 37.0, 32.9
29.3, 28.0, 23.0; HRMS calculated for C;,H,1NOy, [M + Na]™:
266.1363, found 266.1358.

Supporting Information

Supporting Information File 1

Experimental procedures, characterization data, and 'H
and'3C NMR spectra of relevant compounds.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-11-119-S1.pdf]

Supporting Information File 2

Crystal data for (£)-12.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-11-119-S2.cif]
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