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Introduction: Alzheimer’s disease (AD) is the most prevalent cause of dementia, and
emerging evidence suggests that ferroptosis is involved in the pathological process
of AD.

Materials and Methods: Three microarray datasets (GSE122063, GSE37263, and
GSE140829) about AD were collected from the GEO database. AD-related module
genes were identified through a weighted gene co-expression network analysis
(WGCNA). The ferroptosis-related genes were extracted from FerrDb. The apoptosis-
related genes were downloaded from UniProt as a control to show the specificity of
ferroptosis. The overlap was performed to obtain the module genes associated with
ferroptosis and apoptosis. Then the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses and the protein-protein
interaction (PPI) were conducted. Cytoscape with CytoHubba was used to identify
the hub genes, and the Logistic regression was performed to distinguish the AD
patients from controls.

Results: 53 ferroptosis-related module genes were obtained. The GO analysis
revealed that response to oxidative stress and starvation, and multicellular organismal
homeostasis were the most highly enriched terms. The KEGG analysis showed that
these overlapped genes were enriched not only in renal cell carcinoma pathways
and central carbon metabolism in cancer, but also in autophagy-related pathways
and ferroptosis. Ferroptosis-related hub genes in AD (JUN, SLC2A1, TFRC, ALB,
and NFE2L2) were finally identified, which could distinguish AD patients from controls
(P < 0.05). The area under the ROC curve (AUC) was 0.643. Apoptosis-related
hub genes in AD (STAT1, MCL1, and BCL2L11) were also identified and also could
distinguish AD patients from controls (P < 0.05). The AUC was 0.608, which was
less than the former AUC value, suggesting that ferroptosis was more special than
apoptosis in AD.

Conclusion: We identified five hub genes (JUN, SLC2A1, TFRC, ALB, and NFE2L2)
that are closely associated with ferroptosis in AD and can differentiate AD patients
from controls. Three hub genes of apoptosis-related genes in AD (STAT1, MCL1, and
BCL2L11) were also identified as a control to show the specificity of ferroptosis. JUN,
SLC2A1, TFRC, ALB, and NFE2L2 are thus potential ferroptosis-related biomarkers for
disease diagnosis and therapeutic monitoring.
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INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent cause of dementia,
accounting for approximately 60–80% of all cases (Gbd 2016
Dementia Collaborators, 2019). The exact pathogenesis of AD

is still not fully elucidated (Zhang et al., 2021). Ferroptosis
is an iron-dependent lipid peroxidation-driven cell death, and
emerging evidence suggests that it is involved in the pathological
process of AD (Lane et al., 2018; Weiland et al., 2019). In addition,
several characteristics of the pathogenesis of AD were consistent

FIGURE 1 | The workflow chart of data preparation, processing, analysis, and validation.
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with those of ferroptosis, such as excess iron accumulation,
elevated lipid peroxides (Zhang et al., 2012; Hambright et al.,
2017; Ayton et al., 2019). Therefore, ferroptosis is increasingly

being recognized as a unique cell death mechanism participating
in the pathogenesis of AD. However, more direct evidence is
needed to be presented (Chen et al., 2021). Apoptosis is the

FIGURE 2 | (A) Analysis of the scale-free index for various soft-threshold powers (β). (B) Analysis of the mean connectivity for various soft-threshold powers.
(C) Identification of co-expression gene modules. The branches of the dendrogram cluster into 4 modules and each one was labeled in a unique color. (D) A
heatmap showing the correlation between each module eigengene and phenotype. Two modules were correlated with AD-namely, turquoise and blue modules.
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spontaneous and orderly death of cells, which involves the
activation, expression and regulation of a series of genes, and
it is a biological process that plays an essential role in normal
physiology (Obulesu and Lakshmi, 2014). It is now generally
accepted that massive neuronal death due to apoptosis is a
common characteristic in the brains of patients suffering from
neurodegenerative diseases, and apoptotic cell death has been
found in neurons and glial cells in AD (Shimohama, 2000;
Sharma et al., 2021).

Current studies on ferroptosis and AD are mainly focused
on two aspects: one is the mechanism of ferroptosis in the
pathological process of AD, mainly discussing how ferroptosis
participates in the AD (Masaldan et al., 2019; Jakaria et al., 2021);
the second is the clinical efficacy study of ferroptosis inhibitors
in AD, mainly to explore whether ferroptosis as a drug target of
AD can effectively delay the progression of AD (Yan and Zhang,
2019; Plascencia-Villa and Perry, 2021; Vitalakumar et al., 2021).
The purpose of this study is to investigate the association between

ferroptosis-related genes and AD with the gene level, which is a
supplement to existing studies and also a reference for ferroptosis
as a therapeutic target for AD. These hub genes identified by this
study could also serve as the ferroptosis-related biomarkers for
disease diagnosis and therapeutic monitoring.

MATERIALS AND METHODS

Microarray Data Processing
Three microarray datasets (GSE122063, GSE37263, and
GSE140829) of AD were collected from the GEO database1.
GSE122063 was based on the platforms of the GPL16699
(Mckay et al., 2019); GSE37263 was based on the platforms of
the GPL5175 (Tan et al., 2010); and GSE140829 was based on
the platforms of the GPL15988. Data for 56 AD patients and 44
control samples from GSE122063, 8 AD patients and 8 control

1http://www.ncbi.nlm.nih.gov/geo

TABLE 1 | Details for FerrDb.

Data set Category Annotated from Count Annotations

Driver Regulator Gene 108 150

Suppressor Regulator Gene 69 109

Marker Marker Gene 111 123

Inducer Regulator Small molecule 35 54

Inhibitor Regulator Small molecule 41 46

Ferroptosis aggravates disease Ferroptosis-diseaseassociation Ferroptosis and disease 49 58

Ferroptosis alleviates disease Ferroptosis-diseaseassociation Ferroptosis and disease 46 77

The number of “Count” and “Annotations” is inconsistent, because one gene can have multiple annotations.

FIGURE 3 | (A) Venn diagram showing the numbers of overlapped genes between AD-related module genes and ferroptosis-related genes. (B) Venn diagram
showing the numbers of overlapped genes between AD-related module genes and apoptosis-related genes.

TABLE 2 | Ferroptosis-related module genes obtained through the Venn diagram.

Type Genes

Driver PGD, YY1AP1, ATG3, ATG7, DPP4, NRAS, LPIN1, FBXW7, SCP2, EPAS1, TF, ATG16L1, IDH1, TFRC, BAP1, SNX4, PIK3CA, ATF3, PRKAA2

Suppressor SQSTM1, SLC40A1, MTOR, FANCD2, MUC1, TP63, FTMT, PRDX6, NFE2L2, ACSL3, JUN, SLC7A11, FH, CISD2, SESN2, PROM2

Marker TXNIP, HSD17B11, NCF2, PTGS2, ALB, STEAP3, SLC1A4, RRM2, CXCL2, ANGPTL7, PRDX1, SLC2A1, STMN1, RGS4, OXSR1, KLHL24,
CAPG, DRD5
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samples from GSE37263, and 182 AD patients and 207 control
samples from GSE140829 were analyzed in our study. A flow
diagram of the study is shown in Figure 1.

Weighted Gene Co-expression Network
Analysis
Firstly, the expression profiles of three datasets were removed
from the batch effect for further analysis. The gene co-expression
network was constructed with an R package termed “weighted
gene co-expression network analysis (WGCNA)” (Langfelder and
Horvath, 2008, 2012). The Adjacency matrix was constructed by
a weighted correlation coefficient. Subsequently, the adjacency
matrix was transformed into a topological overlap matrix (TOM).

Then, hierarchical clustering was performed to identify modules,
and the eigengene was calculated. Finally, we assessed the
correlation between phenotype (i.e., AD or control samples) and
each module by Pearson’s correlation analysis and identified AD-
related modules. The genes in these modules were considered as
AD-related module genes.

The Extraction of Ferroptosis-Related
Genes From FerrDb and
Apoptosis-Related Genes From UniProt
FerrDb2 is an artificial ferroptosis database for the management
and identification of ferroptosis-related markers and regulatory

2http://www.zhounan.org/ferrdb

FIGURE 4 | (A) Gene Ontology (GO) functional analysis showing enrichment of ferroptosis-related module genes. (B) Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis of ferroptosis-related module genes.
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factors, as well as ferroptosis-related diseases (Zhou and
Bao, 2020). Therefore, ferroptosis-related genes were
downloaded from this database for further analysis. The
UniProt Knowledgebase is the central hub for the collection of
functional information on proteins, with accurate, consistent and
rich annotation, and thus apoptosis-related genes were extracted
from UniProt3.

3https://www.uniprot.org/

Overlap Alzheimer’s Disease-Related
Module Genes With Ferroptosis-Related
Genes and Apoptosis-Related Genes,
Respectively
Ferroptosis-related genes were downloaded from FerrDb
and apoptosis-related genes were downloaded from
UniProt. We overlapped these genes with AD-related
module genes derived from WGCNA, respectively. The

FIGURE 5 | Protein-protein interaction network of 53 ferroptosis-related module genes were analyzed using Cytoscape software. The network includes 44 nodes
and 120 edges (The disconnected nodes were hided). The edges between 2 nodes represent the gene-gene interactions. The size and color of the nodes
corresponding to each gene were determined according to the degree of interaction. Color gradients represent the variation of the degrees of each gene from high
to low.
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Venn diagram was used to describe the details of the
overlapped genes.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Enrichment
Analysis of Overlapped Genes
Functional enrichment analysis was performed in three domains
of GO, including biological process (BP), cellular component
(CC), and molecular function (MF). The KEGG database
contains datasets of pathways involving biological functions,
diseases, chemicals, and drugs. The enrichment analysis was
carried out by clusterProfiler R package to determine the
biological functions of the genes and associated pathways
(Yu et al., 2012).

Protein-Protein Interaction
Establishment and Identification of Hub
Genes
An online tool (Search Tools for the Retrieval of Interacting
Genes, STRING4) was used to analyze protein interactions. The
PPI pairs were screened by confidence score (>0.40), and the
PPI network was visualized by the Cytoscape V3.9.0 software
(Shannon et al., 2003). Three indicators (Degree, closeness, and
Betweenness) were calculated through CytoHubba to evaluate the
importance of each node, and the top 10 nodes were selected. The
hub genes were their common nodes.

Construction and Validation of the
Logistic Regression
To effectively differentiate the AD patients from controls,
the logistic regression was constructed, and to evaluate
the performance of the logistic regression model for
predicting the occurrence of AD, we performed receiver
operating characteristic (ROC) curve analyses using the
pROC package of R (Robin et al., 2011). We selected the
statistically significant genes from hub genes (P < 0.05)
and used the nomogram to predict the occurrence of
AD. The expression level of the hub genes was shown by
the violin plot.

RESULTS

Weighted Co-expression Network
Construction and Identification of Core
Modules
The scale-free network was constructed with the soft threshold
set to 4 (R2 = 0.905) (Figures 2A,B). Then, the adjacency
matrix and topological overlap matrix were built. We then
calculated the module eigengenes representing the overall gene
expression level of each module; these were clustered based
on their correlation. A total of 4 modules were identified and

4https://string-db.org/

labeled with a unique color (Figure 2C). We analyzed the
correlations of each eigengene with phenotype (AD or control
samples), and found two modules were correlated with AD-
namely, the turquoise (cor = −0.32, P = 2e-13), and blue
(cor = 0.30, P = 1e-11) modules (Figure 2D). The 4,617 genes in
these modules-which are associated with AD-were retained for
further analysis.

The Extraction of Ferroptosis-Related
Genes From FerrDb and
Apoptosis-Related Genes From UniProt
The ferroptosis-related genes were downloaded and summarized
from the FerrDb (Zhou and Bao, 2020; Table 1). 253 regulatory
factors (including 108 drivers, 69 suppressors, 35 inducers, and 41
inhibitors), 111 markers, and 95 ferroptosis-related diseases were
collated by FerrDb. We have extracted 2,130 genes from Uniprot,
which is related to apoptosis.

Overlap Alzheimer’s Disease-Related
Module Genes With Ferroptosis-Related
Genes and Apoptosis-Related Genes,
Respectively
We overlapped the AD-related module genes derived from
WGCNA with ferroptosis-related genes extracted from FerrDb,
53 overlapped genes were obtained, namely ferroptosis-related
module genes, which was shown by the Venn diagram
(Figure 3A). The details of overlapped genes, including 19
drivers, 16 suppressors, and 18 markers, were shown in
Table 2. We also overlapped the AD-related module genes
with apoptosis-related genes to obtain apoptosis-related module
genes as a control for further analysis, and 90 overlapped
genes were obtained, which was also shown by the Venn
diagram (Figure 3B).

FIGURE 6 | Protein–protein interaction network for the six hub genes. Three
indicators (degree, closeness and betweenness) were, respectively, calculated
to evaluate the importance of each node and the top 10 nodes were selected.
The six hub genes were their common nodes.
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Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Enrichment
Analysis of Overlapped Genes
The significant GO functional terms of the 53 ferroptosis-
related module genes, including BP, MF, and CC, were
illustrated in Figure 4A. The significant terms of GO-BP were
principally associated with the response to stress, such as the
response to oxidative stress. The pathways enriched by GO-MF

were principally associated with the activity of peroxidase,
oxidoreductase, and antioxidant. The ferric iron-binding was
also enriched by the GO-MF. The analysis of GO-CC indicated
that overlapped genes were significantly enriched in basolateral
plasma membrane, phagophore assembly site, pigment granule,
and melanosome. The KEGG analysis showed that these
overlapped genes were enriched not only in renal cell carcinoma
pathways and central carbon metabolism in cancer, but also in
autophagy-related pathways and ferroptosis (Figure 4B). The

FIGURE 7 | (A) ROC curve was used to evaluate the performance of the logistic regression model. The area under the curve (AUC) was 0.643. (B) The nomogram
was used to predict the occurrence of AD. Ferroptosis-related hub genes, JUN, SLC2A1, TFRC, ALB, and NFE2L2 (P < 0.05), were included in this nomogram.
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pathway of ferroptosis was enriched by KEGG, suggesting that
these overlapped genes were significant for our study and could
be used for further analysis.

Protein-Protein Interaction
Establishment and Identification of Hub
Genes
The PPI analysis of 53 ferroptosis-related module genes was
performed through the STRING database and visualized by
Cytoscape V3.9.0 (Figure 5). JUN, SLC2A1, TFRC, ALB, MTOR,
and NFE2L2 were taken as potential hub genes based on
Degree, closeness, and betweenness. The hub genes were their
common top ten nodes. The PPI network of the hub genes was
presented in Figure 6. Similarly, the identification of hub genes of
apoptosis-related module genes was also conducted, and STAT1,
CFLAR, FASLG, MCL1 and BCL2L11 were obtained from the 90
overlapped genes.

Construction and Validation of the
Logistic Regression
Through constructing the logistic regression, JUN, SLC2A1,
TFRC, ALB, and NFE2L2 were selected, which could effectively
differentiate AD patients from controls (P< 0.05). The P-value of
MTOR was more than 0.05, which was not statistically significant.
We used the ROC curve to evaluate the performance of the

logistic regression model (the area under the ROC curve of the
model was 0.643), and the nomogram was used for predicting the
occurrence of AD (Figures 7A,B). The expression level of the five
hub genes is shown in Figure 8. Similarly, the logistic regression
was also constructed for apoptosis-related hub genes, and STAT1,
MCL1, and BCL2L11 were selected and could distinguish AD
patients from controls (P < 0.05). The AUC was 0.608, which
was less than the former AUC value, suggesting that ferroptosis
was more special than apoptosis in AD. The ROC curve and
nomogram are shown in Figures 9A,B.

DISCUSSION

The pathological process of ferroptosis has some characteristics
in common with AD, such as excess iron accumulation and
elevated lipid peroxides. It has been reported that the pathological
process of ferroptosis could be directly induced by iron overload
(Wang et al., 2017; Fang et al., 2019). Clinically, lipid peroxidation
metabolites were highly correlated with the progression of AD
(Benseny-Cases et al., 2014). Besides, it has also been reported
that reactive oxygen species (Wang et al., 2016) and reduced
glutathione (Chiang et al., 2017) were found in the pathological
process of AD. However, how does ferroptosis mediate AD?
Some ferroptosis-related signaling pathways were found in AD,
such as iron metabolism pathway, redox homeostasis pathway,

FIGURE 8 | Violin plot of the expression level of five hub genes. The red violin reflects the AD group, and the blue violin reflects the control group.
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FIGURE 9 | (A) The area under the curve (AUC) was 0.608. (B) The nomogram of apoptosis-related hub genes, STAT1, MCL1, and BCL2L11 (P < 0.05).

and lipid metabolism pathway (Chen et al., 2021). Exploring
of the mechanism of ferroptosis in AD could provide a novel
therapeutic target for the treatment of AD and possibly, other

FIGURE 10 | The regulation pathways of JUN, SLC2A1, TFRC, ALB, and
NFE2L2 participating in ferroptosis in AD. The gray edge represents the
gene-gene interactions. The orange T-shaped edge denotes suppression, and
the blue arrow denotes promotion.

neurodegenerative diseases (Ashraf and So, 2020). This study
identified five hub genes that may participate in the pathologic
processes associated with ferroptosis in AD. The possible
pathways of these five genes involved in ferroptosis are shown in
Figure 10 (see text footnote 2) (Gao et al., 2016; Shin et al., 2018;
Chen et al., 2019).

Emerging evidence has demonstrated that ferroptosis could
be a therapeutic target for AD (Gleason and Bush, 2021). Some
ferroptosis inhibitors, such as iron-chelators and vitamin E,
have shown clinical efficacy in treating AD. Deiprone is a brain
osmotic iron-chelating agent currently in phase II clinical trials
to treat AD (Nikseresht et al., 2019). Antioxidant vitamin E could
delay decline in function and relieve caregiver burden in patients
with AD (Dysken et al., 2014a,b). Collectively, Patients with
AD may benefit from ferroptosis as a therapeutic target. Unlike
targeting β-amyloid, the clinical trials of ferroptosis inhibitors are
still in the exploratory stage and need to be dose-optimized and
replicated on a larger scale (Nikseresht et al., 2019). The clinical
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efficacy of ferroptosis inhibitors in the treatment of AD also needs
to be further improved.

There were some limitations to this study. Firstly, while
selecting datasets for differentially expressed analysis, it was
found that some datasets had fewer or no differentially expressed
genes (DEGs, correcting P-value < 0.05 and | logFC| ≥ 1.0),
such as GSE48350 (Berchtold et al., 2013) and GSE131617
(Miyashita et al., 2014; Kikuchi et al., 2020). Therefore, the
datasets and related AD patients we can choose are still limited.
In addition, if the DEGs further overlaps with the ferroptosis-
related module genes, the number of available genes are limited
and could not be used for further analysis. Secondly, the potential
ferroptosis-related biomarkers identified by this study still need
further literature support and laboratory evidence verification.
Thirdly, the ferroptosis-related genes are derived from FerrDb,
which is being updated continuously, and more genes are yet
to be discovered.

CONCLUSION

We identified five hub genes (JUN, SLC2A1, TFRC, ALB, and
NFE2L2) that are closely associated with ferroptosis in AD
and can differentiate AD patients from controls, and are thus
potential ferroptosis-related biomarkers for disease diagnosis and
therapeutic monitoring. Three hub genes of apoptosis-related

genes in AD (STAT1, MCL1, and BCL2L11) were also identified
as a control to show the specificity of Ferroptosis. JUN, SLC2A1,
TFRC, ALB, and NFE2L2 are thus potential ferroptosis-related
biomarkers for disease diagnosis and therapeutic monitoring.
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