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Abstract: A comprehensive review of the publications about rosin-based chemicals has been compiled.
Rosin, or colophony, is a natural, abundant, cheap and non-toxic raw material which can be easily
modified to obtain numerous useful products, which makes it an excellent subject of innovative
research, attracting growing interest in recent years. The last extensive review in this research area
was published in 2008, so the current article contains the most promising, repeatable achievements in
synthesis of rosin-derived chemicals, published in scientific literature from 2008 to 2018. The first
part of the review includes low/medium molecule weight compounds: Especially intermediates,
resins, monomers, curing agents, surfactants, medications and biocides. The second part is about
macromolecules: mainly elastomers, polymers for biomedical applications, coatings, adhesives,
surfactants, sorbents, organosilicons and polysaccharides. In conclusion, a critical evaluation of
the publications in terms of data completeness has been carried out with an indication of the most
promising directions of rosin-based chemicals development.
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1. Introduction

The natural origin, low price, abundance and chemical modification potential of rosin make it a
valuable raw material in numerous applications [1–14]. Besides the mentioned advantages, rosin is
also safe for living organisms [15]. Its derivatives are claimed as non-toxic as well, despite their
allergenicity [16,17]. This unique set of beneficial properties of rosin determines it as an attractive
subject of innovative research characterized by a considerably growing interest in recent decades,
as can be seen in Figure 1.

Unfortunately, the awareness of the possibility of using rosin as a raw material for obtaining
valuable chemicals is generally unsatisfactory. There is a burning need to bring this topic to the
attention of a larger group of scientists. Furthermore, the growing number of publications causes
difficulties in keeping up with the latest research, as well as in selection of more promising discoveries.
Sadly, the last comprehensive review document dedicated exclusively to rosin and its modifications
was published in 2008 [1]. Since then, only fragmentary information on rosin has appeared in review
articles on bio-based polymers and resin systems [2–21], as well as in reviews on rosin derivatives in
catalysis [12], controlled drug-delivery systems [13] and small-molecule compounds [14].

In view of these facts, publication of a wide, comprehensive and critical review of achievements
since 2008 is an important solution to solve the problem of a severe lack of current review literature in
this field. The growing number of publications is not the only obstacle in creating a literature review
on rosin. No less important challenge is to collect information from existing literature. Quite often
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articles do not contain full information about a particular reaction, but refer to earlier articles, which,
in turn, may refer to even earlier articles, which may not be available online, or may not be in English.

The current article is a direct answer to the aforementioned issues. Its aims are: (I) to provide
a precise review of the scientific literature from 2008 to 2018, (II) select promising studies with clear
practical application and (III) an overall assessment of the reviewed achievements in order to identify
the most perspective development directions of rosin-based chemicals. The review is presented in a
modern, pleasant-to-browse form, illustrated with patiently completed reaction schemes. The article
provides concise, but exhaustive information on the achievements in preparation of rosin-derived
chemicals in the last decade. Its main idea is to inspire and encourage the world of science to actively
take interest in rosin and the possibilities of its modification.

Molecules 2019, 24, x FOR PEER REVIEW 2 of 51 

 

often articles do not contain full information about a particular reaction, but refer to earlier articles, 
which, in turn, may refer to even earlier articles, which may not be available online, or may not be in 
English.  

The current article is a direct answer to the aforementioned issues. Its aims are: (I) to provide a 
precise review of the scientific literature from 2008 to 2018, (II) select promising studies with clear 
practical application and (III) an overall assessment of the reviewed achievements in order to identify 
the most perspective development directions of rosin-based chemicals. The review is presented in a 
modern, pleasant-to-browse form, illustrated with patiently completed reaction schemes. The article 
provides concise, but exhaustive information on the achievements in preparation of rosin-derived 
chemicals in the last decade. Its main idea is to inspire and encourage the world of science to actively 
take interest in rosin and the possibilities of its modification. 

 
Figure 1. Number of scientific articles and patent documents containing the keyword “rosin” in the 
years 1990-2017. 

2. Basic Information about Rosin 

Rosin, or colophony, is a solid and brittle mixture of non-volatile conifer tree resin components. 
It can display colors ranging from almost colorless, through shades of yellow and brown to black. 
Depending on the origin, two industrially important types of rosin can be distinguished, i.e. gum 
rosin and tall oil rosin. Gum rosin is the non-volatile residue remaining after distillation of tree resin 
obtained by tapping of living trees. Tall oil rosin is a by-product of wood pulping in the kraft process. 
Gum rosin accounts for ca. 60% of world rosin production, whereas tall oil rosin is ca. 35%. In the 
past, rosin was widely obtained from the solvent extraction of harvested wood as so-called wood 
rosin, but nowadays, this technology is of little importance [1,22]. The price of rosin in the first half 
of 2018 ranged from 300 to 2750 USD/ton depending on its origin, supplier and color. Annual world 
production of rosin is ca. 1.2 million tons and has remained stable in the last decades [1,2,22]. 

Resin acids, with the general formula C19H29COOH, constitute up to 95 wt.% of rosin, while 
neutral compounds are present in amounts of a few percent. A number of resin acids based on a few 
diterpene carbon skeletons were identified so far [1]. The most abundant resin acids are built on 
abietane and pimarane skeletons. Their structural formulas are shown in Figure 1. It should be 
emphasized, that abietane-structured acids are characterized by conjugated double bond systems, 
which makes them particularly susceptible to chemical modifications. It is noteworthy, that abietane-
structured acids isomerize at elevated temperature to afford readily reactive levopimaric acid, 
according to Scheme 1. On the other hand, pimarane-type acids do not have conjugated double bond 
systems, which limits their chemical processability. The detailed chemical composition of rosin 
depends on its type (gum, tall oil or wood), thermal history, species of tree and geographical origin 
[23,24]. Compositions of gum rosin from various sources are presented in Table 1, where it can be 
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2. Basic Information about Rosin

Rosin, or colophony, is a solid and brittle mixture of non-volatile conifer tree resin components.
It can display colors ranging from almost colorless, through shades of yellow and brown to black.
Depending on the origin, two industrially important types of rosin can be distinguished, i.e., gum rosin
and tall oil rosin. Gum rosin is the non-volatile residue remaining after distillation of tree resin obtained
by tapping of living trees. Tall oil rosin is a by-product of wood pulping in the kraft process. Gum rosin
accounts for ca. 60% of world rosin production, whereas tall oil rosin is ca. 35%. In the past, rosin was
widely obtained from the solvent extraction of harvested wood as so-called wood rosin, but nowadays,
this technology is of little importance [1,22]. The price of rosin in the first half of 2018 ranged from 300
to 2750 USD/ton depending on its origin, supplier and color. Annual world production of rosin is ca.
1.2 million tons and has remained stable in the last decades [1,2,22].

Resin acids, with the general formula C19H29COOH, constitute up to 95 wt.% of rosin, while
neutral compounds are present in amounts of a few percent. A number of resin acids based on a few
diterpene carbon skeletons were identified so far [1]. The most abundant resin acids are built on abietane
and pimarane skeletons. Their structural formulas are shown in Figure 2. It should be emphasized,
that abietane-structured acids are characterized by conjugated double bond systems, which makes
them particularly susceptible to chemical modifications. It is noteworthy, that abietane-structured acids
isomerize at elevated temperature to afford readily reactive levopimaric acid, according to Scheme 1.
On the other hand, pimarane-type acids do not have conjugated double bond systems, which limits
their chemical processability. The detailed chemical composition of rosin depends on its type (gum,
tall oil or wood), thermal history, species of tree and geographical origin [23,24]. Compositions of gum
rosin from various sources are presented in Table 1, where it can be seen that the content of abietane-
type acids may vary between 64 and 87 wt.%. Such detailed composition of a rosin can be determined,
e.g., by the capillary electrophoresis method [25].
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In recent studies unmodified rosin was used for making films, coatings and adhesives [26–42], 
biomedical applications [43–55], or in mining, metallurgy and construction [56–58] and for filler 
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using this raw material, which are described in the next, main section of this article. 

3. Rosin-based Chemicals 

3.1. General Comments on the Whole Review 

The review contains short, but exhaustive descriptions of rosin-derived compound syntheses 
published in the scientific literature from the JCR list since 2008. It does not include older 
achievements in the field of rosin, that were widely described in previous review literature [1,65] and 
commercialized [66–80]. It includes preparations of completely new chemicals, as well as new ways 
to synthesize already known compounds. Only products with declared or obvious practical 
applications have been chosen. The review is divided into two sections according to the general 
molecular structure of the prepared compounds, while each section is divided according to practical 
application and the structure similarity of the compounds. The collected data are given in the article 
text and in schemes. The following information are presented in the text: product name, product 
morphology, substrates name(s), separation techniques and practical applications. On the other hand, 
data such as reaction scheme, catalyst use, reaction media, temperature, pressure, time and yield are 

Figure 2. Structural formulas of the most common abietane-structured (A–E) and pimarane-structured
(F–H) resin acids.

Molecules 2019, 24, x FOR PEER REVIEW 4 of 51 

 

included in the schemes. There are situations where some data simply has not been reported by 
original authors, eg. product morphology or yield. Such missing data could not be presented in this 
review. What does the above mean? The more data provided, the more advanced the research on a 
compound, and the more reliable the recipe. The lack of data should indicate that the research on a 
certain rosin derivative is probably at an early, basic stage. It has to be underlined that reaction 
schemes do not take into account advanced stereochemistry. Finally, almost all reactions were 
conducted under an inert atmosphere: nitrogen or argon, so reaction schemes do not include this 
information. 

pTSA
in CH3COOH
120°C, 12h

O

O

O

180°C
3h

in CHCl3
65°C/3h

Dehydro-
abietylamine

NH2

COOH

HOOC
Acrylpimaric acid
yield: 73- 93%

HOOC

O
OO

Maleopimaric acid
yield: 92%

230°C, 3h 

OHO

Ni
200°C

HOOC
Rosin

HOOC
Dehydroabietic acid

O=C
Cl

Dehydroabietyl chloride
(yield 93%)

NH3
HOOC

Abietic acid
>150°C

P
O Cl

Cl Cl
Levopimaric acid

HOOC

 
Scheme 1. Synthesis of essential rosin-based substrates/intermediates. 

3.2. Small and Medium Molecule Compounds 

This section describes rosin-derived small/medium molecule compounds with strictly defined 
structures that do not contain the repeated units typical for macromolecules.  

3.2.1. Intermediates 

Intermediates are the products of simple rosin modifications, which are necessary for the 
preparation of many new compounds. They can be synthesized in very simple, well described ways 
with high yields. The sustainability of these processes is high: They usually use a biobased main 
substrate (rosin) in solvent-free processes. Some drawback can be the separation processes, that may 
not always be easy, because of the high viscosity, m.p. and stickiness of products. In view of the 
above, rosin-based intermediates have very high commercialization potential and some of them are 
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Table 1. Composition of resin acids in gum rosin from different sources [23].

Species Origin
Abietane-type Acids Content (wt.%) Other Acids

(wt.%)Abietic Palustric/Levopimaric Neoabietic Dehydroabietic

Pinus massoniana China 39 25 16 7 13
Pinus elliotti Brazil 37 15 16 5 27

Pinus merkusii Indonesia 28 27 5 4 36
Pinus sylvestris Russia 35 23 15 10 17
Pinus halepensis Greece 45 23 13 5 14

Pinus pinaster

France 35 20 15 9 21
Portugal 34 21 19 9 17

Spain 26 22 27 6 19
USA 14 39 18 4 25

In recent studies unmodified rosin was used for making films, coatings and adhesives [26–42],
biomedical applications [43–55], or in mining, metallurgy and construction [56–58] and for filler
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purposes [59–64]. However, chemical modification of rosin gives many-fold greater possibilities of
using this raw material, which are described in the next, main section of this article.

3. Rosin-based Chemicals

3.1. General Comments on the Whole Review

The review contains short, but exhaustive descriptions of rosin-derived compound syntheses
published in the scientific literature from the JCR list since 2008. It does not include older
achievements in the field of rosin, that were widely described in previous review literature [1,65] and
commercialized [66–80]. It includes preparations of completely new chemicals, as well as new ways to
synthesize already known compounds. Only products with declared or obvious practical applications
have been chosen. The review is divided into two sections according to the general molecular structure
of the prepared compounds, while each section is divided according to practical application and the
structure similarity of the compounds. The collected data are given in the article text and in schemes.
The following information are presented in the text: product name, product morphology, substrates
name(s), separation techniques and practical applications. On the other hand, data such as reaction
scheme, catalyst use, reaction media, temperature, pressure, time and yield are included in the schemes.
There are situations where some data simply has not been reported by original authors, e.g., product
morphology or yield. Such missing data could not be presented in this review. What does the above
mean? The more data provided, the more advanced the research on a compound, and the more reliable
the recipe. The lack of data should indicate that the research on a certain rosin derivative is probably at
an early, basic stage. It has to be underlined that reaction schemes do not take into account advanced
stereochemistry. Finally, almost all reactions were conducted under an inert atmosphere: nitrogen or
argon, so reaction schemes do not include this information.

3.2. Small and Medium Molecule Compounds

This section describes rosin-derived small/medium molecule compounds with strictly defined
structures that do not contain the repeated units typical for macromolecules.

3.2.1. Intermediates

Intermediates are the products of simple rosin modifications, which are necessary for the
preparation of many new compounds. They can be synthesized in very simple, well described ways
with high yields. The sustainability of these processes is high: They usually use a biobased main
substrate (rosin) in solvent-free processes. Some drawback can be the separation processes, that may
not always be easy, because of the high viscosity, m.p. and stickiness of products. In view of the
above, rosin-based intermediates have very high commercialization potential and some of them are
commercially available in certain regions of the world.

Maleopimaric acid is an off-white solid (m.p. 223 ◦C). It can be prepared from abietic acid and
maleic anhydride via a Diels-Alder reaction according to Scheme 1 [81], followed by recrystallization [82].
Maleopimaric acid is one of the crucial products in rosin chemistry. It can be used directly as an
epoxy resin hardener, but its applications are much wider. They include preparation of epoxy
resins [83,84], acrylic resins [85–87], allyl resins [88–90], polyols [91], bio-based curing agents for
synthetic epoxy resins [92–98] or bio-based ones [99], surfactants [100–103], intermediates [104,105],
biologically active compounds [105–108], polyurethanes [109–112], chemicals for NMR techniques [113]
and photolitography [114], sorbents [115], organosilicon compounds [116], printing inks [117] and
for the hydrophobization of wood surfaces [118–120]. It is noteworthy that the main degradation
products of maleopimaric acid are water, carbon dioxide, formamide and also aliphatic and aromatic
derivatives [121]. It is worth noting that fumaropimaric acid is an isomer of hydrated maleopimaric
acid, which can be synthesized in a similar way [122], but its importance to rosin chemistry is much
smaller: it can be used in synthesis of triglycidyl epoxy resin [122] and water-borne polyurethanes [109].
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Acrylpimaric acid is an off-white solid (m.p. 220 ◦C). It can be prepared from abietic acid and acrylic
acid according to Scheme 1, followed by precipitation, filtration, washing and recrystallization [123,124].
It is noteworthy that neat rosin can be acrylated as well [125]. As an important material in rosin
chemistry, acrylpimaric acid can be used for preparation of diallyl acrylpimarate [123], polyesters of
acrylated rosin and polyethylene glycols [125], epoxy resins [126,127], acrylpimaryl dichloride [128,129],
acrylpimaric acid amides [130], cyclic diamide [131], quaternary ammonium salts [132–136], calcium
and zinc salts [137] as well as polyesters [138]. Moreover, it can be used directly as an epoxy curing
agent [139].

Another important compound in this subsection is dehydroabietyl chloride. It is a viscous,
yellow, oily liquid [140,141]. It can be prepared using: (i) oxalyl chloride according to Scheme 1
prior to evaporation of unnecessary substances [142], (ii) phosphorus trichloride in chloroform (yield
92.5%) [140] or (iii) thionyl chloride in presence of 4-dimethylaminopyridine [143]. It can be used
as a substrate for the synthesis of macroinitiators for atom transfer radical polymerization (ATRP)
reactions [142], rosin phosphate esters [140], N-hydroxyethylacrylamide ester of dehydroabietic
acid [144], dehydroabietic ethyl methacrylate [145,146], dehydroabietic propargyl ester [147]
dehydroabietic hexyl acrylate [148], as well as other intermediates in synthesis of various
surfactants [143,149] and medicines [141,150,151].

Dehydroabietylamine, also known as leelamine, is a solid (m.p. 44.5 ◦C). It is commercially
available. Its application in antitumor therapies was investigated in recent years [152–155]. Moreover,
it can be a substrate for preparation of epoxy resin [156], bio-based benzoxazines [157], quaternary
ammonium surfactants [158,159], acrylic monomers: glycidyl methacrylate monomer [160] or
N-dehydroabietic acrylamide [161].

3.2.2. Resins and Monomers

Rosin-based resins and monomers are compounds which contain epoxy, acrylic, allyl, hydroxyl or
oxazine reactive groups, that enable cross-linking, polymerization or building in the polymer matrix.
Their preparations are usually well described and easy to perform. The syntheses are similar to
conventional resins/monomers preparations, however the necessity of using organic solvents in several
reactions is a disadvantage in the context of Green Chemistry rules. The high modification potential
of rosin derivatives allows one to prepare resins and monomers showing diverse and designable
properties. They can exhibit adjustable glass transition temperatures, low volume shrinkage, as well as
improve elastic modulus, Young’s modulus, shape-memory, flame retardancy, corrosion protection
features of final casts/polymers in comparison with petroleum-based compounds. Therefore, the best
described recipes show high commercialization potential in the segment of resins, adhesives and
paints, but in most cases, additional applied research should be performed to increase their technology
readiness level (TRL).

Triglycidyl ester of maleopimaric acid is a beige, viscous liquid. It can be prepared from
maleopimaric acid, epichlorohydrin and sodium hydroxide according to Scheme 2, followed by
filtration, washing and evaporation [83]. It can be used in liquid epoxy resins [83], non-cytotoxic
bio-based epoxypolyurethanes [162] as well as synthesis of rosin-based cyclic carbonates [132]. Similar
liquid resin can be synthesized from fumaropimaric acid [122].
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Diglycidyl acrylpimarate is a yellowish liquid. It can be prepared from acrylpimaric acid,
epichlorohydrin and sodium hydroxide according to Scheme 3, prior to filtration, washing and
drying [126]. It can be used in epoxy materials showing improved thermal, mechanical and
shape-memory properties [126].
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Another diglycidyl derivative of acrylpimaric acid and its siloxane modification can be prepared
according to Scheme 4, prior to washing, filtration and vacuum evaporation [127]. Prepared epoxy
resins can improve the thermal stability and flame retardancy of products [127].
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Scheme 4. Preparation of ethylene glycol diglycidyl ether modified acrylpimaric acid and its
siloxane derivative.

Dimaleopimaryl ketone is a brownish yellow solid. It can be prepared from levopimaric acid
and maleic anhydride according to Scheme 5, prior to washing and recrystallization [163]. It can be
used directly as an epoxy resin hardener, as well as for the synthesis of bio-based epoxy resins, i.e.,
tetraglycidyl dimaleopimaryl ketone, according to Scheme 5 [163].
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Rosin pentaglycidyl ether is a solid. It can be prepared from epoxidized rosin, water, potassium
hydroxide and epichlorohydrin according to Scheme 6, and using such separation methods as vacuum
drying, filtration, precipitation and washing [164]. It can be used as a component in epoxy resin
systems showing high glass transition temperature as well as elastic modulus [164].
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Diglycidyl dehydroabietylamine is a yellowish sticky liquid. It can be synthesized from 
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Scheme 6. Synthesis of rosin pentaglycidyl ether.

Polygral is a solid byproduct of the paper and forestry industry, containing rosin acids and their
oligomers [165]. It can be epoxidized to prepare bio-based epoxy resins. Endocyclic epoxidized
polygral is a red brown solid, which can be prepared using 3-chloroperoxybenzoic acid, according
to Scheme 7, prior to vacuum evaporation. On the other hand, exocyclic epoxidized polygral is a
viscous red brown liquid, that can be prepared in two ways, using oxalyl chloride or N,N′-diisopropyl
carbodiimide before addition of glycidol, according to Scheme 7 prior to washing and vacuum drying.
They can be used for preparing bisphenol A-free epoxy resins [165].
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Scheme 7. Preparation of epoxidized rosin oligomers.

Diglycidyl dehydroabietylamine is a yellowish sticky liquid. It can be synthesized from
dehydroabietylamine, epichlorohydrin and sodium hydroxide according to Scheme 8, prior to filtration,
washing, drying and vacuum distillation [156]. It can be applied in epoxy resins exhibiting better
thermal stability and higher glass transition temperatures than petroleum-based products [156].

Rosin maleimidodicarboxylic acid diglycidyl ether is a yellowish solid. It can be prepared from
epichlorohydrin and dicarboxylic derivative of maleimide (described in more detail in Section 3.2.3)
according to Scheme 9 prior to filtration, washing, drying and rotary evaporation [84]. It shows higher
glass transition temperature, modulus and thermal stability than its plant oil counterparts [84].
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Scheme 9. Preparation of rosin maleimidodicarboxylic acid diglycidyl ether.

Triester of maleopimaric acid and trimethylolpropane is a dark yellow solid. It can be prepared
according to Scheme 10, prior to washing and vacuum distillation [98]. It can be used in synthesis of
rosin-based epoxy resin [98].
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Scheme 10. Preparation of maleopimaric acid-trimethylolpropane ester-based epoxy acrylate resin
crosslinked by unsaturated monomers.

Epoxy resin having EEW = 199.68 g/eq based on maleopimaric acid and trimethylolpropane ester
can be prepared according to Scheme 10, prior to extraction and vacuum distillation [98]. It can be
used directly as an epoxy compound, or transformed into acrylate resin [98].
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Acrylate resin based on epoxidized maleopimaric-trimethylolpropane adduct can be prepared
according to Scheme 10 [98]. It can be used as a resin crosslinked by styrene, methacrylated eugenol or
methacrylated guaiacol [98].

Dehydroabietic ethyl methacrylate is a white powder. It can be prepared from dehydroabietyl
chloride and hydroxyethyl methacrylate according to Scheme 11, prior to neutralization, drying,
evaporation and chromatography [146]. It can be widely used as a monomer in preparation of graft
and block copolymers [146,166–170]. It is worth noting, that a similar compound dehydroabietic
ethyl acrylate is a yellow, viscous liquid, which can be prepared from hydroxyethyl acrylate and
dehydroabietyl chloride prior to filtration, precipitation and vacuum distillation [171]. It can be used for
preparation of homopolymer with no declared application [171]. Moreover, rosin ethyl acrylate can be
used in preparation of bio-based graft copolymers of chitosan for controlled release applications [172].Molecules 2019, 24, x FOR PEER REVIEW 9 of 51 

 

O
O(CH2)2O

O
Dehydroabietic

ethyl methacrylate

COCl
Dehydroabietyl

chloride

HO(CH2)2O

O

(CH3)3N
in CH2Cl2

0-25°C, 48h

O

O(CH2)2OH

pyridine
in CH2Cl2
50°C, 4h

O
O(CH2)2O

O
Dehydroabietic
ethyl acrylate  

Scheme 11. Synthesis of dehydroabietic ethyl acrylates. 

O

O

HO

Dehydroabietic
hexyl acrylate  yield: 41%

COCl
Dehydroabietyl
chloride

DMAP
in THF

50°C, 12h

(CH3)3N
HQ

in THF
25°C, 10h

O
O

O

O

HO(CH2)6OH
O

Cl

Hydroxyhexyl
dehydroabietate  yield: 72%  

Scheme 12. Synthesis of dehydroabietic hexyl acrylate. 

Dehydroabietic ethyl methacrylate is a white powder. It can be prepared from dehydroabietyl 
chloride and hydroxyethyl methacrylate according to Scheme 11, prior to neutralization, drying, 
evaporation and chromatography [146]. It can be widely used as a monomer in preparation of graft 
and block copolymers [146,166–170]. It is worth noting, that a similar compound dehydroabietic ethyl 
acrylate is a yellow, viscous liquid, which can be prepared from hydroxyethyl acrylate and 
dehydroabietyl chloride prior to filtration, precipitation and vacuum distillation [171]. It can be used 
for preparation of homopolymer with no declared application [171]. Moreover, rosin ethyl acrylate 
can be used in preparation of bio-based graft copolymers of chitosan for controlled release 
applications [172]. 

Dehydroabietic hexyl acrylate is a solid. It can be synthesized from dehydroabietyl chloride, 
hexanediol and acryloyl chloride according to Scheme 12, and using separation methods such as 
filtration, precipitation, washing and vacuum drying [148]. Its application is a soft acrylic monomer 
(glass transition temperature of −23 °C), which can impart a flexibility to the integrated polymer [148]. 

N-hydroxyethylacrylamide ester of dehydroabietic acid is a viscous, yellow liquid. It can be 
prepared from dehydroabietyl chloride and N-hydroxyethylacrylamide according to Scheme 13, 
prior to filtration, washing, drying and column chromatography [144]. It can be used as a monomer 
in thermoset system with soybean oil-based resin for coating and adhesive applications [144]. 

C
O

O
N
H

O

COCl

Dehydroabietyl
chloride 

Et3N
in CH2Cl2 ;  45°C/4h

Dehydroabietic acid 
N-hydroxyethylacrylamide ester
purity: 90%,  yield: 80%

NH

O

OH

 
Scheme 13. Synthesis of N-hydroxyethylacrylamide ester of dehydroabietic acid. 
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Dehydroabietic hexyl acrylate is a solid. It can be synthesized from dehydroabietyl chloride,
hexanediol and acryloyl chloride according to Scheme 12, and using separation methods such as
filtration, precipitation, washing and vacuum drying [148]. Its application is a soft acrylic monomer
(glass transition temperature of −23 ◦C), which can impart a flexibility to the integrated polymer [148].
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Scheme 12. Synthesis of dehydroabietic hexyl acrylate.

N-hydroxyethylacrylamide ester of dehydroabietic acid is a viscous, yellow liquid. It can be
prepared from dehydroabietyl chloride and N-hydroxyethylacrylamide according to Scheme 13,
prior to filtration, washing, drying and column chromatography [144]. It can be used as a monomer in
thermoset system with soybean oil-based resin for coating and adhesive applications [144].
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Scheme 13. Synthesis of N-hydroxyethylacrylamide ester of dehydroabietic acid.

Rosin-based high adhesion polyurethane acrylate is a faint-yellow solid. It can be synthesized
from hydrogenated rosin, isophorone diisocyanate and 2-hydroxyethyl acrylate according to Scheme 14,
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prior to precipitation, vacuum drying and column chromatography [173]. Its application is an adhesive
having a high polymerization rate, low volume shrinkage and high adhesion [173].
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Scheme 14. Synthesis of rosin-based high adhesion polyurethane acrylate.

Rosin-based glycidyl methacrylate monomers are viscous liquids: brown rosin acid-glycidyl
methacrylate and colorless dehydroabietylamine-glycidyl methacrylate. They can be prepared from
glycidyl methacrylate and rosin or dehydroabietylamine according to Scheme 15, prior to the use
of such separation techniques as washing, extraction and evaporation [160,174]. They significantly
improve thermal and mechanical properties of soybean oil-based thermosets [160]. Moreover, they can
be used in copolymerization with other acrylate monomers [175], or as an advanced tackifier in the
UV-crosslinking pressure sensitive adhesives [174,176].
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Scheme 15. Synthesis of rosin-based glycidyl methacrylate monomers.

Ethylene glycol maleic rosinate (meth)acrylate can be prepared from maleated rosin, ethylene
glycol and (meth)acrylic acid according to Scheme 16 [85]. It can be applied in styrene-acrylate
copolymers increasing their thermal stability [86], as well as in preparation of moleculary imprinted
polymers for stationary phases used in high-performance liquid chromatography [85,87].

Molecules 2019, 24, x FOR PEER REVIEW 10 of 51 

 

Isophorone 
diisocyanate

COOH

Rosin-based
high adhesion
polyurethane

acrylate

NCO

NCO

HO
O

O

NCO

NH
O

O

O

O

dibutyltin dilaurate
p-methoxyphenol

40°C

O

N
H

HN O

O

O

O

N

N
H

O

O
O

OO

MgCl2 in butyl acetate
dibutyltin dilaurate

p-methoxyphenol
75-100°C

 
Scheme 14. Synthesis of rosin-based high adhesion polyurethane acrylate. 

Rosin-based glycidyl methacrylate monomers are viscous liquids: brown rosin acid-glycidyl 
methacrylate and colorless dehydroabietylamine-glycidyl methacrylate. They can be prepared from 
glycidyl methacrylate and rosin or dehydroabietylamine according to Scheme 15, prior to the use of 
such separation techniques as washing, extraction and evaporation [160,174]. They significantly 
improve thermal and mechanical properties of soybean oil-based thermosets [160]. Moreover, they 
can be used in copolymerization with other acrylate monomers [175], or as an advanced tackifier in 
the UV-crosslinking pressure sensitive adhesives [174,176]. 

Rosin acid-glycidyl 
methacrylate monomer

yield: 95%

Rosin acid

TBA Br
in MEK

<80°C, 24h

in ethanol
40-80°C, 60h

NH2
O

O

O

N

O

O

O

HO

HO

O

O

O

O

COOH
O

O

OH

O

Dehydro-
abietylamine Dehydroabietylamine-glycidyl 

methacrylate monomer
yield: 89%  

Scheme 15. Synthesis of rosin-based glycidyl methacrylate monomers. 

Ethylene glycol maleic rosinate (meth)acrylate can be prepared from maleated rosin, ethylene 
glycol and (meth)acrylic acid according to Scheme 16 [85]. It can be applied in styrene-acrylate 
copolymers increasing their thermal stability [86], as well as in preparation of moleculary imprinted 
polymers for stationary phases used in high-performance liquid chromatography [85,87]. 

Diallyl acrylpimarate is a yellow liquid [123]. It can be prepared from acrylpimaric acid and an 
allyl halide by different methods, according to Scheme 17, and using separation methods such as 
filtration, washing, extraction and evaporation [88,123,177]. It can be applied as a monomer in 
polyester unsaturated resins from renewable resources [123], or in synthesis of aminated curing agent 
for epoxy [178]. 

HOOC

O

O

O

Maleic rosin

Ethylene glycol
maleic rosinate
(meth)acrylate

O

O

O

O
O

O

O

O

OO
O

O
R

R

R

R = H- or CH3-

O

O

R
HO

ZnO
200-220°C, 3h

 
Scheme 16. Preparation of ethylene glycol maleic rosinate acrylate. Scheme 16. Preparation of ethylene glycol maleic rosinate acrylate.



Molecules 2019, 24, 1651 11 of 52

Diallyl acrylpimarate is a yellow liquid [123]. It can be prepared from acrylpimaric acid and
an allyl halide by different methods, according to Scheme 17, and using separation methods such
as filtration, washing, extraction and evaporation [88,123,177]. It can be applied as a monomer in
polyester unsaturated resins from renewable resources [123], or in synthesis of aminated curing agent
for epoxy [178].
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Aminated diallyl acrylpimarate is a yellow-brown solid. It can be synthesized from diallyl
acrylpimarate and cysteamine hydrochloride according to Scheme 17, prior to washing, extraction and
evaporation [178]. It can be applied as a resin or a curing agent for epoxy resins, giving them improved
thermal and shape-memory properties [178].

Sodium maleopimarate is a solid, which can be prepared from maleopimaric acid according to
Scheme 18 prior to drying at 40 ◦C [89]. Its applications include the synthesis of triallyl maleopimarate.
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Scheme 18. Synthesis of triallyl maleopimarate.

In a similar way dehydroabietic acid salts can be synthesized for use as nucleating agents for
isotactic polypropylene in a non-isothermal crystallization process, improving the crystallization
temperature and accelerating the nucleation rate [179,180]. Triallyl maleopimarate is a white viscous
liquid, which can be prepared from sodium maleopimarate and allyl halide according to Scheme 18,
prior to extraction, washing, filtration and vacuum distillation [88,89]. It can be used as a monomer in
UV-cured polymer films and coatings, giving them improved adhesion and mechanical properties [89],
as well as in thermally cured fully bio-based resin systems exhibiting satisfactory thermal and
mechanical properties [88].

Mono-allyl rosin derivatives have been also synthesized in recent years. Allyl rosinate can be
prepared in aqueous [181] or ethanol [182] medium from rosin, sodium hydroxide and allyl chloride
according to Scheme 19, prior to filtration and distillation [181]. It can be potentially applied as an
unsaturated monomer in copolymerization reactions [181] as well as in UV-cured resins [182]. On the
other hand, allyl maleopimarate can be prepared in THF from maleopimaric acid, oxalyl chloride and
allyl alcohol according to Scheme 19, and using such separation methods as vacuum distillation and
column chromatography [90]. It can be used in unsaturated resins and epoxy resins as a cross-linking
agent [90].
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3.2.3. Hardeners 

Rosin-based hardeners, i.e. curing agents, are compounds containing anhydride, carboxyl or 
hydroxyl groups, which allows one to apply them in epoxy or urethane resin systems. In comparison 
with petroleum-based hardeners they bring improved endurance and thermal properties to resin 
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Benzoxazines are compounds consisting of a bicyclic group with an oxazine moiety. Maleopimaric
acid imidophenol is a white, crystal solid. It can be synthesized from maleopimaric acid and
4-aminobenzoic phenol according to Scheme 20, prior to precipitation and drying [96]. It can be used
in synthesis of benzoxazine monomers [96].
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Scheme 20. Synthesis of maleopimaric acid imidophenol and its benzoxazines.

Rosin-based benzoxazine monomers are orange solids. They can be synthesized from maleopimaric
acid, paraformaldehyde and aniline or 4-aminobenzoic acid, according to Scheme 20, prior to filtration,
washing and rotary evaporation [96]. They can be polymerized into products of significant thermal
stability [96].

Dehydroabietylamine-guaiacol (brown powder, m.p. 104 ◦C) and dehydroabietylamine-4-
methylumbelliferone (yellow spherical crystal solid, m.p. 131 ◦C) are fully bio-based benzoxazines [157].
They can be synthesized from dehydroabietylamine via Mannich condensation, according to Scheme 21.
They can compound resins with strong corrosion protection and thermal stability [157].
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3.2.3. Hardeners

Rosin-based hardeners, i.e., curing agents, are compounds containing anhydride, carboxyl or
hydroxyl groups, which allows one to apply them in epoxy or urethane resin systems. In comparison
with petroleum-based hardeners they bring improved endurance and thermal properties to resin
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systems. Moreover, rosin-based anhydrides are non-toxic, as opposed to conventional anhydride
curing agents. Their preparation is simple and well described, and usually does not require the use
of solvents. These strengths cause the great interest in use of rosin based chemicals as hardeners of
conventional and bio-based resins resulting in several commercializations of e.g., maleated rosins.

Methyl maleopimarate is a white solid. It can be prepared from abietic acid, iodomethane and
maleic anhydride, according to Scheme 22, prior to recrystallization [82]. It can be used as bio-based
curing agent for epoxies [82,183], as well as in synthesis of binaphthyl-appended crown ethers derived
from rosin [184].
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Scheme 22. Synthesis of maleopimaric acid and methyl maleopimarate.

Rosin-maleimidopolycarboxylic acids are white/yellowy or gray/brown powders. They can be
prepared from maleopimaric acid with aspartic or 4-aminobenzoic acid, or rosin with 1,1′-(methylenedi-
4,1-phenylene)bismaleimide, according to Scheme 23, before separation via such methods as
precipitation, filtration, washing, drying and recrystallization [94,185]. They have a potential to
replace petroleum-based epoxy curing agents [94,185]. Furthermore, rosin-maleimidodicarboxylic acid
can be used for synthesis of rosin-based chain extender for polyurethanes [186], or epoxy resins [84].
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Scheme 23. Synthesis of rosin-maleimidodicarboxylic acids.

Rosin-polycaprolactone flexible dianhydride are solids with a melting point depending on the
length of oligoester diol chain. They can be synthesized from rosin, oligocaprolactone diols and
maleic anhydride according to Scheme 24 and using vacuum evaporation as a separation method [97].
Their application is bio-based curing agent for epoxy resins [97].

Tall-oil based polyol can be prepared from diethanolamine and tall oil containing up to 20 wt.% of
rosin acids, according to Scheme 25, prior to vacuum evaporation of water [187]. It can be used as chain
extenders in ureaurethane elastomers, improving their thermal resistance and storage moduls [187].
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3.2.4. Surfactants 

Small/medium molecule rosin-based surfactants are ionic or non-ionic compounds that lower 
surface tension between different substances. In comparison with petrochemical counterparts, they 
are characterized by designable surface activity, affinity to many chemicals (especially cycloaliphatic 
and aromatic), non-toxicity, mild biocidal properties and enhanced thermal stability. Unfortunately, 
their syntheses are less well described than rosin-based resins and hardeners, eg. reaction yields are 
often unavailable. Moreover, the use of unsustainable chemicals in the mentioned reactions 
noticeably decreases the “green” aspect of these rosin derivatives. Therefore, it is an urgent need to 
undertake applied studies on these compounds, as well as to find more sustainable preparation 
processes in order to increase TRL of this group of rosin derivatives. 

Dehydroabietyl phosphate diester is a yellow viscous liquid. It can be prepared from 
dehydroabietyl chloride, decanediol, and polyphosphorus acid according to Scheme 26, prior to 
washing, vacuum evaporation and drying [140]. It can be used as highly-active surfactant [140], 
phosphorus source and crystal growth control agent in synthesis of hydroxyapatite [188]. 
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Rosin-based chloride can be prepared from maleated rosin and phosphorus trichloride 
according to Scheme 27, prior to evaporation [101]. It can be used as a substrate for synthesis of rosin-
based ester amines [101]. 
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Rosin-based chloride can be prepared from maleated rosin and phosphorus trichloride 
according to Scheme 27, prior to evaporation [101]. It can be used as a substrate for synthesis of rosin-
based ester amines [101]. 

Scheme 25. Synthesis of tall oil-based polyol.

3.2.4. Surfactants

Small/medium molecule rosin-based surfactants are ionic or non-ionic compounds that lower
surface tension between different substances. In comparison with petrochemical counterparts, they
are characterized by designable surface activity, affinity to many chemicals (especially cycloaliphatic
and aromatic), non-toxicity, mild biocidal properties and enhanced thermal stability. Unfortunately,
their syntheses are less well described than rosin-based resins and hardeners, e.g., reaction yields are
often unavailable. Moreover, the use of unsustainable chemicals in the mentioned reactions noticeably
decreases the “green” aspect of these rosin derivatives. Therefore, it is an urgent need to undertake
applied studies on these compounds, as well as to find more sustainable preparation processes in order
to increase TRL of this group of rosin derivatives.

Dehydroabietyl phosphate diester is a yellow viscous liquid. It can be prepared from
dehydroabietyl chloride, decanediol, and polyphosphorus acid according to Scheme 26, prior to
washing, vacuum evaporation and drying [140]. It can be used as highly-active surfactant [140],
phosphorus source and crystal growth control agent in synthesis of hydroxyapatite [188].
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Rosin-based chloride can be prepared from maleated rosin and phosphorus trichloride according
to Scheme 27, prior to evaporation [101]. It can be used as a substrate for synthesis of rosin-based ester
amines [101].
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Scheme 29. Preparation of acrylic rosin ester diethylamine tertiary amine surfactant. 
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Rosin-based ester tertiary amine can be prepared from rosin chloride and N,N-dimethyl
ethanolamine according to Scheme 27, prior to washing, drying, extraction, evaporation and
recrystallization [101]. Potential applications include drug carriers and surfactants. Its surface
activity significantly increases in presence of rosin phosphate ester (Scheme 26) [101].

Solid N-dodecyl-maleimidepimaric acid (C12-MPA) can be prepared from maleopimaric acid and
dodecylamine according to Scheme 28, prior to washing, drying, filtration, rotary evaporation and
purification via column chromatography [100]. Sodium N-dodecylmaleimidepimaric carboxylate is a
product of C12-MPA neutralization using NaOH, prior to evaporation, recrystallization and vacuum
drying. It forms micelles of various shapes, depending on its concentration [102]. It can be used in oil
extraction, cosmetics and industrial washing [100].

Molecules 2019, 24, x FOR PEER REVIEW 15 of 51 

 

Rosin-based ester tertiary amine can be prepared from rosin chloride and N,N-dimethyl 
ethanolamine according to Scheme 27, prior to washing, drying, extraction, evaporation and 
recrystallization [101]. Potential applications include drug carriers and surfactants. Its surface activity 
significantly increases in presence of rosin phosphate ester (Scheme 26) [101]. 

Maleic rosin
COOH

O

O

OH

OH

COCl

O

O

Cl

Cl

COO

O

O

N

N

N

PCl3

in CHCl3
55°C, 3h

(C2H5)3N
in benzene

25°C, 3h

Rosin-based chloride Rosin-based ester tertiary
amine  purity 81.18%

HO
N

 
Scheme 27. Synthesis of rosin-based ester tertiary amine. 

Solid N-dodecyl-maleimidepimaric acid (C12-MPA) can be prepared from maleopimaric acid 
and dodecylamine according to Scheme 28, prior to washing, drying, filtration, rotary evaporation 
and purification via column chromatography [100]. Sodium N-dodecylmaleimidepimaric 
carboxylate is a product of C12-MPA neutralization using NaOH, prior to evaporation, 
recrystallization and vacuum drying. It forms micelles of various shapes, depending on its 
concentration [102]. It can be used in oil extraction, cosmetics and industrial washing [100]. 

Acrylpimaryl dichloride is an orange, sticky paste. It can be prepared from acrylpimaric acid 
according to Scheme 29, prior to solvent evaporation [128]. It can be used in synthesis of surfactants 
[128], herbicides [129], fungicides [189] and insecticides [190] 

Acrylic rosin ester diethylamine tertiary amine surfactant is a sticky paste. It can be prepared 
from acrylpimaryl chloride, N,N-diethylethanolamine and hydrochloric acid according to Scheme 29 
[128]. This product, in a mixture with soapnut saponin exhibits noteworthy surface activity and 
emulsification ability to apply in pharmacy, cosmetics and commodity chemicals [128]. 

COOH

O
O O

Maleopimaric
acid

C12H25NH2

in DMF
<165°C, 8h

N-dodecyl-
maleimidepimaric acid yield 29%

COOH

N
O O

C12H25

COO Na

N

O

O

NaOH
in C2H5OH
70°C, 12h

Sodium
N-dodecyl-maleimidepimaric 
carboxylate                  
yield 76%  

Scheme 28. Synthesis of sodium N-dodecyl-maleimidepimaric carboxylate. 

in CHCl3
55°C, 3h

Acrylic rosin
chloride

yield 96%

OH
N

PCl3

(C2H5)3N
in benzene

25°C, 3h

HCl

Acrylic rosin 
N,N-diethyl 
ethanolamine diester
yield 87%

Acrylic rosin ester
diethylamine tertiary amine

surfactant yield: 100%

Acrylic rosin

COOH

COOH

COCl

COCl

COO

COO
N

N

COO

COO H 
  N

H
N

Cl Cl

 
Scheme 29. Preparation of acrylic rosin ester diethylamine tertiary amine surfactant. 

Scheme 28. Synthesis of sodium N-dodecyl-maleimidepimaric carboxylate.

Acrylpimaryl dichloride is an orange, sticky paste. It can be prepared from acrylpimaric acid
according to Scheme 29, prior to solvent evaporation [128]. It can be used in synthesis of surfactants [128],
herbicides [129], fungicides [189] and insecticides [190]

Molecules 2019, 24, x FOR PEER REVIEW 15 of 51 

 

Rosin-based ester tertiary amine can be prepared from rosin chloride and N,N-dimethyl 
ethanolamine according to Scheme 27, prior to washing, drying, extraction, evaporation and 
recrystallization [101]. Potential applications include drug carriers and surfactants. Its surface activity 
significantly increases in presence of rosin phosphate ester (Scheme 26) [101]. 

Maleic rosin
COOH

O

O

OH

OH

COCl

O

O

Cl

Cl

COO

O

O

N

N

N

PCl3

in CHCl3
55°C, 3h

(C2H5)3N
in benzene

25°C, 3h

Rosin-based chloride Rosin-based ester tertiary
amine  purity 81.18%

HO
N

 
Scheme 27. Synthesis of rosin-based ester tertiary amine. 

Solid N-dodecyl-maleimidepimaric acid (C12-MPA) can be prepared from maleopimaric acid 
and dodecylamine according to Scheme 28, prior to washing, drying, filtration, rotary evaporation 
and purification via column chromatography [100]. Sodium N-dodecylmaleimidepimaric 
carboxylate is a product of C12-MPA neutralization using NaOH, prior to evaporation, 
recrystallization and vacuum drying. It forms micelles of various shapes, depending on its 
concentration [102]. It can be used in oil extraction, cosmetics and industrial washing [100]. 

Acrylpimaryl dichloride is an orange, sticky paste. It can be prepared from acrylpimaric acid 
according to Scheme 29, prior to solvent evaporation [128]. It can be used in synthesis of surfactants 
[128], herbicides [129], fungicides [189] and insecticides [190] 

Acrylic rosin ester diethylamine tertiary amine surfactant is a sticky paste. It can be prepared 
from acrylpimaryl chloride, N,N-diethylethanolamine and hydrochloric acid according to Scheme 29 
[128]. This product, in a mixture with soapnut saponin exhibits noteworthy surface activity and 
emulsification ability to apply in pharmacy, cosmetics and commodity chemicals [128]. 

COOH

O
O O

Maleopimaric
acid

C12H25NH2

in DMF
<165°C, 8h

N-dodecyl-
maleimidepimaric acid yield 29%

COOH

N
O O

C12H25

COO Na

N

O

O

NaOH
in C2H5OH
70°C, 12h

Sodium
N-dodecyl-maleimidepimaric 
carboxylate                  
yield 76%  

Scheme 28. Synthesis of sodium N-dodecyl-maleimidepimaric carboxylate. 

in CHCl3
55°C, 3h

Acrylic rosin
chloride

yield 96%

OH
N

PCl3

(C2H5)3N
in benzene

25°C, 3h

HCl

Acrylic rosin 
N,N-diethyl 
ethanolamine diester
yield 87%

Acrylic rosin ester
diethylamine tertiary amine

surfactant yield: 100%

Acrylic rosin

COOH

COOH

COCl

COCl

COO

COO
N

N

COO

COO H 
  N

H
N

Cl Cl

 
Scheme 29. Preparation of acrylic rosin ester diethylamine tertiary amine surfactant. Scheme 29. Preparation of acrylic rosin ester diethylamine tertiary amine surfactant.

Acrylic rosin ester diethylamine tertiary amine surfactant is a sticky paste. It can be prepared from
acrylpimaryl chloride, N,N-diethylethanolamine and hydrochloric acid according to Scheme 29 [128].
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This product, in a mixture with soapnut saponin exhibits noteworthy surface activity and emulsification
ability to apply in pharmacy, cosmetics and commodity chemicals [128].

Quaternary ammonium salts of rosin esters are yellow solids. They can be prepared from
maleopimaryl chloride (described in Section 3.2.5) and N,N-diethylethanolamine with hexadecyl
bromide, or epichlorohydrin with triethylamine, according to Scheme 30, and using such separation
methods as vacuum distillation, filtration, washing, drying, extraction and recrystallization [104,191].
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Dehydroabietyltrimethyl ammonium bromide is a yellow solid. It can be prepared from 
dehydroabietylamine, formic acid and methyl bromide according to Scheme 32, and using such 
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Scheme 30. Synthesis of quaternary ammonium salts of rosin esters.

Their potential applications include corrosion inhibitiors [104,191,192] dispersants for magnetite
(Fe3O4) nanoparticles [191,192] and inhibitors in protein aggregation processes [193–195]. In addition,
a similar rosinyl triquaternary ammonium salt having antifungal activity was also reported [196].

Another approach to introduce quaternary ammonium moieties into rosin is presented in
Scheme 31 [197]. As it can be seen, rosin bisquaternary ammonium chloride can be prepared from
rosin, ethanol, fumaric acid and epoxy quaternary ammonium salt, and using such separation methods
as washing and drying. Thus obtained gemini surfactant has good surface activity and antifungal
activity against fungi responsible for wood decay [197].
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Scheme 31. Preparation of rosin bisquaternary ammonium salt.

Dehydroabietyltrimethyl ammonium bromide is a yellow solid. It can be prepared from
dehydroabietylamine, formic acid and methyl bromide according to Scheme 32, and using such
separation techniques as washing, extraction and evaporation, drying, vacuum distillation and
recrystallization [158]. Such surfactant can be used for preparation of ordered porous titania [159],
zirconia [198] or silica [158] with potential applications in catalysis and separation.
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Scheme 34. Synthesis of rosin-based carbamate and carbamate group-containing quaternary 
ammonium salt derivatives. 

Scheme 32. Synthesis of dehydroabietyltrimethyl ammonium bromide.

Another rosin-based gemini surfactants [143,199] can be prepared from dehydroabietyl chloride,
3-(dimethylamino)-1-propylamine and α,ω-dibromoalkanes according to Scheme 33. The product
separation methods include column chromatography, vacuum drying and recrystallization from
ethanol/ethyl acetate [143]. They can be used in preparation of three-dimensional mesoporous
materials for separations, catalysis and drug delivery [143].
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Scheme 34. Synthesis of rosin-based carbamate and carbamate group-containing quaternary 
ammonium salt derivatives. 

Scheme 33. Synthesis of rosin-based gemini surfactant.

Rosin-based cyclic tricarbonate is a brown solid. It can be prepared from maleopimaric
acid triglycidyl ester and carbon dioxide according to Scheme 34, prior to washing and vacuum
drying [132]. Its applications include synthesis of quaternary ammonium salt derivatives [132] and
non-isocyanate polyurethanes [200]. Rosin-based carbamate group-containing quaternary ammonium
salt derivatives are brown solids. They can be prepared from rosin-based cyclic tricarbonate,
N,N-dimethylaminopropylamine and alkyl bromides according to Scheme 34, and using vacuum
drying and recrystallization [132]. They exhibit strong antimicrobial properties [132].
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Rosin-based cyclic tricarbonate is a brown solid. It can be prepared from maleopimaric acid 
triglycidyl ester and carbon dioxide according to Scheme 34, prior to washing and vacuum drying 
[132]. Its applications include synthesis of quaternary ammonium salt derivatives [132] and non-
isocyanate polyurethanes [200]. Rosin-based carbamate group-containing quaternary ammonium 
salt derivatives are brown solids. They can be prepared from rosin-based cyclic tricarbonate, N,N-
dimethylaminopropylamine and alkyl bromides according to Scheme 34, and using vacuum drying 
and recrystallization [132]. They exhibit strong antimicrobial properties [132]. 
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Maleopimaric acid diethanolamide is a solid. It can be synthesized from maleopimaric acid
and diethanolamine according to Scheme 35 [103]. It can be applied as a dispersant and a viscosity
depressant in coal-water slurry [103].
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3.2.5. Biologically Active Compounds 

Pure abietic acid isolated from rosin and its derivatives exhibit many potential activities of 
interest to the pharmaceutical industry, for example, antitumor, anti-inflammatory, antimycotic and 
anti-arteriosclerotic properties and uses in treating digestive canal, acute and chronic gastritis, and 
erosive gastritis, allergy, asthma, arthritis and psoriasis [202]. In this subsection rosin-based chemicals 
with main applications as biologically active compounds can be found. They include both 
medications and biocides. Their synthetic routes are usually characterized in detail and, from the 
chemical point of view, their TRLs are rather high. It is worth noting, that although the sustainability 
of their syntheses is usually worse than for other rosin derivatives (due to the necessity of using more 
dangerous chemicals), it is still better than their petrochemical counterparts (thanks to the use of bio-
based rosin as a main substrate). 

Scheme 35. Synthesis of maleopimaric acid diethanolamide.

Acrylpiamric acid salts of calcium and zinc are solids. They can be prepared from acrylpimaric
acid, sodium hydroxide and calcium chloride or zinc sulfate according to Scheme 36 and using such
separation methods as washing, filtration and drying [137]. They can be used as a stabilizer of
poly(vinyl chloride) showing better thermal stability than commercial Ca/Zn stearate [137].
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Rosin-derived binapthyl-appended 22-crown-6 ether can be synthesized from methyl maleopimarate,
sodium borate and sodium hydride according to Scheme 37 [184]. It can be used in highly enantioselective
reactions because of its amines enantiomeric recognition ability [184]. Very similar compounds can be
also synthesized directly from maleopimaric or fumaropimaric acid [201].
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3.2.5. Biologically Active Compounds

Pure abietic acid isolated from rosin and its derivatives exhibit many potential activities of
interest to the pharmaceutical industry, for example, antitumor, anti-inflammatory, antimycotic
and anti-arteriosclerotic properties and uses in treating digestive canal, acute and chronic gastritis,
and erosive gastritis, allergy, asthma, arthritis and psoriasis [202]. In this subsection rosin-based
chemicals with main applications as biologically active compounds can be found. They include both
medications and biocides. Their synthetic routes are usually characterized in detail and, from the
chemical point of view, their TRLs are rather high. It is worth noting, that although the sustainability
of their syntheses is usually worse than for other rosin derivatives (due to the necessity of using more
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dangerous chemicals), it is still better than their petrochemical counterparts (thanks to the use of
bio-based rosin as a main substrate).

Methyl dehydroabietate is a white solid. It can be prepared from dehydroabietyl chloride and
methanol according to Scheme 38, prior to vacuum evaporation and recrystallization [141]. It can be
used as a substrate in the synthesis of antimicrobial agents and medicines [141,150].
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Thiadiazole group-containing amides of dehydroabietic or acrylpimaric acids can be prepared 
from adequate rosin acid, thiosemicarbazide and an acyl chloride according to Scheme 40, and using 
such separation methods as filtration, vacuum drying, recrystallization and column chromatography 
[130]. They can be potentially applied as insecticides [130,190]. 

Scheme 38. Synthesis of dehydroabietic derivative QC4.

Methyl 7-oxodehydroabietate is a yellow oil. It can be prepared from methyl dehydroabietate
and chromium trioxide according to Scheme 38, followed by extraction, drying and column
chromatography [141]. It can be used as a substrate in synthesis of antimicrobial agents and
medicines [141,150].

Dehydroabietic acid derivative QC4 can be prepared from methyl 7-oxodehydroabietate,
phenylhydrazine hydrochloride, 1,2-dibromoethane and N-methyl piperazine, according to
Scheme 38 [141,150]. It shows antimicrobial properties [150] and, moreover, induces gastric cancer cell
death via oncosis and apoptosis [151]. Another dehydroabietic acid derivative QC2 is reported to be
able to inhibit skin cancer cell lines [203].

N-(2-methyl-naphthyl)maleopimaric acid diimides and their methyl esters are white solids
(m.p. 215–290 ◦C). They can be synthesized from maleopimaric acid, 2-methyl-1-naphtylamine and
dimethyl sulfate according to Scheme 39, and using separation methods such as extraction, washing,
drying, evaporation and recrystallization [106,107]. They show significant antitumor cytotoxicity
against several human cancer cell lines, especially NCI cells and MGC-803 cells [106].
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Scheme 39. Synthesis of N-(2-methyl-naphthyl)maleopimaric acid diimides.

Anticancer effects of various rosin derivatives, especially thioureas, were also investigated; they
showed significantly cytotoxicity toward diverse human carcinoma cell lines [108].

Thiadiazole group-containing amides of dehydroabietic or acrylpimaric acids can be prepared from
adequate rosin acid, thiosemicarbazide and an acyl chloride according to Scheme 40, and using such
separation methods as filtration, vacuum drying, recrystallization and column chromatography [130].
They can be potentially applied as insecticides [130,190].
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Scheme 40. Synthesis of rosin acid amides with thiadiazole groups.

Acrylpimaric acid-based aromatic diacylthioureas can be prepared from acrylpimaryl dichloride,
potassium thiocyanate and aromatic amines according to Scheme 41, prior to vacuum evaporation
and recrystallization [129]. They may be applied as botanical herbicides showing higher activity than
similar dicarboxamide, dihydrazone and diimide compounds [129]. Moreover, some acrylpimaryl
diimides possess antibacterial activities against Gram-positive Staphylococcus aureus and Gram-negative
Escherichia coli [204]. Furthermore, some acrylpimaryl dicarboxamides show antibacterial properties
against E. coli, whereas their activity against Gram-positive bacteria was significantly lower [205].
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Solid acrylpimaryl quaternary ammonium salts can be synthesized from acrylpimaryl acid,
oxalyl chloride, epichlorohydrin and volatile tertiary amines according to Scheme 41 and using such
separation methods as vacuum distillation, extraction and recrystallization [189]. They show fungicidal
activity and can be applied in wood preservation [189]. Very similar acrylpimaryl materials that can
be applied as surfactants were also prepared [133]. Another fungicidal rosin-based materials can be
prepared in similar way from rosin, epichlorohydrin and amines [134–136]. Maleopimaryl chloride is a
yellowish solid. It can be prepared from maleopimaric acid and oxalyl (or thionyl) chloride, according
to Scheme 30 or Scheme 42, prior to vacuum distillation and washing [104,105]. It can be used as an
intermediate in preparation of surfactants [104] or fungicides [105].
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Maleated rosin-based dithiourea compounds are yellow solids (m.p. 162–216 ◦C). They can
be prepared from maleated rosin acyl chloride, hydrazine and substituted benzoyl isothiocyanates,
according to Scheme 43, and using separation methods such as rotary evaporation, recrystallization
and column chromatography [105]. They can be potentially used as fungicides [105].
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Glucose dehydroabietate can be prepared from dehydroabietic acid and glucose according to
Scheme 44 prior to vacuum distillation, filtration and washing [206]. Its potential application is as a
surfactant in food industry [206].
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Acrylic rosin cyclic diamide is a solid. It can be prepared from acrylpimaric acid and diethylene 
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3.2.6. Other Small/Medium Molecule Products 

Scheme 44. Preparation of glucose dehydroabietate.

Acrylic rosin cyclic diamide is a solid. It can be prepared from acrylpimaric acid and diethylene
triamine according to Scheme 45 prior to washing and drying [131]. It can be used as a fungicide for
wood preservation [131].

Molecules 2019, 24, x FOR PEER REVIEW 21 of 51 

 

Acrylpimaryl dichloride

in CH2Cl2
50°C, 4hCOCl

COCl

(C2H5)3N
in alcohol
85°C, 3.5h

Acrylpimaryl quaternary
ammonium salt  yield: 71-82%

COO

COO
OH

N
OH

R R
R

N

R

R RCl Cl

R = CH3 or CH2CH3

O Cl
N

R

RR

COO

COO
OH

Cl
OH

Cl

1. NaOH

2.

 
Scheme 42. Synthesis of acrylpimaryl quaternary ammonium salts. 

Maleated rosin-based dithiourea compounds are yellow solids (m.p. 162–216 °C). They can be 
prepared from maleated rosin acyl chloride, hydrazine and substituted benzoyl isothiocyanates, 
according to Scheme 43, and using separation methods such as rotary evaporation, recrystallization 
and column chromatography [105]. They can be potentially used as fungicides [105]. 

COOH

O
O

O

Maleated rosin

COCl

O
O

O

in benzene
<80°C, 5h

Cl S

O

Cl

Maleated rosin
acyl chloride

yield: 85%

in CH2Cl2
0-25°C, 4h

N2H4* H2O

C

N
O

O

NH2

NH

NH2

O
Maleated rosin

hydrazide  yield: 75%

R = { H; -CH3; -OCH3; -Cl }

Maleated rosin-based
dithiourea

in acetonitrile
reflux, 4 h C

N

O

O

H
N

N
H

H
N

S

NH

S

H
N

O

O

O R

R

O NCS

R

 
Scheme 43. Synthesis of maleated rosin-based dithiourea compounds. 

Glucose dehydroabietate can be prepared from dehydroabietic acid and glucose according to 
Scheme 44 prior to vacuum distillation, filtration and washing [206]. Its potential application is as a 
surfactant in food industry [206]. 

KOH
in propanediol

190°C, 6h

Glucose dehydroabietate
yield: 51%

OH

OH

HO

HO OH

COOH

Dehydroabietic
acid

HO

OH OH

OH

COO

 
Scheme 44. Preparation of glucose dehydroabietate. 

Acrylic rosin cyclic diamide is a solid. It can be prepared from acrylpimaric acid and diethylene 
triamine according to Scheme 45 prior to washing and drying [131]. It can be used as a fungicide for 
wood preservation [131]. 

Acrylpimaric
acid xylene

<180°C, 8h

Acrylic rosin
cyclic diamide

COOH

COOH

C

C

O

O

NH

NH NH

H2N(CH2)2NH(CH2)2NH2

 
Scheme 45. Preparation of acrylic rosin cyclic diamide. 

3.2.6. Other Small/Medium Molecule Products 

Scheme 45. Preparation of acrylic rosin cyclic diamide.



Molecules 2019, 24, 1651 22 of 52

3.2.6. Other Small/Medium Molecule Products

Hydroabietic acid can be prepared from rosin and hydrogen using palladium/SBA-15 mesoporous
silica catalyst, according to Scheme 46 [207]. This catalyst is more efficient than others [208,209]
Its applications include oxidation-resistant solvent-borne tackifiers and coatings, a substrate for
esterification with glycerol [210], additives for polyvinylidene difluoride binders for lithium titanium
oxide anodes [76]. It can be used in high-performance liquid epoxy resins [83], for synthesis of
high adhesion polyurethane acrylate [173]. It is noteworthy, that non-catalytic decarboxylation of
rosin can take place at temperatures above 200 ◦C, and the main product of such decomposition is
norabieta-8,11,13-triene [211].
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Rosin-based standard-quality biodiesel can be prepared in a catalyst-free process from dark-grade
rosin, heavy turpentine and supercritical methanol in supercritical CO2 as a green medium. Yields >93%
were obtained after 3 h at 340 ◦C, under a pressure of 11 MPa [212]. Yield of >85% can be achieved
using Pt/mesoporous aluminosilicate catalyst after 4 h at 300–350 ◦C, 5 MPa [213]. A yield >99% can
be achieved using Ni/layered double hydroxide catalyst after <2 h at 190 ◦C, 5 MPa [214]. Catalytic
cracking of rosin is also possible to carry out using acid-activated montmorillonite [215].

Acrylpimaryl nitrile can be prepared from levopimaric acid and acrylonitrile according to
Scheme 47, prior to extraction, filtration and precipitation [216,217]. It can be used in synthesis of
diacrylpimaryl ketone and acrylpimaryl amidoxime [217].
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Scheme 47. Synthesis of acrylpimaryl nitrile and acrylpimaryl amidoximes.

Acrylpimaryl nitrile amidoximes can be prepared from adequate acrylpimaryl nitriles and
hydroxylamine according to Scheme 47, prior to precipitation, washing, filtration and drying [217,218].
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They can be used to prepare bioactive thin films filled by magnetite nanoparticles for oil spill
collecting [217] and thorium ions removal [218].

Rosin-oil dimer acids mixture can be prepared from rosin and industrial fatty oils according to
Scheme 48, prior to washing and rotary evaporation [219]. It can be used for preparation of a liquid
thermal stabilizer [219]. It is noteworthy, that dimerized rosin is usually produced separately and can
be applied in acrylic adhesives [220,221] to improve their wetting, adhesion and thermal stability [220].
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Solid rosin-based chain extender for polyurethanes can be synthesized from
rosin-maleimidodicarboxylic acid, thionyl chloride and ethylene glycol, according to Scheme 49,
and using such separation methods as vacuum distillation, washing and evaporation [186]. Its application
in shape memory polyurethanes improves shape recovery at >1000% strain up to 96% [186].
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Chiral thioureas and thiouronium salts containing dehydroabietyl groups are well characterized
white or yellow solids [222]. They can be prepared from chiral amines (including dehydroabietylamine),
carbon disulfide and butyl halides according to Scheme 50 and using such separation methods as
filtration, washing, vacuum drying, evaporation and column chromatography [222]. They can be useful
for the physical separation of racemic mixtures [222]. Moreover, rosin-derived thioureas can be used as
enantioselective catalysts for many reactions [12]. In recent years these were: Michael addition [223,224],
tandem Michael/cyclization sequence [225], asymmetric Michael/hemiketalization [226], asymmetric
aza-Henry reaction [227], asymmetric tandem reaction [228], Mannich reaction [229,230], Friedel–Crafts
alkylation [231], enantio- and diastereoselective asymmetric addition [232], as well as synthesis of
chiral amines [233] or N-protected β-amino malonates [234]. In recent studies rosin-derived thioureas
are dominant majority of all investigated rosin-derived catalysts. They are not explored further in
the current article because they are the subject of a comprehensive review publication [12]. For now,
reports on another rosin-based catalysts are rare [235–237].
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Optically pure rosin-based chiral alcohols and their phosphorus derivatizing agents are white
solids. They can be synthesized from maleopimaric acid in two main ways according to Scheme 51 and
using such separation methods as washing, filtration, drying, evaporation, and recrystallization [113].
They can be used in 31P-NMR-based determination of enantiomeric excess in solutions containing
chiral alcohols and amines [113].
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3.3. Macromolecular Compounds 

This section describes rosin-derived macromolecular compounds with repeated units typical of 
macromolecules. It contains polymers, oligomers, macroinitiators and polymer functionalized 
materials. Additionally, some small/medium molecule compounds, which are not presented in the 
previous section, but necessary to obtain appropriate macromolecules, are described here. Non-
toxicity, natural origin, low price, rigid structure, hydrophobicity, excellent thermal properties, 
anticorrosive performance, mild biocidal properties and stickiness are the most attractive reasons to 
use rosin derivatives in the preparation of polymer materials. A disadvantage of these processes in 
comparison with petrochemical counterparts is the relatively lower reactivity of rosin derivatives 
resulting from the steric hinderance of the diterpene skeleton and the usually lower purity of rosin-
based intermediates, as discussed in subsection 3.2.1. As a result, rosin-based polymer materials are 
usually characterized by distinct polydispersity and molecular weights rather far from their 
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Rosin-based molecular glass photoresists can be prepared from maleopimaric acid, hydroxylamine,
2-diazo-1-naphthoquinone-4-sulfonyl chloride and unsaturated compounds: vinyl ethyl ether, or
dihydropyran, or cyclohexyl vinyl ether, according to Scheme 52 and using such separation methods as
filtration, washing and vacuum drying [114]. These materials can be applied in photolithography [114].
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3.3. Macromolecular Compounds

This section describes rosin-derived macromolecular compounds with repeated units typical
of macromolecules. It contains polymers, oligomers, macroinitiators and polymer functionalized
materials. Additionally, some small/medium molecule compounds, which are not presented in the
previous section, but necessary to obtain appropriate macromolecules, are described here. Non-toxicity,
natural origin, low price, rigid structure, hydrophobicity, excellent thermal properties, anticorrosive
performance, mild biocidal properties and stickiness are the most attractive reasons to use rosin
derivatives in the preparation of polymer materials. A disadvantage of these processes in comparison
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with petrochemical counterparts is the relatively lower reactivity of rosin derivatives resulting from the
steric hinderance of the diterpene skeleton and the usually lower purity of rosin-based intermediates,
as discussed in Section 3.2.1. As a result, rosin-based polymer materials are usually characterized
by distinct polydispersity and molecular weights rather far from their theoretical values. Therefore,
their TRL is lower than for small/medium molecule compounds of rosin. It is noteworthy, that compared
to non-renewable counterparts, the use of rosin significantly increases the sustainability of preparation
processes according to Green Chemistry rules, so there is still high demand for basic and applied
research in this field.

3.3.1. Polymers for Biomedical Applications

Poly(ethylene glycol) rosin esters are oligomers, which can be prepared from rosin, polyethylene
glycol and maleic anhydride, according to Scheme 53 prior to drying at 40–70 ◦C [81,238]. Proposed
applications include shells for controlled drug delivery [238,239] and dental films for periodontitis
treatment [240]. Moreover, maleopimaric acid PEG esters can show carbon steel corrosion protection
properties [241].

Molecules 2019, 24, x FOR PEER REVIEW 25 of 51 

 

theoretical values. Therefore, their TRL is lower than for small/medium molecule compounds of 
rosin. It is noteworthy, that compared to non-renewable counterparts, the use of rosin significantly 
increases the sustainability of preparation processes according to Green Chemistry rules, so there is 
still high demand for basic and applied research in this field. 

3.3.1. Polymers for Biomedical Applications 

Poly(ethylene glycol) rosin esters are oligomers, which can be prepared from rosin, polyethylene 
glycol and maleic anhydride, according to Scheme 53 prior to drying at 40–70 °C [81,238]. Proposed 
applications include shells for controlled drug delivery [238,239] and dental films for periodontitis 
treatment [240]. Moreover, maleopimaric acid PEG esters can show carbon steel corrosion protection 
properties [241]. 

Block copolymer of dehydroabietyl ethyl methacrylate and ethylene glycol with disulfide group 
can be prepared via ATRP according to Scheme 54, prior to neutralization, evaporation and 
precipitation [168]. Potential applications include drug-delivery nanocarriers for cancer therapy 
[168].

pTSA
200°C, ?h

O

O

O

180-220°C
4h

Maleopimaric acid
yield: 42%

Levopimaric acid
COOH Levopimaric acid

PEG 750 ester

COOH

OO

O

COO [(CH2)2O]n+1H

CH3O[CH2CH2O]nH
(PEG 750)

COO [(CH2)2O]n+1H

O

O

O[(CH2)2O]nH

O[(CH2)2O]nH

pTSA
200°C, ?hMaleopimaric acid

PEG 750 ester

Zn2+

220°C, 5h

Levopimaric
acid PEG 400 ester

COO[(CH2)2O]9 H

O

O

O
160°C, 2h

COO [(CH2)2O]9 H

HO(CH2CH2)9H
(PEG 400)

CH3O[CH2CH2O]nH
(PEG 750)

O

O

O

Maleopimaric acid
PEG 400 ester

 
Scheme 53. Synthesis of poly(ethylene glycol) rosin esters. 

O
O

CuBr/PMDETA in anisole; 47°C, <2h

Poly(ethylene glycol) with
(bromoisobutyryl)ethyl disulfide group

Poly(dehydroabietic ethyl methacrylate-b-ethylene glycol) with disulfide group

O
O

O

O

O
S

S
O

O
Br(           )113

O
O

O

O

O
O

O
O

O
S

S
O

O
Br

O
O

(           )113                                            (       )n

(PEG113-ss-PMrosin27)  
Scheme 54. Preparation of block copolymer of dehydroabietyl ethyl methacrylate and ethylene glycol 
with disulfide group. 

The rosin derivative quaternized poly-(N,N-dimethylaminoethyl methacrylate) can be prepared 
via “living” reversible addition-fragmentation chain-transfer polymerization (RAFT) from 
dehydroabietic acid, 3-chloropropanol, N,N-dimethylaminoethyl methacrylate and cumyl 
dithiobenzoate as a RAFT transfer agent, according to Scheme 55, and using gel chromatography, 
precipitation and vacuum drying as separation techniques [242]. It can be used as amphipathic 
antibacterial agent in a wide variety of biomedical and general use applications [242]. 
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Block copolymer of dehydroabietyl ethyl methacrylate and ethylene glycol with disulfide
group can be prepared via ATRP according to Scheme 54, prior to neutralization, evaporation and
precipitation [168]. Potential applications include drug-delivery nanocarriers for cancer therapy [168].
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The rosin derivative quaternized poly-(N,N-dimethylaminoethyl methacrylate) can be prepared via
“living” reversible addition-fragmentation chain-transfer polymerization (RAFT) from dehydroabietic
acid, 3-chloropropanol, N,N-dimethylaminoethyl methacrylate and cumyl dithiobenzoate as a RAFT
transfer agent, according to Scheme 55, and using gel chromatography, precipitation and vacuum
drying as separation techniques [242]. It can be used as amphipathic antibacterial agent in a wide
variety of biomedical and general use applications [242].Molecules 2019, 24, x FOR PEER REVIEW 26 of 51 
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3.3.2. Elastomers

Poly(dehydroabietic ethyl methacrylate-β-n-butyl acrylate-β-dehydroabietic ethyl meth-acrylate)
triblock copolymer can be prepared in ATRP polymerization from butyl acrylate, dehydroabietic
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Cellulose/rosin ATRP macroinitiators can be prepared from dehydroabietic acid, cellulose and
2-bromoisobutyryl bromide, according to Scheme 57, prior to drying at 40 ◦C [142]. It is used for the
preparation of graft copolymers [142].
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Scheme 57. Synthesis of graft copolymer of rosin-modified ethyl cellulose and butyl acrylate.

Rosin-acid-modified ethyl cellulose/butyl acrylate graft copolymer can be prepared in ATRP
reaction from dehydroabietic acid, cellulose, 2-bromoisobutyryl bromide and butyl acrylate according
to Scheme 57, prior to sorption of CuBrx and precipitation in methanol. [142]. Potential applications
include thermoplastic elastomers and coatings with UV absorption property [142].

Cellulose grafted by copolymer of rosin acid ethyl methacrylate and alkyl (meth)acrylate can
be prepared via ATRP, according to Scheme 58, prior to sorption and precipitation in methanol [166].
Potential applications include “green” thermoplastic elastomers having significant hydrophobic,
thermal and mechanical features [166].
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Scheme 58. Synthesis of graft copolymer of cellulose, rosin acid and butyl acrylate (or lauryl
methacrylate).

Rosin alcohols are colorless solids, which can be prepared in several ways according
to Scheme 59, and using such separation methods like evaporation, extraction, washing and
drying [243,244] [245]. They can be used in preparation of cross-linked structures with acrylamide and
N,N′-methylenebisacrylamide [243,244], as well as norbornene-based monomers [245].

Rosin-norbornene monomers, i.e., dehydroabietanyl norborn-5-ene-2-carboxylate and
4-((norborn-5-ene-2-carbonyl)oxy)butyl dehydroabietate, are viscous oily liquids [245]. They can
be synthesized from dehydroabietic acid derivatives and norbornenecarboxylic acid according to
Scheme 59, prior to evaporation, washing, drying and column chromatography [245]. Its application
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is polymerization, or block copolymerization with norbornene, via “living” ring-opening metathesis
polymerization (ROMP) process [245,246].
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Scheme 60. Preparation of rosin-based waterborne polyurethane. 

3.3.3. Coatings and Adhesives 

Scheme 59. Synthesis of rosin-norbornene monomers and polymerization of them.

Homopolymers of rosin-modified norbornene can be synthesized via ROMP process according to
Scheme 59 [246]. Moreover, triblock and pentablock copolymers with norbornene segments can be
prepared [246]. They can be applied as bio-based thermoplastic elastomers showing well-designed
architecture and high elastic recovery [245,246].

Rosin-based waterborne polyurethanes can be prepared from maleopimaric acid, diethylene
glycol, polyether glycol, toluene diisocyanate, dimethylol propionic acid and trimethylamine according
to Scheme 60, and using such separation methods as vacuum drying and rotary evaporation [111].
Such polymers can be also synthesized using fumaropimaric rosin instead of maleopimaric acid [109].
These materials exhibit excellent mechanical properties, thermal stability, water resistance, antimicrobial
properties against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus [109,111]
and an affinity for cellulose nanocrystals [112], which allows to apply them in various biomass-based
polymer and composite materials.
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3.3.3. Coatings and Adhesives

Rosin-modified poly(acrylic acid) is a solid. It can be prepared from poly(acrylic acid) and abietic
acid according to Scheme 61, prior to washing and vacuum drying [247]. It can be applied as an
excellent binder for silicon-graphite negative electrodes in lithium-ion batteries [247].
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Rosin can be introduced as a chain extender into polyurethanes to obtain rosin-based urethane-
amide hard segments, according to Scheme 64 [248]. A potential application of the prepared materials 
is as sealants for non-invasive disc regeneration surgery [248]. Physical mixtures of rosin and 1,4-
butanediol were also investigated for this use [249]. 

Scheme 61. Preparation of rosin-modified poly(acrylic acid).

N-dehydroabietic acrylamide is a white solid. It can be synthesized from dehydroabietylamine
and acryloyl chloride according to Scheme 62, prior to washing and vacuum distillation. It can be used
as a bio-based acrylic monomer in compolymerization processes instead of rigid petroleum-based
monomers [161].
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materials is as sealants for non-invasive disc regeneration surgery [248]. Physical mixtures of rosin and
1,4-butanediol were also investigated for this use [249].Molecules 2019, 24, x FOR PEER REVIEW 30 of 51 
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3.3.4. Surfactants 

Rosin-based comb-like polymeric surfactants can be prepared from rosin glycidyl methacrylate 
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Polyesters of acrylated rosin and polyethylene glycols can be prepared according to Scheme 67 
[125]. They can be used as surfactants in preparation of stable emulsions [125]. 

Scheme 64. Preparation of rosin-modified urethane-amide hard segments.

Maleopimaric acid-modified polyester polyol aqueous dispersion can be prepared from
maleopimaric acid, adipic acid, isophtalic acid, 5-sulfoisophtalic acid, neopentyl glycol and
trimethylolpropane, according to Scheme 65, prior to dissolving/dispersing in water and diethylene
glycol monoethyl ether acetate as a cosolvent [91]. It can be applied in two-component waterborne
polyurethane materials and coatings [110] showing improved thermal stability, hardness and resistances
to ethanol and water [91,110].
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Scheme 65. Preparation of hydrophilic maleopimaric acid-modified poliester polyol.

3.3.4. Surfactants

Rosin-based comb-like polymeric surfactants can be prepared from rosin glycidyl methacrylate and
methacrylate polyethylene glycol ester according to Scheme 66, prior to vacuum drying, precipitation,
dialysis and freezing [175]. Their application include preparation of pymetrozine water suspension
concentrates [175].
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Polyesters of acrylated rosin and polyethylene glycols can be prepared according to Scheme 67 [125].
They can be used as surfactants in preparation of stable emulsions [125].
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Scheme 69. Synthesis of rosin alcohol and rosin-poly(acrylamide) star copolymer. 

Linear rosin-modified cationic poly(acrylamide) can be prepared from dehydroabietyl chloride, 
bromopropan-1-ol, methyldiallylamine, acrylamide and diallyl dimethyl ammonium chloride in a 
few-step process, according to Scheme 70, followed by operations such as filtration, washing, drying 
and recrystallization [149]. Its utilization may be in flocculation processes [149]. 

Scheme 67. Preparation of acrylated rosin/polyethylene glycol polyester.

Rosin imide polyethers are light brown solids. They can be prepared from rosin, poly(ethylene
glycol) and polyamines according to Scheme 68, and using such separation methods as washing,
drying, precipitation and filtration [250,251]. They can be applied as petroleum crude oil sludge
dispersants [250].
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Linear rosin-modified cationic poly(acrylamide) can be prepared from dehydroabietyl chloride, 
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few-step process, according to Scheme 70, followed by operations such as filtration, washing, drying 
and recrystallization [149]. Its utilization may be in flocculation processes [149]. 

Scheme 68. Preparation of non-ionic rosin imide polyethers.

3.3.5. Sorbents

Rosin-poly(acrylamide) star copolymers can be prepared according to Scheme 69, prior to
Soxhlet extraction using acetone and drying [243,244,252]. They can be used for wastewater
treatment [243,244,252] and as a matrix for Fe3O4 nanoparticles [253].
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Linear rosin-modified cationic poly(acrylamide) can be prepared from dehydroabietyl chloride, 
bromopropan-1-ol, methyldiallylamine, acrylamide and diallyl dimethyl ammonium chloride in a 
few-step process, according to Scheme 70, followed by operations such as filtration, washing, drying 
and recrystallization [149]. Its utilization may be in flocculation processes [149]. 

Scheme 69. Synthesis of rosin alcohol and rosin-poly(acrylamide) star copolymer.

Linear rosin-modified cationic poly(acrylamide) can be prepared from dehydroabietyl chloride,
bromopropan-1-ol, methyldiallylamine, acrylamide and diallyl dimethyl ammonium chloride in a
few-step process, according to Scheme 70, followed by operations such as filtration, washing, drying
and recrystallization [149]. Its utilization may be in flocculation processes [149].
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Scheme 71. Preparation of rosin-tetraethylenepentamine amide. 

3.3.6. Organosilicons 

Rosin glycidyl ester is a brown, viscous liquid. It can be synthesized from rosin and 
epichlorohydrin according to Scheme 72 without further purification [254]. It can be used for 
preparation of cross-linking agent for silicone rubber [254]. 

Rosin-modified room-temperature-vulcanized silicone rubber can be prepared from rosin 
glycidyl ester, aminopropyltrietoxysilane, tetraetoxysilane and hydroxyl-terminated 
polydimetoxysilane according to Scheme 72 [254]. Rosin-modified silicones shows significantly better 
thermal and mechanical properties in comparison with unmodified silicone [254–256]. 
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Scheme 72. Preparation of rosin-modified room-temperature-vulcanized silicone rubber. 

Maleated rosin-modified vinyl fluorosilicone resin can be prepared from maleopimaric acid and 
siloxanes according to Scheme 73 prior to vacuum evaporation [116]. It can be used in preparation of 
fluorosilicone rubber, having improved mechanical and thermal properties in comparison with 
unmodified sample [116]. 

Scheme 70. Preparation of linear rosin-poly(acrylamide) copolymer.

Rosin tetraethylenepentamine amide is a solid. It can be prepared from maleopimaric acid and
tetraethylenepentamine according to Scheme 71, prior to precipitation, washing and lyophilization [115].
It creates nano-micelles in aqueous solutions and can act as a sorbent and sinking agent in metal ions
removal [115].
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Maleated rosin-modified vinyl fluorosilicone resin can be prepared from maleopimaric acid and 
siloxanes according to Scheme 73 prior to vacuum evaporation [116]. It can be used in preparation of 
fluorosilicone rubber, having improved mechanical and thermal properties in comparison with 
unmodified sample [116]. 
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3.3.6. Organosilicons

Rosin glycidyl ester is a brown, viscous liquid. It can be synthesized from rosin and epichlorohydrin
according to Scheme 72 without further purification [254]. It can be used for preparation of cross-linking
agent for silicone rubber [254].
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Maleated rosin-modified vinyl fluorosilicone resin can be prepared from maleopimaric acid and 
siloxanes according to Scheme 73 prior to vacuum evaporation [116]. It can be used in preparation of 
fluorosilicone rubber, having improved mechanical and thermal properties in comparison with 
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Scheme 72. Preparation of rosin-modified room-temperature-vulcanized silicone rubber.

Rosin-modified room-temperature-vulcanized silicone rubber can be prepared from rosin glycidyl
ester, aminopropyltrietoxysilane, tetraetoxysilane and hydroxyl-terminated polydimetoxysilane
according to Scheme 72 [254]. Rosin-modified silicones shows significantly better thermal and
mechanical properties in comparison with unmodified silicone [254–256].

Maleated rosin-modified vinyl fluorosilicone resin can be prepared from maleopimaric acid and
siloxanes according to Scheme 73 prior to vacuum evaporation [116]. It can be used in preparation
of fluorosilicone rubber, having improved mechanical and thermal properties in comparison with
unmodified sample [116].
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3.3.7. Polysaccharides

Superhydrophobic wood can be prepared using maleated rosin, aluminum chloride and
tetrabutyltitanate according to Scheme 74 [119]. Such a hydrophobic material is appreciated in
construction. Related starch-rosin materials have been also prepared [120].
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Scheme 74. Preparation of rosin-impregnated superhydrophobic wood.

Rosin-esterified starch biopolymer can be prepared according to Scheme 75, prior to filtration,
precipitation, washing and drying [257,258]. Rosin decreases solubility and swelling of starch, which
potentially allows to use this polymer in food and biomedical materials [257].
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Scheme 75. Preparation of rosin-esterified starch.

Cellulose nanofibers and nanocrystals surface-modified by rosin can be prepared according to
Scheme 76, prior to washing in ethanol [259,260]. They can be used as antibacterial reinforcements in
bio-based package films [260]. In similar way hemp fibers can be modified by tall oil rosin acids in
order to improve the reinforcement adhesion to an epoxy matrix [261].
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Rosin-polyphthalate resin is a glossy light yellow solid. It can be prepared from maleopimaric 
acid, and phthalic anhydride-glycerol polyester according to Scheme 79 prior to vacuum drying [117]. 
Its application is an environmentally-friendly phenol-free printing ink [117]. 
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Rosin propargyl ester is a white, transparent liquid. It can be synthesized from rosin chloride 
and propargyl alcohol according to Scheme 80, prior to washing and column chromatography [147]. 
It can be used to prepare caprolactone graft copolymers [147]. 

Rosin ester containing poly(α-azide-ε-caprolactone) can be prepared from rosin propargyl ester, 
α-chloro-ε-caprolactone and sodium azide according to Scheme 80, and using such separation 
methods as centrifugation and vacuum drying [147]. This biodegradable copolymer shows properties 

Scheme 76. Preparation of rosin-modified cellulose nanofibers.

Chitosan grafted by rosin acrylate is a solid. It can be prepared from chitosan and rosin acid
hydroxyethyl acrylate according to Scheme 77 prior to precipitation, filtration, washing and drying [172].
It can be potentially used in controlled release applications [172].
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Rosin-polyphthalate resin is a glossy light yellow solid. It can be prepared from maleopimaric 
acid, and phthalic anhydride-glycerol polyester according to Scheme 79 prior to vacuum drying [117]. 
Its application is an environmentally-friendly phenol-free printing ink [117]. 
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Rosin propargyl ester is a white, transparent liquid. It can be synthesized from rosin chloride 
and propargyl alcohol according to Scheme 80, prior to washing and column chromatography [147]. 
It can be used to prepare caprolactone graft copolymers [147]. 

Rosin ester containing poly(α-azide-ε-caprolactone) can be prepared from rosin propargyl ester, 
α-chloro-ε-caprolactone and sodium azide according to Scheme 80, and using such separation 
methods as centrifugation and vacuum drying [147]. This biodegradable copolymer shows properties 
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3.3.8. Other Materials

Dehydroabietic acid-glycerol carbonate product can be prepared from dehydroabietic acid and
glycerin carbonates according to Scheme 78 [262]. It can be applied in xerographic tonners [262].
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Rosin-polyphthalate resin is a glossy light yellow solid. It can be prepared from maleopimaric 
acid, and phthalic anhydride-glycerol polyester according to Scheme 79 prior to vacuum drying [117]. 
Its application is an environmentally-friendly phenol-free printing ink [117]. 
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Rosin propargyl ester is a white, transparent liquid. It can be synthesized from rosin chloride 
and propargyl alcohol according to Scheme 80, prior to washing and column chromatography [147]. 
It can be used to prepare caprolactone graft copolymers [147]. 

Rosin ester containing poly(α-azide-ε-caprolactone) can be prepared from rosin propargyl ester, 
α-chloro-ε-caprolactone and sodium azide according to Scheme 80, and using such separation 
methods as centrifugation and vacuum drying [147]. This biodegradable copolymer shows properties 

Scheme 78. Preparation of rosin-glycerin carbonate xerographic toner.

Rosin-polyphthalate resin is a glossy light yellow solid. It can be prepared from maleopimaric
acid, and phthalic anhydride-glycerol polyester according to Scheme 79 prior to vacuum drying [117].
Its application is an environmentally-friendly phenol-free printing ink [117].
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Scheme 79. Preparation of rosin-based phenol-free resin.

Rosin propargyl ester is a white, transparent liquid. It can be synthesized from rosin chloride and
propargyl alcohol according to Scheme 80, prior to washing and column chromatography [147]. It can
be used to prepare caprolactone graft copolymers [147].

Rosin ester containing poly(α-azide-ε-caprolactone) can be prepared from rosin propargyl ester,
α-chloro-ε-caprolactone and sodium azide according to Scheme 80, and using such separation methods
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as centrifugation and vacuum drying [147]. This biodegradable copolymer shows properties similar
to poly(methyl acrylate) [263]. Similar polymers with quaternary ammonium groups showing
antimicrobial properties can be also prepared [264].
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Rosin-tung oil Diels-Alder adduct is a yellowish solid. It can be prepared from levopimaric acid 
and tung oil according to Scheme 82, prior to precipitation and drying [265,266]. Its application is a 
filler, tackifier and adhesion promoter in polyurethane [265] and UV-curable adhesives [266]. 
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Scheme 80. Preparation of rosin ester containing poly(α-azide-ε-caprolactone).

Acrylic rosin methacryl diester can be prepared from acrylic rosin and 2-hydroxyethyl methacrylate
according to Scheme 81, prior to rotary evaporation and vacuum drying [124]. It can be used as acrylic
monomer or resin [124].
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Rosin-tung oil Diels-Alder adduct is a yellowish solid. It can be prepared from levopimaric acid 
and tung oil according to Scheme 82, prior to precipitation and drying [265,266]. Its application is a 
filler, tackifier and adhesion promoter in polyurethane [265] and UV-curable adhesives [266]. 
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Scheme 81. Preparation of styrene and acrylic rosin ester copolymer.

Poly(styrene-co-acrylic rosin ester) can be prepared via suspension polymerization of acrylic
rosin methacryl ester and styrene according to Scheme 81, prior to washing, filtration and vacuum
drying [124]. Its application is microspheres [124].

Rosin-tung oil Diels-Alder adduct is a yellowish solid. It can be prepared from levopimaric acid
and tung oil according to Scheme 82, prior to precipitation and drying [265,266]. Its application is a
filler, tackifier and adhesion promoter in polyurethane [265] and UV-curable adhesives [266].
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Rosin-tung oil Diels-Alder adduct is a yellowish solid. It can be prepared from levopimaric acid 
and tung oil according to Scheme 82, prior to precipitation and drying [265,266]. Its application is a 
filler, tackifier and adhesion promoter in polyurethane [265] and UV-curable adhesives [266]. 
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Acrylic-vinyl copolymer with rosin moieties is a slightly yellow solid. It can be prepared from rosin
ethyl methacrylate, styrene and divinylbenzene according to Scheme 83, prior to washing, filtration
and drying [267]. Its application is polymer microspheres for adsorption and separation [267].
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Rosin-caprolactone diblock copolymers can be prepared from dehydroabietic ethyl 
methacrylate, ε-caprolactone and 2-hydroxyethyl 2-bromoisobutyrate according to Scheme 85 prior 
to precipitation and washing [170]. They can be applied in areas designed for simultaneously bio-
based and biodegradable materials [170]. 
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washing and drying [138]. Such polymers can be potentially applied in the modern electrical and 
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Rosin/lignin grafted copolymers can be prepared from lignin and dehydroabietic acid derivatives
in two ways: simple grafting or ATRP polymerization, according to Scheme 84 and using such
separation methods as precipitation, filtration, washing and vacuum drying [169]. These materials are
characterized by strongly increased hydrophobicity compared to raw lignin [169].
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Scheme 84. Preparation of lignin materials hydrophobized by rosin.

Rosin-caprolactone diblock copolymers can be prepared from dehydroabietic ethyl methacrylate,
ε-caprolactone and 2-hydroxyethyl 2-bromoisobutyrate according to Scheme 85 prior to precipitation
and washing [170]. They can be applied in areas designed for simultaneously bio-based and
biodegradable materials [170].

Acrylpimaric acid hydroxyethyl polyesters are light yellow solids. They can be prepared via
polycondensation of corresponding acrylpimaric diols according to Scheme 86 prior to grinding,
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washing and drying [138]. Such polymers can be potentially applied in the modern electrical and
electronic industries, especially for the environmentally friendly green products [138].

Furthermore, rosin can be pyrolized in order to prepare a matrix for silver nanoparticles to apply
as antibacterial filler for wooden furniture or air filter for indoors [268], a catalyst carrier with potential
application as counter electrode for dye-sensitized solar cells [269], a coating for bentonite particles and
support for Fe2O3 nanoparticles for chromium ions adsorption [270], and activated carbons [271,272].
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difficult to repeat the syntheses. According to our subjective opinion, the following information 
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4. Conclusions

Rosin is a highly modifiable raw material for both low molecular weight products and polymers.
Its natural origin is accompanied with low price and a diterpene chemical nature, which is ready to
introduce useful reactive chemical groups, and it exhibits a stiff constitution improving many thermal,
physical, mechanical and functional properties of the final materials. In recent years rosin-based
chemicals have attracted growing interest. They offer great opportunities to produce useful products:
resins, curing agents, surfactants, medicines, biocides, materials for biomedical application, elastomers,
coatings, adhesives, sorbents and catalysts.

Taking into consideration the declared properties of the prepared chemicals they seem to
be competitive alternatives to existing products on the market. This review presents well over
100 reproducible recipes. Sadly, some of the publications do not contain complete data, which makes it
difficult to repeat the syntheses. According to our subjective opinion, the following information should
be provided (or obvious) for a recipe to be considered as complete: product name, product morphology,
substrate(s) names, reaction scheme, catalyst, media, temperature, pressure, time, yield and separation
techniques. Figure 3 shows the number of complete and incomplete recipes in the individual parts of
this review. Interestingly, the highest number of complete recipes (both absolute and relative) can be
found among hardeners, resins and monomers, and also biologically active compounds. The most
common missing parameter is yield. A large number of incomplete recipes in macromolecular
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compounds section may result from the fact that polymerizations are often carried out in order to
achieve appropriate material properties, not specific yields. The summary presented in Figure 3
shows that resins, monomers, hardeners and biologically active compounds are the most completely
described rosin-based chemicals in the recent decade, which makes them the most promising subjects
for scaling-up and commercialization. However, this does not change the fact that rosin chemistry is
able to deliver a serious amount of new environmentally-friendly solutions in many fields of science,
medicine and engineering. The current review confirms this, and encourages further intensive research
on rosin in the near future.

Molecules 2019, 24, x FOR PEER REVIEW 38 of 51 

 

out in order to achieve appropriate material properties, not specific yields. The summary presented 
in Figure 2 shows that resins, monomers, hardeners and biologically active compounds are the most 
completely described rosin-based chemicals in the recent decade, which makes them the most 
promising subjects for scaling-up and commercialization. However, this does not change the fact that 
rosin chemistry is able to deliver a serious amount of new environmentally-friendly solutions in 
many fields of science, medicine and engineering. The current review confirms this, and encourages 
further intensive research on rosin in the near future. 

 
Figure 2. Number of complete and incomplete recipes presented in this review. 

Abbreviations:  
AA, adipic acid;  
AIBA, 2,2′-azobis(2-methylpropionamidine) dihydrochloride;  
AIBN, 2,2′-azobisisobutyronitrile;  
ATRP, atom transfer radical polymerization;  
BA, butyl acrylate; Bu, butyl group; cat., catalyst;  
DA, dehydroabietic acid; DBU, 1,8-diazabicyclo[5.4.0]undec-7-ene;  
DCC, N,N′-dicyclohexylcarbodiimide;  
DDPD, dehydroabietyl phosphate diester; DMAP, 4-dimethylaminopyridine;  
DMF, dimethylformamide;  
DMSO, dimethyl sulfoxide;  
EC, ethyl cellulose;  
EEW, epoxy equivalent weight;  
Et, ethyl group;  
HDMA Cl, hexadecyltrimethylammonium chloride;  
HDTMAB, hexadecyl trimethyl ammonium bromide;  
HPI, hydrophilic polyester intermediate;  
HPLC, high-performance liquid chromatography;  
HQ, hydroquinone;  
IPA, isophtalic acid;  
JCR, Journal Citation Reports;  
m.p., melting point; Me, methyl group;  
MEK, methyl ethyl ketone; MPA, maleopimaric acid;  
NMP, N-methyl pyrrolidone;  
NMR, nuclear magnetic resonance;  
NPG, neopentyl glycol;  
PAA, poly(acrylic acid);  
PEG, poly(ethylene glycol);  
Ph, phenyl group;  
PMDETA, pentamethyldiethylenetriamine;  

Figure 3. Number of complete and incomplete recipes presented in this review.

Funding: This work was financially supported by National Centre for Research and Development (project no.
LIDER/7/0045/L-8/16/NCBR/2017).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AA adipic acid;
AIBA 2,2′-azobis(2-methylpropionamidine) dihydrochloride;
AIBN 2,2′-azobisisobutyronitrile;
ATRP atom transfer radical polymerization;
BA butyl acrylate;
Bu butyl group;
Cat. catalyst;
DA dehydroabietic acid;
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene;
DCC N,N′-dicyclohexylcarbodiimide;
DDPD dehydroabietyl phosphate diester;
DMAP 4-dimethylaminopyridine;
DMF dimethylformamide;
DMSO dimethyl sulfoxide;
EC ethyl cellulose;
EEW epoxy equivalent weight;
Et ethyl group;
HDMA Cl hexadecyltrimethylammonium chloride;
HDTMAB hexadecyl trimethyl ammonium bromide;
HPI hydrophilic polyester intermediate;
HPLC high-performance liquid chromatography;
HQ hydroquinone;



Molecules 2019, 24, 1651 39 of 52

IPA isophtalic acid;
JCR Journal Citation Reports;
m.p. melting point;
Me methyl group;
MEK methyl ethyl ketone;
MPA maleopimaric acid;
NMP N-methyl pyrrolidone;
NMR nuclear magnetic resonance;
NPG neopentyl glycol;
PAA poly(acrylic acid);
PEG poly(ethylene glycol);
Ph phenyl group;
PMDETA pentamethyldiethylenetriamine;
PPh3 triphenylphosphine;
PSA pressure sensitive adhesives;
pTSA p-toluene sulfonic acid;
RAFT reversible addition-fragmentation chain-transfer polymerization;
ROMP ring-opening metathesis polymerization;
UV ultraviolet;
TBA Br tetrabutylammonium bromide;
TEBAC benzyltriethylammonium chloride;
THF tetrahydrofuran;
TMP trimethylolpropane;
TPT tetraisopropyl titanate;
TRL technology readiness level;

References

1. Silvestre, A.J.D.; Gandini, A. Chapter 4-Rosin: Major sources, properties and applications. In Monomers,
Polymers and Composites from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2008; pp. 67–88,
ISBN 978-0-08-045316-3.

2. Ma, S.; Li, T.; Liu, X.; Zhu, J. Research progress on bio-based thermosetting resins. Polym. Int. 2016, 65,
164–173. [CrossRef]

3. Ding, C.; Matharu, A.S. Recent developments on biobased curing agents: A review of their preparation and
use. ACS Sustain. Chem. Eng. 2014, 2, 2217–2236. [CrossRef]

4. Wilbon, P.A.; Chu, F.; Tang, C. Progress in renewable polymers from natural terpenes, terpenoids, and rosin.
Macromol. Rapid Commun. 2013, 34, 8–37. [CrossRef]

5. Kumar, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. Recent development of biobased epoxy resins: A review.
Polym. Plast. Technol. 2018, 57, 133–155. [CrossRef]

6. Kumar, S.; Krishnan, S.; Mohanty, S.; Nayak, S.K. Synthesis and characterization of petroleum and biobased
epoxy resins: A review. Polym. Int. 2018, 67, 815–839. [CrossRef]

7. Wang, Z.; Yuan, L.; Tang, C. Sustainable elastomers from renewable biomass. Acc. Chem. Res. 2017, 50,
1762–1773. [CrossRef]

8. Baroncini, E.A.; Yadav, S.K.; Palmese, G.R.; Stanzione, J.F. Recent advances in bio-based epoxy resins and
bio-based epoxy curing agents. J. Appl. Polym. Sci. 2016, 133, 44103. [CrossRef]

9. Zia, K.M.; Noreen, A.; Zuber, M.; Tabasum, S.; Mujahid, M. Recent developments and future prospects on
bio-based polyesters derived from renewable resources: A review. Int. J. Biol. Macromol. 2016, 82, 1028–1040.
[CrossRef] [PubMed]

10. Gandini, A.; Lacerda, T.M. From monomers to polymers from renewable resources: Recent advances.
Prog. Polym. Sci. 2015, 48, 1–39. [CrossRef]

11. Parthiban, A. Monomers and polymers derived from renewable or partially renewable resources. In Synthesis
and Applications of Copolymers; Wiley-Blackwell: Hoboken, NJ, USA, 2014; pp. 101–124, ISBN 978-1-118-86016-8.

12. Narayanaperumal, S.; Rivera, D.G.; Silva, R.C.; Paixão, M.W. Terpene-derived bifunctional thioureas in
asymmetric organocatalysis. ChemCatChem 2013, 5, 2756–2773. [CrossRef]

http://dx.doi.org/10.1002/pi.5027
http://dx.doi.org/10.1021/sc500478f
http://dx.doi.org/10.1002/marc.201200513
http://dx.doi.org/10.1080/03602559.2016.1253742
http://dx.doi.org/10.1002/pi.5575
http://dx.doi.org/10.1021/acs.accounts.7b00209
http://dx.doi.org/10.1002/app.44103
http://dx.doi.org/10.1016/j.ijbiomac.2015.10.040
http://www.ncbi.nlm.nih.gov/pubmed/26492854
http://dx.doi.org/10.1016/j.progpolymsci.2014.11.002
http://dx.doi.org/10.1002/cctc.201200936


Molecules 2019, 24, 1651 40 of 52

13. Yadav, B.K.; Gidwani, B.; Vyas, A. Rosin: Recent advances and potential applications in novel drug delivery
system. J. Bioact. Compat. Polym. 2016, 31, 111–126. [CrossRef]

14. Lu, Y.J.; Xu, R.S.; Zhao, Z.D.; Zhang, P.H.; Wang, M.X. Recent progress on derivation and chemical
modification of rosin acids. Adv. Mater. Res. 2013, 785–786, 1111–1116. [CrossRef]

15. Robinson, V.; Bergfeld, W.F.; Belsito, D.V.; Klaassen, C.D.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.;
Snyder, P.W.; Alan Andersen, F. Amended safety assessment of tall oil acid, sodium tallate, potassium tallate,
and ammonium tallate. Int. J. Toxicol. 2009, 28, 252S–258S. [CrossRef]

16. Illing, H.P.A.; Malmfors, T.; Rodenburg, L. Skin sensitization and possible groupings for ‘read across’ for
rosin based substances. Regul. Toxicol. Pharm. 2009, 54, 234–241. [CrossRef]

17. Botham, P.A.; Lees, D.; Illing, H.P.A.; Malmfors, T. On the skin sensitisation potential of rosin and oxidised
rosin. Regul. Toxicol. Pharm. 2008, 52, 257–263. [CrossRef]
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