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Accepted: 30 October 2017 . Inrecentyears, severe haze events often occurred in China, causing serious environmental problems.
Published online: 17 November 2017 The mechanisms responsible for the haze formation, however, are still not well understood, hindering
. the forecast and mitigation of haze pollution. Our study of the 2012-13 winter haze events in Beijing

shows that atmospheric water vapour plays a critical role in enhancing the heavy haze events. Under
weak solar radiation and stagnant moist meteorological conditions in winter, air pollutants and water
vapour accumulate in a shallow planetary boundary layer (PBL). A positive feedback cycle is triggered
resulting in the formation of heavy haze: (1) the dispersal of water vapour is constrained by the shallow
PBL, leading to an increase in relative humidity (RH); (2) the high RH induces an increase of aerosol
particle size by enhanced hygroscopic growth and multiphase reactions to increase particle size and
mass, which results in (3) further dimming and decrease of PBL height, and thus further depressing of
aerosol and water vapour in a very shallow PBL. This positive feedback constitutes a self-amplification
mechanism in which water vapour leads to a trapping and massive increase of particulate matter in the
near-surface air to which people are exposed with severe health hazards.

Similar to that previously experienced by the developed nations, rapid industrialization and urbanization in
China has led to an increase in air pollution. As the world’s largest developing country, China has experienced

. severe haze pollution in the past two decades. In large cites of China, heavy haze episodes often occurred in recent

. years, For example, during the 2012-13 winter, severe haze events were frequently observed in Beijing, China. In

© this period, the hourly PM, ; concentrations frequently exceeded 200 igm~>. The extremely high aerosol concen-
trations led to very low visibility, especially during December 10 to 15 (less than 1 km). Such high concentrations
of PM, ; can cause serious adverse effects on human health and welfare!-°. The temporal and spatial features and
causes of heavy haze formation are, however, not well understood, leading to a lack of efficient control and miti-
gation strategies.

Characteristic of Haze Episodes

Figure 1(a-d) Illustrates the daily averaged PM, ; concentrations, daytime (8:00-18:00) mean planetary bound-
ary layer (PBL) heights, relative humidity (RH), and daily variation of solar radiation from November 20 to
December 30, 2012. The details about the measurements and instruments are described in previous studies”®
(also see Supplementary Information). Five episodes during this time period with remarkable features of the
heavy haze events were identified as P1 (Nov. 21-24), P2 (Nov. 25-27), P3 (Nov. 29-Dec. 2), P4 (Dec. 10-15),
and P5 (Dec. 19-22). They are characterized by continuously increasing PM, ; concentrations and high RH, with
daily averaged PM, 5 concentrations exceeding 100 ug m~2. For example, the daily mean concentration of PM, 5
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Figure 1. Temporal variations of aerosol particle concentration, planetary boundary layer (PBL) height, solar
radiation and relative humidity (RH) during 2012-2013 winter time in Beijing. Measured (a) daily averaged
PM, 5 concentrations, (b) daytime (8:00-18:00) PBL heights, (c) solar radiation, and (d) RH from Nov. 21 to
Dec. 30, 2012. Five episodes with remarkable features of the heavy haze events were found, referred to as P1
(Nov. 21-23), P2 (Nov. 24-26), P3 (Nov. 30-Dec. 4), P4 (Dec. 11-16), and P5 (Dec. 19-22). The purple dots
show the averaged wind speeds. The purple arrow marks the 1 m/s position. Correlations between PBL heights
and PM, ; concentrations (e) and between PBL heights and RH (f) during the five haze episodes.

was higher than 200 ug m™ at the end of P3, and for P1, P2, P4, and P5, the highest concentrations ranged from
135 to 175 pgm~>. Corresponding to the rapid increase in PM, 5 concentrations, the daytime mean PBL heights
decreased significantly, from 0.8 to 1.1 km at the beginning of the five episodes to 0.6 to 0.4km at the end. As
shown in Fig. le,f, not only the PM, 5 concentration but also the RH value was strongly anti-correlated with
the PBL height, which suggests that the shallow PBL heights indeed suppressed the dispersal of water vapour.
This is further confirmed by the in-situ aircraft measured vertical profiles of PBL heights, aerosol particles, RH,
and water vapour (see Figure S1 of Supplementary Information). As discussed below, the accumulation of water
vapour in the shallow boundary layer plays a key role in a self-amplification mechanism in the development of
heavy haze. It is important to note that the evolution of a haze episode involves many meteorological and chem-
ical factors, such as wind direction, wind speed, PBL height, humidity, chemical reactions, etc. These factors are
non-linearly correlated or anti-correlated, with a very complicated relationship. As shown in Fig. le, thereis a
large dispersion of the relationship between PM, s and PBL, suggesting a complicated relationship by involving
these different factors.

Evolution of PBL, Aerosol, Water Vapour, and Solar Radiation

It is worth noting that during these five episodes, the measured surface wind speeds were all very low (less than
1ms™~!, marked by the purple dots in Fig. 1a), indicating a stagnant weather condition and a very weak horizontal
dispersion (transport) of aerosol particles. Under such conditions, the vertical diffusion and the PBL heights usu-
ally play important roles in controlling the variability of aerosol particles’. As shown in Figure S1, the decrease in
the PBL heights compressed both the air pollutants and water vapour into a shallow vertical layer, enhancing the
aerosol concentrations and relative humidity near the ground surface.

One of the important reasons for the decrease in the daytime PBL heights was weakened solar radiation. Many
previous studies indicated that the thermal turbulence caused by the surface heating of solar radiation is the
major reason for a fully developed diurnal variation of the PBL heights®~'!. A typical PBL development is that the
PBL height is low (around 100 meters) in the night-time, and is increasing rapidly in the morning due to heating
of the ground by solar radiation. The noontime PBL heights can reach a maximum of 1-3km depending on loca-
tions and seasons'*™'%. As a result, it is not surprising that the daytime PBL heights were strongly correlated with
the solar radiation as shown in Fig. 1b,c. For example, for P1 and P2, the noontime maximum of solar radiation
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Figure 2. A case study of the effects of water vapour on solar radiation, PBL heights, and PM, ; concentrations.
(a) shows the measured wind speeds (m s™!) prior to P4, during P4 and after P4. (b) shows the measured PM, 5
concentrations (g m~?) and RH (%) prior to P4, during P4 and after P4. (c) shows the measured and modeled
(“dry” and “wet” cases) surface solar radiation during P4. (d) shows the measured and modeled (“dry” and
“wet” cases) PBL heights. The results suggest that water vapour plays an important role in the reduction of solar
radiation and PBL heights.

was above 500 W m 2 in the beginning and reduced to ~200 W m~2 at the end of the two episodes, which led to
the decrease in the PBL heights from 1.2-1.8km to 0.7-0.8 km.

To illustrate the relationships among PM, water vapour, solar radiation, and PBL height, we conducted a case
study to investigate the detailed interactions of these parameters. The P4 was selected for the case study, because
it had persistent haze period from Dec. 10 to 15, 2012. During the period, the aerosol and water vapour concen-
trations were very high, leading to extremely low visibility ( <2km) in ~4 days. As shown in Fig. 2a, prior to the
P4 period, the wind directions were northwest, with a wind speed of 2ms™! on Dec. 8, 2012. In the northwest area
of Beijing, the topography is covered by mountains and grasslands, with a small population. According to previ-
ous'!%, under the northwest wind condition (wind speeds are often higher than 1 m/s during non-haze episodes),
the northwest wind transports clean air to Beijing, resulting in low PM, s pollutions in Beijing. As shown in
Fig. 2b, the PM, ; concentrations were ~10pgm~—. On Dec 10, 2012, the wind direction changed from northwest
to south. The south winds enhanced the horizontal transport from high emission regions to Beijing, resulting
in the increase in PM, ;5 concentrations. Because there are mountains in the west and north sides of Beijing, the
southern pollution plumes were blocked by the mountains, leading to an accumulation of PM, 5 concentrations
in Beijing. As a result, the PM, ; concentration rapidly increased to 50 pgm~— on Dec 10. As shown in Fig. 2b,
with the persistent south winds in P4, the PM, 5 concentrations continuously increased, and the RH values were
also quickly enhanced. Figures 1 and 2 also showed that during the P4 period, the wind speeds were small (less
than 1 ms™!), and the PBL heights decreased from 1km to 0.5km, with low solar radiation. At the end of the P4
period, the wind direction changed to northwest wind, and the wind speed increased, resulting in a decrease in
PM, 5 concentrations.

Model Calculations of Water Vapour Effect on Solar Radiation and PBL

In order to estimate the effect of PM and water vapour on solar radiation and PBL height, a state-of-the-art solar
radiation model, Tropospheric Ultraviolet-Visible Model (TUV)'”!® and an empirical PBL model'® are applied
in this study (the detailed methods of the two models are shown in Supplementary Information). The effects of
water vapour on the solar radiation and the evolution of the PBL height are investigated in two different scenarios
(a “wet” and a “dry” case), which represent different aerosol conditions, i.e., with and without the hygroscopic
water uptake in the calculation of aerosol optical properties. The calculation showed that in “dry case’ (the blue
bars in Fig. 2¢), the calculated noontime solar radiations were ~320 W m~2 on Dec. 10 (at the beginning of the
heavy haze), and reduced to ~275 W m~2 on Dec. 15 (at the end of the heavy haze), which was ~14% reduction of
the surface solar radiation. However, this calculation still strongly deviates from the measured values, and cannot
explain the large reduction of the measured surface solar radiation (see Fig. 2¢). In contrast, when the hygroscopic
process was taken into account in the calculation (‘wet case’), the simulated surface solar radiation reduced from
~290 Wm™ to ~160 W m~2 (~45% reduction) from the beginning to the end of the heavy haze event. This is
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Figure 3. Diurnal variations of PM, ; concentrations (ug m~—3), RH (%), surface solar radiation (W m~2), and

PBL height (km). The left column (a-d) shows the diurnal variation prior to the haze period (on Dec. 9, 2012),
and the right column (e-h) shows the variation during the haze period (on Dec. 15, 2012). The results showed
that there were significant diurnal variations during the non-haze period and small variations during the haze
period.

consistent with the measured trends, i.e., about 240-330 W m~2 at the beginning and ~110 W m~2 at the end of
P4 (~45% reduction). It suggests that the rapid increase in the RH value from Dec. 12 (RH ~50%) to Dec. 13 (RH
~80%) amplified the rapid decrease in the solar radiation, which impeded the development of PBL and favoured
the further accumulation of pollutants and water vapour.

As shown in Fig. 2d, the measured daytime averaged PBL heights (red line and dots) were ~940 meters at the
beginning and quickly reduced to 466 meters at the end of the heavy haze event (~50% reduction). The calcu-
lated variability of PBL heights was smaller without considering the effect of humidity (the “dry” case). At the
beginning of the haze period, the calculated PBL height was ~1200 m. This value decreased to ~760 m at the end
of haze period (~36% reduction), but still significantly overestimated the measured PBL height. In contrast, the
calculated PBL height in the “wet” case had a much better representation. With the increase in the humidity (RH
values changed from 39% on Dec. 10 to 83% on Dec. 15), the calculated PBL height decreased from 1080 m to
325m, which was close to the measured change. This result suggested that solar radiation was largely scattered
by particles and uptaken water?*?!, and hence less solar radiation reached the ground surface (“dimming effect”),
causing an unfavourable condition for a full development of the PBL. The lower PBL height further compressed/
trapped the aerosol particles and water vapour in a shallow vertical layer, resulting in an even higher RH and aer-
osol concentration. As illustrated in Fig. 1, under low RH conditions (RH < 50-60%), PBL heights were generally
greater than 700 m, while under high RH conditions (RH > 60%), the PBL heights varied between 300 and 700 m.

Diurnal Variation During Heavy Haze Periods

Figure 3 shows the diurnal variations of PM, 5, RH, surface solar radiation, and PBL height. The results show
that prior to the haze period (on Dec. 9, 2012), there were significant diurnal variations for PM, 5, RH, surface
solar radiation, and PBL height. For example, the noontime solar radiation reached 460 W m~2 and reduced to
40 W m~2 at 18:00. The PBL height was only 0.5km at 8:00, and increased to 1.3km at 14:00. These strong diurnal
cycles produced significant PM, ; and RH diurnal variations. For example, there were high values of PM, ; and RH
in the morning due to the low PBL height, and the values of PM, ; and RH rapidly decreased in the noontime, due
to the increase in the PBL heights. By contrast, in the high polluted day (Dec. 15, 2012), there were non-significant
diurnal variations for PM, s, RH, and PBL height. This was due to the fact that the driving force of diurnal varia-
tion (solar radiation) was significantly weaker during haze period than the non-haze period. Figure 3g shows that
the maximum of solar radiation was only 100-170 W m~2 on Dec. 15, which was much weaker than 460 W m—2
on Dec. 9.
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Figure 4. The variability of measured CO and aerosol composition (SO27,NO,;~, NH,, Organics) under
different RH conditions during 2012-2013 winter time in Beijing. As RH increased to a critical value (50%),
the CO, which can be considered as an inactive-chemical tracer, remained at a relatively constant value. The
secondary aerosols (NO;~, SO,2~, NH,"), however, showed a rapid increase with the increase in RH values.
The organic aerosol (Org) contained both secondary and primary component, resulting in a mixed behaviour
between the CO and secondary aerosols.

Effect of Water Vapour on Secondary Aerosols

Field measurements revealed that the aerosol particles during the 2012-13 winter in Beijing contained a large
amount of hydrophilic aerosol particles, such as sulphate, nitrate, and ammonium??*-*%. Under high RH (>60-
80%), the volume of aerosol particles can be doubled by absorbing water vapour onto the surface of aerosol
particles??. The enlarged aerosol surfaces/volumes lead to more rapid multiphase reactions and secondary aer-
osol formation, resulting in elevated aerosol concentrations*>?’. Simultaneous measurements of aerosol chemical
composition with an Aerodyne Compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS) confirm this
mechanism. As shown in Fig. 4, when RH increased to a critical value (~60%), the concentrations of CO, which
can be considered as an inactive-chemical tracer (i.e., it has no aqueous phase formation), remained at a relatively
constant value. The primary aerosol (chloride) had the similar behavior as CO. The secondary aerosols (sulphate,
nitrate, and ammonium), however, showed a rapid increase with the increase in RH values. For example, when
the RH values increased from 60% to 80%, the sulphate, nitrate, and ammonium concentrations increased from
16 to 25pgm—, 15 to 23ugm—?, and 11 to 17 pgm >, respectively. The different trends between CO, primary and
secondary aerosols suggest enhanced formation of secondary aerosols under high RH conditions. The organic
aerosol contained both secondary and primary components, showing some weaker growth than the solo sec-
ondary aerosols under high RH. However, although the measurement shows that the formation of secondary
aerosols rapidly grows under high humidity condition, the current understanding of chemical formation can-
not explain this fast growth?®?. Several studies attempts to propose new chemical mechanisms to explain this
issue. For example, Chen et al.?® suggest that sulfate aqueous phase formation can be enhanced by adding NO,
species. Wang et al.?® propose that in addition to adding NO,, high concentrations of NHj in eastern China can
significantly increase the sulfate aqueous phase formation. The scientific base of this reaction is that high levels of
NH; have been suggested to elevate ambient particle pH levels to near neutral acidity (pH=7), a condition that
promotes rapid SO, oxidation. However, a more recent study by Guo et al.* argues that particle pH, regardless
of ammonia levels, is always acidic even for the unusually high NH; levels found in Beijing (pH =4.5) and Xian
(pH =5), locations where sulfate production from NO; is proposed. These augments suggest that the current
understanding of aqueous phase reactions, which promote the fast growth of secondary aerosols, exists a large
uncertainty, which needs to be further study.

Amplification Mechanism of Haze by Water Vapour

From the above discussion and analysis, we propose a self-amplification mechanism of the heavy haze formation
by water vapour, which may further accelerate the haze formation and strengthen the persistency of the heavy
haze conditions. A schematic plot of the proposed mechanism is illustrated in Fig. 5. Prior to the heavy haze
events (Stage 0), the meteorological conditions (northwest wind, with a relatively high wind speed) produced
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Figure 5. Feedback mechanism amplifies the formation of heavy haze events by aerosol uptaken water. At

the beginning of the heavy haze events, the Beijing region was under northwest wind condition, the aerosol
concentrations and relative humidity (RH) are low, and strong solar radiation (SR) produces high daytime
planetary boundary layer (PBL) height (Stage 0). Triggered by South wind condition, aerosol pollutant and
water vapour increased, leading lower solar radiation and PBL heights. With the increase in RH value, the size
of aerosol particles rapidly grows and secondary aerosol forms, resulting in a stronger dimming effect near the
ground surface (Stage 1). The reduction of SR depresses the development of the PBL heights, enhancing the
surface aerosol concentrations and RH, which leads to further shallower PBL forming a feedback loop (stage
2). The higher aerosol concentrations and increased RH value further decrease the surface solar radiation,
producing the increase in aerosol concentrations in a further shallower PBL (stage 3).

low aerosol concentrations and humidity. Strong solar radiation produced high daytime PBL heights (e.g., at the
beginning of P3 and P4, RH < 50%, PBL height ~1km, and PM, 5 ~50 pg m ). The stagnant inversion conditions
triggered by the large weather conditions and radiation cooling leads to the increase in RH values and accumula-
tion of air pollutants (Stage 1). Under such conditions, aerosol particles undergo enhanced hygroscopic growth
and multiphase reactions and scatter more lights (Stage 2), resulting in a reduction in the surface solar radiation
(in the middle of P3 and P4, RH > 60%, and solar radiation < 200 W m~2). This depresses the development of
the PBL, leading to higher aerosol concentrations and RH values in a shallow PBL (at the end of P3 and P4, PBL
height ~0.5-1.0km, and PM, 5 > 100-200 pg m~—>, RH > 70-80% throughout the PBL). The dimming effect is
further amplified by the higher aerosol concentration and increased RH values, thus forming a positive feedback
loop, which enhances a trapping and massive increase of particulate matter in the near-surface air (Stage 3). The
key process of this feedback loop is the hygroscopic growth of aerosol particles under high humidity condition,
which triggers the self-amplification feedback cycle leading to more severe haze pollution than expected.

Conclusions

In general, our measurement and modeling results of the 2012-13 winter haze events in Beijing, China suggest
that water vapour plays a critical role in the heavy haze events through a self-amplification mechanism. Such
positive feedback accelerates the formation and strengthens the persistency of heavy haze events. This result has
a very important implication for the heavy haze control strategy, i.e., under stagnant and high RH conditions,
aggressive control measures of PM, ; and precursors (NO,, SO,, NHj, and volatile organic compounds®) would
be required to mitigate the wintertime heavy haze events in Beijing. The self-amplification mechanism may also
occur in other heavily polluted regions (e.g., India) where a similar emission control strategy should be taken.

Methods

This study includes in-situ surface measurements, aircraft measurements, and numerical model simulations.
The surface measurement was conducted from Nov. 19, 2012 to Jan. 15, 2013 at Baolian meteorological station
(39°56'N, 116°17’E) in the urban area of Beijing. The mass concentrations of PM, s, nitrogen oxides (NO-NO,-
NOx), carbon monoxide (CO), sulfur dioxide (SO,), ozone (Os), atmospheric visibility, and solar radiation were
measured, together with the meteorological parameters such as ambient air temperature (T), relative humidity
(RH), and air pressure (P). The PBL heights (from 8:00 to 18:00) were measured by a micro-pulse lidar. The
chemical composition of aerosol particles was measured by an Aerodyne Compact Time-of-Flight Aerosol Mass
Spectrometer, which provides the mass concentrations of sulfate (SO,>7), nitrate (NO;~), ammonium (NH,"),
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chloride (Cl7), and organics. The aircraft measurement was conducted by a Yun-12 airplane, and an aerosol par-
ticle Passive Cavity Aerosol Spectrometer Probe (PCASP) instrument was used to measure the aerosol particles
during the flights. The meteorological parameters such as ambient air temperature, relative humidity, and air
pressure were measured during flights. Two numerical models were used in this study, including a state-of-the-art
radiation transfer model (the Tropospheric Ultraviolet-Visible Model (TUV)) and an empirical model for cal-
culating the PBL heights. More details about the measurements and model configurations are described in the
Supplementary Information.
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