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Abstract: We report the first in vitro enzymatic synthesis of paramagnetic and 

antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, 

alkaline phosphatase catalyzes the dephosphorylation of L-ascorbic-2-phosphate, which  

then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming  

magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were 
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found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly 

magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is 

considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) 

samples reported previously. At 5 K, the nanoparticles showed a significantly higher 

saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, 

respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost 

and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic 

reporter particles, while retaining the advantages of magnetic sensing. 

Keywords: enzymatic synthesis; magnetic nanoparticles; alkaline phosphatase;  

magnetic sensing 

 

1. Introduction 

Interest in magnetic biosensing has grown tremendously over the past decade. Magnetic nanoparticles 

(MNPs), commonly used in sample capture, clean-up, and concentration, are also now evaluated as 

labels for sensitive biomolecule detection [1] since they are unaffected by photobleaching or turbidity, 

and magnetic background is ubiquitously absent even from the most complex biological samples. The 

application of giant magnetoresistive (GMR) sensors and MNP labels to bioassays and diagnostics was 

first suggested by Baselt et al. in 1998 [2], and by Shieh and Ackley in 2000 [3]. This approach is 

attractive because of the solid-state and potentially low-cost nature of the sensors, and the absence of  

concerns associated with photobleaching, scattering, and fouling. Research groups at the University of 

Minnesota [4–6] and at Stanford University [7–10] have reported micrometer-scale magnetic sensors for 

ultrasensitive protein detection in complex samples. Moreover, several magnetic immunoassays 

integrated with proprietary readers have been commercialized, including those from MagArray [11], 

MagniSense [12], and MagnaBiosciences [13]. 

Conventional enzyme-linked immunosorbent assays (ELISAs) rely on modification of a substrate to 

form a detectable product that absorbs light, fluoresces, or luminesces. For example, p-nitrophenyl 

phosphate is dephosphorylated by alkaline phosphatase (AP) to form a soluble yellow product  

(p-nitrophenol) that is readily detected at 405 nm using a spectrophotometer (Figure 1). The  

substrates 4-methylumbelliferyl phosphate (4-MUP) and 3-(2'-spiroadamantane)-4-methyl-4-(3'-

phosphoryloxyphenyl-1,2-dioxetane, disodium salt (AMPPD) are likewise dephosphorylated by AP to 

fluorescent and luminescent products, respectively. Where an insoluble colored product is necessary, 

AP dephosphorylation of bromochloroindoyl phosphate-nitroblue tetrazolium (BCIP-NBT) leads to the 

formation of a blue precipitate/chromophore [14,15]. Enzymes also can produce silver, as in silver 

staining, using the redox chemistry underlying black and white photography. The recent application  

of such staining technology includes the enzyme-mediated formation of silver nanoparticles [16–19]. 

AP can produce metallic silver by dephosphorylation of an appropriate substrate (e.g.,  

L-ascorbic-2-phosphate [19], p-aminophenyl phosphate [20], and 3-indoxyl phosphate [21]) that acts as 

a reducing agent. 
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In this paper, we report the first enzymatic synthesis of insoluble magnetic material for use in 

biosensing and also in materials science. In this approach, AP catalyzes the dephosphorylation of  

L-ascorbic-2-phosphate, which then reduces iron, gadolinium, and holmium chlorides to yield 

paramagnetic MNPs at room temperature. Our strategy offers a novel approach to magnetic sensing in 

which the magnetic reporter can be enzymatically synthesized in situ. In contrast to conventional 

sandwich ELISA that uses an optical read-out, in our method (Figure 1), the substrate is dephosphorylated 

by alkaline phosphatase to yield a magnetic product that can be detected using a giant magnetoresistive 

(GMR) sensor with a much higher sensitivity [5–7,22]. This approach is inexpensive and circumvents 

the substantial mass-transfer concerns associated with pre-synthesized magnetic reporter particles while 

preserving the advantages of magnetic sensing, including the use of inexpensive solid-state detectors 

and the elimination of optical sensing challenges. This work also represents the first demonstration of 

the enzymatic synthesis of (albeit weakly) magnetic nanoparticles. 

 

Figure 1. (a) Conventional ELISA—detection by optical signal (b) our novel  

strategy—detection by magnetic signal. Figure adapted from [23]. 

2. Results and Discussion 

In nature, magnetotactic bacteria [24] possessing specialized organelles (magnetosomes) have the 

ability to synthesize ferrimagnetic crystals of either magnetite (Fe3O4) or the iron sulfide greigite (Fe3S4). 

The synthesis of these magnetic particles is encoded by at least 28 different genes, [25] and translating 

this natural synthesis approach to the bench with high yields and magnetization has been challenging [26]. 

In contrast, our approach uses a single enzyme to form magnetic material. In initial efforts to obtain  

Fe–Gd–O and Fe–Ho–O precipitates through enzymatic means, we explored the chemical reduction of 

various metal salts. Although the metal salts were reduced, the precipitates formed were non-magnetic 

(details in the Experimental Section). Furthermore, although gadolinium and holmium are common 

components of permanent magnets, reduction to these rare-earth elements from their chloride salts  

alone failed to yield magnetic precipitates. 

The introduction of dopants during the chemical synthesis of MNPs has been previously  

demonstrated [27–29]. Johnson et al. found that ZnO nanoparticles lacking a doping metal exhibit  

weak or no magnetic properties, but when Fe was used as a dopant, the resulting Zn1−xFexO product 

showed noticeable levels of magnetization that increased as Fe was increased from 0% to 10% [28].  

In our screening experiments, we observed that 6:1 molar ratio mixtures of ferric chloride and either 
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gadolinium chloride or holmium chloride gave precipitates that were attracted to a bar magnet. We then 

enzymatically converted L-ascorbic-2-phosphate to L-ascorbic acid and found that the latter could  

serve as a reducing agent for iron, gadolinium, and holmium salts. The resulting precipitates were 

magnetic. In our novel enzymatic process, gadolinium and holmium are incorporated into the products 

as dopants, producing measurable magnetic properties as compared to the non-magnetic iron oxide 

precipitate formed in the absence of these dopants. The synthesis conditions and characterization 

methods are described in detail in the Experimental Section. 

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of the 

chemically- and enzymatically-synthesized MNPs are shown in Figures 2 and 3, respectively. The sizes 

of the MNPs are in the range of 100–150 nm. Elemental composition was determined using SEM/energy 

dispersive X-ray (EDX) spectroscopy and TEM/EDX as described in the Experimental Section. The 

chemically-synthesized nanoparticles were found to be Fe43±18Gd2±0O55±18 and Fe3±1Ho11±2O85±3, while  

the enzymatically-synthesized nanoparticles were composed of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. 

 

Figure 2. Microscopy images of chemically-synthesized magnetic nanoparticles: SEM  

(a) Fe–Gd–O; (b) Fe–Ho–O; and TEM (c) Fe–Gd–O; (d) Fe–Ho–O. 

Elemental mass balances on the synthetic process were estimated from the following data. An aliquot 

(80 μg; 0.9 units) of AP protein gave magnetic precipitates of 80 mg Fe45±14Gd5±2O50±15 and 90 mg 

Fe42±4Ho6±4O52±5 for each of the MNP syntheses (i.e., 1 µg protein used for 1 mg NP synthesized). Based 

on the EDX data, the weight % ratio of Fe:Gd and Fe:Ho was (59 ± 14):(20 ± 2) and (57 ± 9):(23 ± 12), 

respectively. The initial masses of Fe, Gd, Ho were 40 mg, 20 mg, and 20 mg, respectively. Taking  

a mass balance with respect to iron, gadolinium, and holmium, recovery was estimated at 118% ± 28% 

and 80% ± 8% for Fe and Gd in the Fe–Gd–O precipitate and 128% ± 20% and 100% ± 54% for Fe and 
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Ho in Fe–Ho–O, where the non-homogeneous composition likely led to significant deviations in the 

measured recovery. 

 

Figure 3. Microscopy images of enzymatically-synthesized magnetic nanoparticles: SEM 

(a) Fe–Gd–O; (b) Fe–Ho–O; and TEM (c) Fe–Gd–O; (d) Fe–Ho–O. 

Using SEM/EDX and TEM/EDX, we were able to analyze the composition further for each 

nanoparticle. As noted above and elsewhere, the compositions of the nanoparticles varied. Figures 4–7 

provide the analyses of the Fe–Gd–O and Fe–Ho–O magnetic nanoparticles synthesized chemically  

and enzymatically. 

 

Figure 4. SEM/EDX analysis of the chemically-synthesized (a) Fe43±18Gd2±0O55±18 and (b) 

Fe3±1Ho11±2O85±3 magnetic nanoparticles. 
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Figure 5. TEM/EDX analysis of the chemically-synthesized (a) Fe–Gd–O and (b) Fe–Ho–O 

magnetic nanoparticles. 

 

Figure 6. SEM/EDX analysis of the enzymatically-synthesized (a) Fe45±14Gd5±2O50±15 and 

(b) Fe42±4Ho6±4O52±5 magnetic nanoparticles. 
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Figure 7. TEM/EDX analysis of the enzymatically-synthesized (a) Fe–Gd–O and  

(b) Fe–Ho–O magnetic nanoparticles. 

The deviation of x, y, and z for FexGdyOz and FexHoyOz produced by the two procedures (chemical 

and enzymatic) might be a reflection of a variation in composition for the individual particles as observed 

in the TEM/EDX data discussed below. The TEM diffraction data showed that in each sample, some  

of the nanoparticles were crystalline and some were amorphous (data not shown). The diffraction 

patterns gathered by the TEM showed a crystalline selected area electron diffraction (SAED) that  

pointed to the presence of FeO in some, and matched CaO in other nanostructures; the rest of the 

nanoparticles in each sample revealed amorphous SAED patterns. The varied diffraction patterns 

observed in each sample indicated that the samples were heterogeneous with respect to composition, 

which led us to study the composition of these nanoparticles further. To accomplish this task, we  

isolated about fifteen particles of each of the chemically- and enzymatically-synthesized Fe-Gd-O and 

the enzymatically-synthesized Fe-Ho-O, and five particles of chemically-synthesized Fe-Ho-O. Figure 8 

depicts the clusters of compositions found in the four samples using an x, y, z scatter plot. The plot  

shows that most of the chemically-synthesized nanoparticles cluster around single-element oxides,  

and there are only a few nanoparticles that contain all three elements (Fe, Gd, O or Fe, Ho, O). 

Additionally, none of the chemically-synthesized nanoparticles contained all three components (Fe, Gd, 

and O or Fe, Ho, and O). However, a small population of the enzymatically-synthesized nanoparticles 

contained all three elements, suggesting increased synthetic potential of the enzymatic approach. 
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Figure 8. Composition of the nanoparticles determined by TEM-EDX for (a) the 

chemically-synthesized Fe–Gd–O; (b) the enzymatically-synthesized Fe–Gd–O; (c) the 

chemically-synthesized Fe–Ho–O; and (d) the enzymatically-synthesized Fe–Ho–O. Some 

points reflect multiple overlapping data. 

Figure 9 compares the X-ray diffraction (XRD) patterns of the chemically and enzymatically 

synthesized Fe–Gd–O and Fe–Ho–O nanoparticles, respectively. These XRD patterns match none of the 

XRD patterns of the existing Fe–Gd–O and Fe–Ho–O compounds in the Inorganic Crystal Structure 

Database (ICSD). As noted above, the reduction of the individual iron, gadolinium, and holmium salts 

using L-ascorbic acid failed to yield magnetic precipitates. However, we characterized the non-magnetic 

precipitate using XRD and compared it to the magnetic precipitate, as shown in Figure 9. Comparison 

of the XRD patterns confirms that the magnetic precipitate obtained by using gadolinium and holmium 

as dopants is distinctly different from the non-magnetic precipitate obtained via reduction of the 

individual salts. 
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Figure 9. XRD patterns of the (a) Fe–Gd–O MNPs; (b) Fe–Ho–O MNPs; and (c) non-magnetic 

precipitates obtained by reduction of the chlorides of iron, gadolinium, and holmium. 

The nanoparticles were further characterized by vibrating sample magnetometry (VSM), and the 

magnetization curves at 300 K for chemically-synthesized and enzymatically-synthesized nanoparticles 

are shown in Figure 10. In all of these cases, the particles exhibit paramagnetic behavior, since  

the magnetization increases linearly with increasing magnetic field. At low temperature (5 K), the 

nanoparticles maintained strong magnetic behavior (Figure 11) and exhibited a significantly higher 

saturation magnetization of 100 and 45 emu/g for chemically- and enzymatically-synthesized Fe–Gd–O 

MNPs, and of 50 and 30 emu/g for Fe–Ho–O MNPs. At 300 K, they are paramagnetic; that is, magnetic 

only under the influence of a magnetic field. At 5 K, each material (regardless of the composition and 

synthesis method) shows strong magnetic properties with a small coercivity (17–20 Oe) and negligible 

residual magnetization (0.02 to 0.07 emu/g). The saturation magnetization data are summarized in  

Table 1 along with coercivity and residual magnetization values. 
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Figure 10. Magnetization curves recorded at 300 K for (a) the chemically-synthesized  

Fe43±18Gd2±0O55±18 MNPs and the enzymatically-synthesized Fe45±14Gd5±2O50±15 MNPs and 

(b) the chemically-synthesized Fe3±1Ho11±2O85±3 MNPs and the enzymatically-synthesized 

Fe42±4Ho6±4O52±5 MNPs. 

 

Figure 11. Magnetization curves recorded at 5 K for (a) the chemically-synthesized  

Fe43±18Gd2±0O55±18 MNPs and the enzymatically-synthesized Fe45±14Gd5±2O50±15 MNPs and 

(b) the chemically-synthesized Fe3±1Ho11±2O85±3 MNPs and the enzymatically-synthesized 

Fe42±4Ho6±4O52±5 MNPs. 

Table 1. Summary of magnetic properties at 5 K. 

Composition 
Synthesis 
Method 

Saturation 
Magnetization (emu/g) 

Coercivity 
(Oe) 

Residual 
Magnetization (emu/g) 

Fe43±18Gd2±0O55±18 Chemical 100 17 0.07 
Fe45±14Gd5±2O50±15 Enzymatic 45 20 0.03 
Fe3±1Ho11±2O85±3 Chemical 50 17 0.03 
Fe42±4Ho6±4O52±5 Enzymatic 30 17 0.02 

Figure 12 shows that as the temperature decreases from 300 to 1.9 K, the magnetic behavior of  

the nanoparticles transforms from paramagnetic to antiferromagnetic, with a Néel temperature around 

15–25 K. 
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Figure 12. Zero-Field-Cooling (ZFC, open symbols) and Field-Cooling (FC, solid symbols) 

curves for (a) Fe–Gd–O and (b) Fe–Ho–O systems. 

On doping with the rare earth elements Gd and Ho, the resulting enzymatically-synthesized 

nanoparticles were found to be weakly magnetic (~5 emu/g) at 300 K, but with a comparatively higher 

saturation magnetization of 45 emu/g for Fe45±14Gd5±2O50±15 and 30 emu/g for Fe42±4Ho6±4O52±5 at 5 K. 

Both chemically and enzymatically synthesized MNPs were observed to be paramagnetic at 300 K and 

antiferromagnetic under 25 K. Although Gd and Ho possess a higher number of unpaired f electrons as 

compared to the unpaired d electrons in Fe, enhancement of the magnetic properties by the coupling of 

these electrons was observed only at low temperature. 

The saturation magnetization of the samples might be reduced by the significant presence of  

non-magnetic precipitates of single-element oxides (as noted earlier, the reduction of individual  

salts failed to form a magnetic precipitate) with only a small percentage of the MNPs of Fe–Gd–O or 

Fe–Ho–O present. As previously reported in the case of LnFeO3 (Ln = rare earth), phase-selective or 

homogeneous composition is difficult to achieve during chemical syntheses; the hydrothermal and  

co-precipitation synthesis of GdFeO3 gave an amorphous precipitate, and the combustion route yielded 

a crystalline powder [30,31]. In another study, the reactant ratios were varied to obtain mono-phasic 

HoFeO3 [32]. Further, a recently reported hydrothermal synthesis optimized the process conditions 

(alkalinity, reaction temperature, and reaction time) to afford pure phases of GdFeO3 and HoFeO3, 

which, however, exhibited weak magnetizations of 0.03 and 0.3 emu/g, respectively [33]. In all of  

these syntheses, consistent with the chemically- and enzymatically-synthesized nanoparticles described in 

this paper, the nanoparticles were paramagnetic at room temperature and antiferromagnetic at low 

temperature. Importantly, the room-temperature magnetization of the nanoparticles described here is 

significantly greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples 

reported previously [30–32]. 

Our in-house nanoscale GMR sensor can detect one MNP with 60–70 emu/g (sensitivity of 10−13 emu); 

consequently, to detect an analyte using our method, we only need 20 fg MNPs of 5 emu/g. Even with 

an overall 10% efficiency, this signal would translate to a 10,000-fold improvement in potential limit of 

detection over conventional ELISA. The synthesized magnetic nanomaterials are not monodisperse. 

However, polydispersity (population of reporter particles of varied size), is not a substantial barrier to 

analytical performance. Silver intensification and BCIP/NBT staining are successful examples [14–19]. 
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Run-to-run variability, in which a given amount of enzyme bound in the ELISA gives a different magnetic 

signal, would likely affect analytical performance. We do not see, however, a large variability of this sort 

in many of the current enzyme-based assays (including all ELISAs and blood glucose monitoring). 

3. Experimental Section 

The chemicals used in the syntheses outlined below were of analytical grade and were used as 

received from the supplier without further purification. Millipore water (resistivity of >18 MΩ-cm) from 

a Milli-Q water system was used in the synthesis and washing steps. 

3.1. Preliminary Experiments of Reduction of Various Metal Salts Using L-Ascorbic Acid 

In initial efforts to obtain Fe–Gd–O and Fe–Ho–O precipitates through enzymatic means, we first 

explored the chemical reduction of ferric chloride, ferric nitrate, cobalt nitrate, nickel sulfate, platinic 

acid, and copper sulfate. We evaluated the initial matrices and ensured that the precursor concentration 

was not toxic to the alkaline phosphatase enzyme. In each experiment, 0.1 to 2 mmol of the salt were 

dissolved in 5 mL Millipore water and evaluated to determine whether a magnetic precipitate was formed 

upon the addition of L-ascorbic acid. Using this reduction procedure, we obtained precipitates under 

various experimental conditions of pH (from 6 to 10), temperature (4, 20, 37 °C), and magnetic field 

conditions during synthesis (presence or absence of a strong bar magnet), but the precipitates from these 

compounds proved to be non-magnetic. We also observed that although gadolinium and holmium are 

common components of a permanent magnet, reduction of these rare-earth elements from their chloride 

salts alone failed to yield magnetic precipitates. 

3.2. Synthesis of FexGdyOz and FexHoyOz Nanoparticles 

Ascorbic acid (aa) was used either as purchased (“chemical synthesis” approach) or was produced 

enzymatically via dephosphorylation of L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate  

(p-aa) by alkaline phosphatase (AP) (“enzymatic synthesis” approach). Samples of AP were obtained 

from Sigma (catalog # P6774; 0.049 mL; 3531 units/mg protein and 13 mg protein/mL). One unit activity 

of AP is defined to hydrolyze 1 μmole of substrate (4-nitrophenyl phosphate) per minute at pH 9.8 at  

37 °C. Zeba desalting columns (7 K MWCO from Thermo Fisher Scientific, Rockford, IL, USA) were 

used to remove more than 95% of the salts (5 mM MgCl2 and 0.2 mM ZnCl2) present in the AP solution. 

The enzyme was then resuspended in 100 µL diethanolamine buffer (pH 9.8) containing 5 mM MgNO3 

and 0.25 mM ZnNO3 to give a final concentration of 20 units AP/mL. In a 50-mL centrifuge tube,  

0.16 g (0.60 mmol) of FeCl3·6H2O and 0.05 g (0.1 mmol) GdCl3·6H2O were dissolved in 5 mL of 

Millipore water. For chemical or enzymatic synthesis of FexGdyOz, 0.1 g (0.6 mmol) of aa or 0.1 g  

(0.3 mmol) of p-aa, respectively, were added to the salt solution. In the case of enzymatic synthesis,  

15 μL of 60 units/mL AP enzyme were added to the centrifuge tube containing the metal salts. For the 

synthesis of FexHoyOz, we used a similar procedure with 0.16 g (0.60 mmol) of FeCl3·6H2O, 0.05 g  

(0.1 mmol) of HoCl3.6H2O, 0.1 g (0.6 mmol) of aa (chemical synthesis) or 0.1 g (0.3 mmol) of p-aa 

(enzymatic synthesis), and 15 μL of 20 units/mL AP enzyme (enzymatic synthesis). The reactions were 

carried out at 20 °C. 
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3.3. Characterization of Nanoparticles by SEM, TEM, XRD, EDX, and VSM 

Nanoparticles were characterized by transmission electron microscopy (TEM; JEOL-2000 FX 

operating at 200 kV) and equipped with energy dispersive spectrometer (EDX, Oxford Instruments, 

Abington, UK), scanning electron microscopy (SEM; LEO-1525 operating at 15 kV, Leo (now Carl Zeiss), 

Oberkochen, Germany), vibrating sample magnetometry (VSM PPMS EverCool II, Quantum Design, Inc., 

San Diego, CA, USA ), and X-ray diffraction (XRD; D5000 X-ray diffractometer, Siemens (now Bruker), 

Karlsruhe, Germany). For the TEM analyses, we deposited the nanoparticles suspended in ethanol on  

a holey carbon film coating a 300-mesh copper grid and allowed them to dry. For the SEM analyses,  

we deposited them on a silicon wafer and allowed them to dry. We used EDX, XRD, and SAED (selected 

area electron diffraction, a TEM crystallographic technique) to confirm the composition and phases of 

the nanoparticles. For the latter studies, a concentrated sample of nanoparticles in ethanol was deposited 

on a piranha-cleaned glass slide, and XRD was carried out using Cu Kα radiation (λ = 1.540562 Å) in 

the 2θ range from 0° to 90°. 

The magnetic properties (saturation magnetization, residual magnetization, and coercivity) of  

a known mass of sample were measured using VSM. Saturation magnetization and coercivity were 

obtained from the hysteresis loop analysis at 300 K and at 5 K. Measurements were recorded with 

uniform spacing in log field by sweeping the field 100 Oe/s with a maximum applied field up to  

±90 kOe. Zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves were measured in the 

temperature range of 1.9–300 K using a field of 100 Oe. Data were obtained by first cooling the sample 

from 300 to 1.9 K without applying any magnetic field. To obtain the ZFC curve, a small field of  

100 Oe was applied after reaching 1.9 K, and the magnetization was measured at 0.5 K intervals while 

heating the sample to 300 K with a heating rate of 2 K/min. The FC curve was obtained by cooling the 

sample from 300 to 1.9 K while keeping the same applied field. 

3.4. SEM/EDX and TEM/EDX 

SEM/EDX and TEM/EDX were used to obtain the composition of the chemically- and  

enzymatically-synthesized Fe–Gd–O and Fe–Ho–O precipitates. Each SEM/EDX spectrum is an average 

of at least five samplings, and the average composition with standard deviation was calculated using at 

least three spectra for each sample. An example of the spectrum obtained for each precipitate is given in 

the Results and Discussion section. 

4. Conclusions 

In summary, we have demonstrated a novel alternative to optical/electrochemical reporters by 

enzymatically synthesizing MNPs with higher saturation magnetization than similar nanoparticles 

(LnFeO3 (Ln = Gd, Ho)) synthesized by other routes. This first in vitro enzymatic synthesis of magnetic 

nanoparticles opens a novel approach to magnetic sensing in which the magnetic reporter is enzymatically 

synthesized in situ, thus circumventing any mass-transfer limitations. The enzymatically-synthesized 

nanoparticles, paramagnetic at 300 K and antiferromagnetic below 25 K, exhibited a strong saturation 

magnetization, up to 45 emu/g at 5 K. Future optimization of the reaction conditions can potentially lead 

to a homogeneous composition that reduces (or even eliminates) the presence of precursors or by-product 
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components. Nevertheless, with further optimization of the process parameters, the current precipitated 

particles can be readily integrated with GMR sensors, such as the one with a reported sensitivity of  

10−13 emu [2,22,34]. The magnetization of these MNPs and the high sensitivity of the nanoscale  

GMR [35] offers a 10,000-fold theoretical improvement using this method of magnetic sensing over  

the conventional optical-based sensing method. 

Acknowledgments 

Richard C. Willson acknowledges the Robert A. Welch Foundation for support under grant E-1264, 

Cancer Prevention Research Institute of Texas (CPRIT), and the Huffington-Woestemeyer Professorship. 

T. Randall Lee also thanks the Robert A. Welch Foundation (Grant No. E-1320) and the Texas Center for 

Superconductivity at the University of Houston for generous support. 

Author Contributions 

Arati G. Kolhatkar, Archana Kar, Eliedonna Cacao, Ulrich Strych, Katerina Kourentzi,  

T. Randall Lee, Richard C. Willson: initial design of experiments; Arati G. Kolhatkar: performed 

synthesis experiments, Arati G. Kolhatkar, Chamath Dannongoda, Ivan Nekrashevich, Irene Rusakova, 

Dimitri Litvinov, Karen S. Martirosyan: performed characterization experiments; Arati G. Kolhatkar, 

Katerina Kourentzi, Andrew C. Jamison, Dimitri Litvinov, Karen S. Martirosyan, T. Randall Lee, 

Richard C. Willson: wrote manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Mani, V.; Chikkaveeraiah, B.V.; Rusling, J.F. Magnetic particles in ultrasensitive biomarker protein 

measurements for cancer detection and monitoring. Expert Opin. Med. Diagn. 2011, 5, 381–391. 

2. Baselt, D.R.; Lee, G.U.; Natesan, M.; Metzger, S.W.; Sheehan, P.E.; Colton, R.J. A biosensor based 

on magnetoresistance technology. Biosens. Bioelectron. 1998, 13, 731–739. 

3. Shieh, R.; Ackley, D.E. Magnetoresistance-Based Method and Apparatus for Molecular Detection. 

WO 1997045740 A1, 4 December 1997. 

4. Li, Y.; Srinivasan, B.; Jing, Y.; Yao, X.; Hugger, M.A.; Wang, J.P.; Xing, C. Nanomagnetic 

competition assay for low-abundance protein biomarker quantification in unprocessed human sera. 

J. Am. Chem. Soc. 2010, 132, 4388–4392. 

5. Srinivasan, B.; Li, Y.; Jing, Y.; Xu, Y.-H.; Yao, X.; Xing, C.; Wang, J.-P. A detection system based 

on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole 

sensitivity: Potential for personalized medicine. Angew. Chem. Int. Ed. 2009, 48, 2764–2767. 

6. Srinivasan, B.; Li, Y.; Jing, Y.; Xing, C.; Slaton, J.; Wang, J.-P. A three-layer competition-based 

giant magnetoresistive assay for direct quantification of endoglin from human urine. Anal. Chem. 

2011, 83, 2996–3002. 



Int. J. Mol. Sci. 2015, 16 7549 

 

 

7. Hall, D.A.; Gaster, R.S.; Lin, T.; Osterfeld, S.J.; Han, S.; Murmann, B.; Wang, S.X. GMR biosensor 

arrays: A system perspective. Biosens. Bioelectron. 2010, 25, 2051–2057. 

8. Osterfeld, S.J.; Yu, H.; Gaster, R.S.; Caramuta, S.; Xu, L.; Han, S.J.; Hall, D.A.; Wilson, R.J.;  

Sun, S.; White, R.L.; et al. Multiplex protein assays based on real-time magnetic nanotag sensing. 

Proc. Natl. Acad. Sci. USA 2008, 105, 20637–20640. 

9. Hall, D.A.; Wang, S.X.; Murmann, B.; Gaster, R.S. Portable biomarker detection with magnetic 

nanotags. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems 

(ISCAS), Paris, France, 30 May–2 June 2010; pp. 1779–1782. 

10. Gaster, R.S.; Hall, D.A.; Nielsen, C.H.; Osterfeld, S.J.; Yu, H.; Mach, K.E.; Wilson, R.J.;  

Murmann, B.; Liao, J.C.; Gambhir, S.S.; et al. Matrix-insensitive protein assays push the limits of 

biosensors in medicine. Nat. Med. 2009, 15, 1327–1332. 

11. Xu, L.; Yu, H.; Akhras, M.S.; Han, S.-J.; Osterfeld, S.; White, R.L.; Pourmand, N.; Wang, S.X. 

Giant magnetoresistive biochip for DNA detection and HPV genotyping. Biosens. Bioelectron. 

2008, 24, 99–103. 

12. Orlov, A.V.; Khodakova, J.A.; Nikitin, M.P.; Shepelyakovskaya, A.O.; Brovko, F.A.; Laman, A.G.; 

Grishin, E.V.; Nikitin, P.I. Magnetic immunoassay for detection of staphylococcal toxins in 

complex media. Anal. Chem. 2013, 85, 1154–1163. 

13. Peck, R.B.; Schweizer, J.; Weigl, B.H.; Somoza, C.; Silver, J.; Sellors, J.W.; Lu, P.S. A magnetic 

immunochromatographic strip test for detection of human papillomavirus 16 E6. Clin. Chem. 2006, 

52, 2170–2172. 

14. Eadie, M.J.; Tyrer, J.H.; Kukums, J.R.; Hooper, W.D. Aspects of tetrazolium salt reduction relevant 

to quantitative histochemistry. Histochemie 1970, 21, 170–180. 

15. Altman, F.P. Studies on the reduction of tetrazolium salts—The products of chemical and enzymatic 

reduction. Histochemie 1974, 38, 155–171. 

16. Cacao, E.E.; Nasrullah, A.; Sherlock, T.; Kemper, S.; Kourentzi, K.; Ruchhoeft, P.; Stein, G.E.; 

Willson, R.C. High-resolution, high-throughput, positive-tone patterning of poly(ethylene glycol) 

by helium beam exposure through stencil masks. PLoS ONE 2013, 8, e56835. 

17. Hainfeld, J.F.; Liu, W. Site-Specific Enzymatic Deposition of Metal In Situ and Use for 

Chromogenic Immunohistochemical Detection of Diagnostic Biomarkers. WO2008109617A1,  

12 September 2008. 

18. Hainfeld, J.F.; Liu, W. Binding Oxidoreductases, Peroxidases with Oxidation/Reduction Agents; 

Immunohistochemistry; Kits. U.S. Patent 20080213783A1, 4 September 2008. 

19. Cacao, E.E. Enzymatic Darkening and Silver Staining: Application in Microfluidic  

Micro-Retroreflector-Based Heterogeneous Immunoassays. Ph.D. Dissertation, University of 

Houston, Houston, TX, USA, 2012. 

20. Wu, J.; Chumbimuni-Torres, K.Y.; Galik, M.; Thammakhet, C.; Haake, D.A.; Wang, J. 

Potentiometric detection of DNA hybridization using enzyme-induced metallization and a silver 

ion selective electrode. Anal. Chem. 2009, 81, 10007–10012. 

21. Fanjul-Bolado, P.; Hernandez-Santos, D.; Gonzalez-Garcia, M.B.; Costa-Garcia, A. Alkaline 

phosphatase-catalyzed silver deposition for electrochemical detection. Anal. Chem. 2007, 79,  

5272–5277. 



Int. J. Mol. Sci. 2015, 16 7550 

 

 

22. Kolhatkar, A.G.; Nekrashevich, I.; Litvinov, D.; Willson, R.C.; Lee, T.R. Cubic silica-coated  

and amine-functionalized FeCo nanoparticles with high saturation magnetization. Chem. Mater. 2013, 

25, 1092–1097. 

23. Thermo Scientific Pierce Assay Development Technical Handbook; Pierce Biotechnology: 

Rockford, IL, USA, 2011; pp. 4–5. 

24. Blakemore, R. Magnetotactic bacteria. Science 1975, 190, 377–379. 

25. Schuler, D. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS 

Microbial. Rev. 2008, 32, 654–672. 

26. Liu, X.; Yun, H.; Xie, J.; Huo, Z.; Wu, H.; Yang, Y. Research progress of magnetosome formation 

genes and proteins. Shengwu Jishu Tongbao 2013, 28–35. 

27. Dohcevic-Mitrovic, Z.D.; Paunovic, N.; Radovic, M.; Popovic, Z.V.; Matovic, B.; Cekic, B.; 

Ivanovski, V. Valence state dependent room-temperature ferromagnetism in Fe-doped ceria 

nanocrystals. Appl. Phys. Lett. 2010, 96, 203104. 

28. Johnson, L.M.; Thurber, A.; Anghel, J.; Sabetian, M.; Engelhard, M.H.; Tenne, D.A.; Hanna, C.B.; 

Punnoose, A. Transition metal dopants essential for producing ferromagnetism in metal oxide 

nanoparticles. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 82, 054419. 

29. Pool, V.L.; Klem, M.T.; Chorney, C.L.; Arenholz, E.A.; Idzerda, Y.U. Enhanced magnetism of 

Fe3O4 nanoparticles with Ga doping. J. Appl. Phys. 2011, 109, 07B529. 

30. Bedekar, V.; Jayakumar, O.D.; Manjanna, J.; Tyagi, A.K. Synthesis and magnetic studies of  

nano-crystalline GdFeO3. Mater. Lett. 2008, 62, 3793–3795. 

31. Zhang, Y.; Zheng, A.; Yang, X.; He, H.; Fan, Y.; Yao, C. Cubic GdFeO3 particle by a simple 

hydrothermal synthesis route and its photoluminescence and magnetic properties. CrystEngComm 

2012, 14, 8432–8439. 

32. Jiang, L.; Liu, W.; Wu, A.; Xu, J.; Liu, Q.; Qian, G.; Zhang, H. Low-temperature combustion 

synthesis of nanocrystalline HoFeO3 powders via a sol-gel method using glycin. Ceram. Int. 2012, 38, 

3667–3672. 

33. Zhou, Z.; Guo, L.; Yang, H.; Liu, Q.; Ye, F. Hydrothermal synthesis and magnetic properties of 

multiferroic rare-earth orthoferrites. J. Alloy. Compd. 2014, 583, 21–31. 

34. Wirix-Speetjens, R.; Reekmans, G.; de Palma, R.; Liu, C.; Laureyn, W.; Borghs, G. 

Magnetoresistive biosensors based on active guiding of magnetic particles towards the sensing 

zone. Sens. Actuators B 2007, 128, 1–4. 

35. Litvinov, D.; Willson, R. Nanomagnetic Detector Array for Biomolecular Recognition. U.S. Patent 

8456157 B2, 4 June 2013. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


