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The two main proteolytic machineries of eukaryotic cells, lysosomes and proteasomes, receive sub-
strates by different routes. Polyubiquitination targets proteins for proteasomal degradation, whereas
autophagy delivers intracellular material for lysosomal hydrolysis. The importance of autophagy for
cell survival has long been appreciated, but more recently, its essential role in both innate and adap-
tive immunity has been characterized. Autophagy is now recognized to restrict viral infections and
replication of intracellular bacteria and parasites. Additionally, this pathway delivers cytoplasmic an-
tigens for MHC class II presentation to the adaptive immune system, which then in turn is able to reg-
ulate autophagy. At the same time, autophagy plays a role in the survival and the cell death of T cells.
Thus, the immune system utilizes autophagic degradation of cytoplasmic material, to both restrict
intracellular pathogens and regulate adaptive immunity.
Introduction
Eukaryotic cells degrade proteins with two main hydrolytic

machineries, proteasomes and lysosomes. In both sys-

tems, catabolic activities are physically separated from in-

tracellular substrates—in proteasomes, by localization in

a barrel-shaped multiprotein complex and in lysosomes,

by its vesicular membrane. Therefore, access to the hy-

drolytic activities within these structures determines

whether a protein is degraded. For proteasomes, polyubi-

quitination allows substrates to gain access to the cata-

lytic chamber for proteolysis (Ciechanover et al., 1984).

For lysosomes, autophagy delivers intracellular constitu-

ents for degradation, but how autophagosome cargo is

selected remains unclear (De Duve and Wattiaux, 1966).

Although proteasomes degrade soluble short-lived pro-

teins, autophagy targets cell organelles and aggregates

of long-lived proteins for degradation (Henell et al., 1987).

Autophagy is composed of at least three distinct path-

ways: microautophagy, chaperone-mediated autophagy,

and macroautophagy (Mizushima and Klionsky, 2007).

Microautophagy involves budding of small cytosol-

containing vesicles, and this budding occurs directly into

the lysosomal lumen. During chaperone-mediated au-

tophagy, proteins are directly imported into lysosomes

via the LAMP-2a transporter (Cuervo and Dice, 1996;

Cuervo and Dice, 2000) assisted by cytosolic (Chiang

et al., 1989) and lysosomal (Agarraberes et al., 1997)

HSC70 chaperones. Substrates of chaperone-mediated

autophagy carry signal peptides for sorting into lyso-

somes, similar to other protein-transport mechanisms

across membranes (Agarraberes and Dice, 2001). Finally,

during macroautophagy, a cup-shaped isolation mem-

brane forms de novo from sources that are still debated

(Juhasz and Neufeld, 2006). In this process, cytosolic con-

stituents are enclosed in a double-membrane vesicle,
called autophagosome (Fengsrud et al., 2000a; Strom-

haug et al., 1998), which then fuses with lysosomes and

late endosomes for degradation of the inner autophago-

somal membrane and its cargo (Ohsumi, 2001) (Figure 1).

The class III phosphatidylinositol 3-kinase (PI3K) and its

binding partner, the autophagy-related gene (Atg) 6 (also

known as Beclin-1), is required for the initiation of the iso-

lation membrane (Kihara et al., 2001; Zeng et al., 2006). In

addition, two ubiquitin-like systems are essential for the

formation of autophagosomes: In one of them, the five

C-terminal amino acids of the ubiquitin-like protein Atg8

(also known as light chain [LC] 3) are cleaved off by the

Atg4 protease to liberate a glycine residue (G120). This

C-terminal residue then gets transferred to phosphatidyl-

ethanolamine in the forming isolation membrane by the

E1- and E2-like enzymes Atg7 and Atg3. Although Atg8

(LC3) gets recycled from the outer autophagosomal mem-

brane by deconjugation from the phospholipid, it remains

attached to the inner autophagosomal membrane, and

this proportion is degraded with the inner autophagoso-

mal membrane in lysosomes and late endosomes after

fusion with these vesicles (Ichimura et al., 2000; Kabeya

et al., 2000). In the other ubiquitin-like system, Atg12

gets coupled via its C-terminal glycine residue (G140) to

a lysine residue of Atg5 by the E1- and E2-like enzymes

Atg7 and Atg10. The Atg12-Atg5 complex associates

with Atg16 and then binds to the outer surface of the iso-

lation membrane. Upon completion of the autophago-

some, the Atg5-Atg12-Atg16 complex dissociates from

the outer autophagosomal membrane (Mizushima et al.,

1998).

The exact functions of the components of the molecular

machinery for macroautophagy are not well understood to

date. Because the Atg5-Atg12-Atg16 complex localizes to

the convex surface of the isolation membrane, it may
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determine the curvature of the forming autophagosome

through a protein lattice, not unlike what clathrin coating

does for endosomes (Trombetta and Mellman, 2005).

Furthermore, because Atg8 (LC3) is primarily localized to

the inner autophagosomal membrane, especially after

autophagosome completion, it was proposed that this

molecule could serve as an anchor for autophagy

substrates. Two proteins, Alfy and p62 (also known as

SQSTM1), have been suggested for the targeting of

Figure 1. Molecular Machinery of Macroautophagy
Atg6 (Beclin-1) is part of the type III PI3K complex that initiates auto-
phagosome formation. Two ubiquitin-like systems are required for for-
mation of the isolation membrane and couple Atg8 (LC3) and Atg12 to
phosphatidylethanolamine (PE) and Atg5, respectively. The five C-ter-
minal amino acids of Atg8 (LC3) are cleaved of by Atg4 to reveal glycine
120 (G120), which is required to link the protein after activation by Atg7
and ligation by Atg3 to PE in the autophagosomal membrane (green
circles). Similarly, glycine 140 (G140) is used by Atg7 and Atg10 to cou-
ple Atg12 to Atg5. This complex then localizes to the outer membrane
of the forming autophagosome (blue squares). Upon autophagosome
completion, the Atg12-Atg5 complex recycles from the outer mem-
brane, and only Atg8 (LC3) remains associated with the completed au-
tophagosome. Autophagosomes then fuse with late endosomes and
lysosomes for degradation of their cargo and their intravesicular mem-
branes.
12 Immunity 27, July 2007 ª2007 Elsevier Inc.
proteins to autophagosomes (Bjorkoy et al., 2005; Simon-

sen et al., 2004). Alfy has been found in proximity to auto-

phagic membranes and colocalizing with protein aggre-

gates under conditions of starvation and proteasome

inhibition, which are known to upregulate macroauto-

phagy (Mizushima and Klionsky, 2007; Simonsen et al.,

2004). Similarly, p62 (SQSTM1) has been found to localize

to protein aggregates, is degraded by macroautophagy,

and could be coimmunoprecipitated with Atg8 (LC3)

(Bjorkoy et al., 2005). Both proteins were suggested to

target protein aggregates to autophagosomes, in the

case of p62 (SQSTM1) by binding to Atg8 (LC3).

These studies on the molecular mechanisms of auto-

phagy and its importance in protein metabolism have

set the stage to analyze its importance during immune

responses. In the following sections, we will discuss auto-

phagy during innate immune responses to viruses, bacte-

ria, and parasites and highlight its role in the initiation and

execution of adaptive immune responses.

Escape from Autophagy by Viruses
Viral immune escape from proteasomal degradation has

been characterized in great detail (Tortorella et al.,

2000). In contrast, the interaction between viruses and

the autophagic machinery is just beginning to be eluci-

dated. The three following main outcomes of these inter-

actions have been noted: Macroautophagy successfully

limits viral replication, viruses inhibit macroautophagy to

avoid restriction of their replication, or viruses use accu-

mulated autophagosomes for their replication (Figure 2).

Only two studies have demonstrated so far that macro-

autophagy can successfully limit viral replication. One ex-

ample comes from plant infection by the tobacco mosaic

virus (TMV). This single-stranded RNA virus of the Toba-

movirus family replicates more efficiently when Atg6 (Be-

clin-1) or Atg7 are silenced in Nicotiana benthamiana

plants (Liu et al., 2005). The second example is a single-

stranded RNA virus of the Togavirus family. Sindbis virus

of this virus family causes encephalitis, which can be ame-

liorated by overexpression of Atg6 (Beclin-1) in mice

(Liang et al., 1998). After virus-driven Atg6 (Beclin-1) over-

expression, less Sindbis virus RNA-positive cells,

decreased brain pathology, and lower viral titers are de-

tected in mice. Although the role of constitutive macro-

autophagy in Sindbis-virus-mediated encephalitis has

not been elucidated so far, enhanced macroautophagy

seems to confer protection against viral replication. An-

other protective role that macroautophagy seems to play

during viral infections is to deliver pathogen constituents

for detection by endosomal receptors that initiate immune

responses, such as toll-like receptors (TLRs) (Lee et al.,

2007). One member of this family, TLR7, detects single-

stranded RNA. In the case of vesicular stomatitis virus

(VSV) and Sendai virus (SV) infection, TLR7-dependent

activation of plasmacytoid dendritic cells (pDCs) and their

type I IFN secretion seem to rely on macroautophagy be-

cause Atg5-deficient pDCs are unable to secrete IFN-a in

response to SV and VSV infection. However, further stud-

ies are required to ensure that pDC function is not
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generally compromised in the absence of macroauto-

phagy and to analyze to what extent this pathway contrib-

utes to the detection of viral infections in vivo.

In contrast to these examples of protection from viral

infection via macroautophagy, two double-stranded

DNA viruses of the herpesvirus family, herpes simplex

virus-1 (HSV-1) and Kaposi’s sarcoma-associated her-

pesvirus (KSHV), escape the fate of restriction or detection

by macroautophagy via expression of inhibitors of this

pathway. Both viruses target Atg6 (Beclin-1) for this pur-

pose. HSV-1 expresses the early-antigen, infected cell

protein 34.5 (ICP34.5), which inhibits macroautophagy

and thereby allows increased viral replication in mouse

Figure 2. Innate Immune Control by Macroautophagy
Viruses, bacteria, and parasites get cleared or interfere with their de-
struction by macroautophagy. Herpesviruses encode inhibitors of au-
tophagosome formation, whereas picornaviruses and coronaviruses
inhibit fusion of autophagosmes with lysosomes in order to replicate
on autophagosomal membranes. Rickettsia conorii and group A Strep-
tococcus, examples of bacterial pathogens that escape the endo-
some, are degraded by macroautophagy, but Shigella flexneri has
developed an escape strategy that avoids its import into autophago-
somes. Brucella abortus and Legionella pneumophila block autopha-
gosome-lysosome fusion and replicate in autophagic vesicles. Patho-
gens such as Toxoplasma gondii and Mycobacterium tuberculosis
condition phagosomes as replication niches, which can be cleared
by macroautophagy after immune activation of the host cell.
embryonic fibroblasts (Tallóczy et al., 2002). Interestingly,

recombinant HSV-1 with a mutant ICP34.5 protein that

can no longer interact with Atg6 (Beclin-1) and thereby

fails to inhibit macroautophagy is severely attenuated

with respect to neurovirulence in mice (Orvedahl et al.,

2007). This suggests that macroautophagy inhibition is

essential for efficient replication of HSV-1 in the central

nervous system of mice in vivo. Atg6 (Beclin-1) is also the

target of macroautophagy inhibition by KSHV. Its Bcl-2

homolog binds to Atg6 (Beclin-1) and thus inhibits macro-

autophagy (Pattingre et al., 2005), but it remains unclear

whether this function is important for KSHV replication.

An even more dramatic subversion of macroautophagy

is practiced by several single-stranded RNA viruses,

which replicate in the cytoplasm. Picornaviruses (poliovi-

rus and rhinoviruses), coronaviruses (mouse hepatitis

virus and severe acute respiratory syndrome coronavirus),

and one arterivirus (equine arteritis virus) replicate on the

surface of autophagosomal membranes (Dales et al.,

1965; Jackson et al., 2005; Pedersen et al., 1999; Prentice

et al., 2004a; Prentice et al., 2004b). These viruses proba-

bly block the fusion of autophagosomes, which carry their

replication complexes, with lysosomes. In the case of

poliovirus and rhinoviruses, this macroautophagy regula-

tion seems to be brought about by the 2BC and 3A pro-

teins, which are sufficient to induce the accumulation of

autophagosomes (Jackson et al., 2005). Generation of au-

tophagic membranes as scaffolds for the replication ma-

chinery is essential because inhibition of macroautophagy

by siRNA-mediated silencing of Atg12 or Atg8 (LC3) in-

hibits viral replication (Jackson et al., 2005). Therefore,

a number of single-stranded RNA viruses interfere with

autophagosome maturation in order to replicate on the

surfaces of these vesicles. Similarly, to their benefit, the

double-stranded RNA virus rotavirus of the reovirus family

and the single-stranded DNA virus B19 parvovirus both in-

duce macroautophagy, with rotavirus mediating this effect

via its NSP4 protein (Berkova et al., 2006; Nakashima

et al., 2006). Rotavirus seems to replicate in close proxim-

ity to autophagic membranes, and B19 parvovirus might

prolong the survival of infected cells via macroautophagy.

However, the exact function of macroautophagy induction

by these two viruses is not entirely understood.

Although all viruses listed above regulate macroauto-

phagy to promote their own replication, two other viruses

use the molecular macroautophagy machinery differently

for their benefit. Human immunodeficiency virus 1 (HIV-1)

induces autophagy-dependent apoptosis or autophagic

cell death in bystander CD4+ T cells when the envelope

protein of HIV-1 interacts with the chemokine receptor

CXCR4 on the cell surface of CD4+ T cells (Espert et al.,

2006). By these means, HIV-1 might deplete the CD4+

T cell compartment beyond destruction through viral rep-

lication. Another way in which a virus can benefit from

the macroautophagy machinery is demonstrated by the

single-stranded RNA virus bovine viral diarrhea virus

(BVDV) of the flavivirus family. This virus has incorporated

part of the Atg8 (LC3) sequence for specific proteolytic

processing of its polyprotein (Meyers et al., 1998),
Immunity 27, July 2007 ª2007 Elsevier Inc. 13
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presumably via the Atg4 protease, which liberates G120 of

Atg8 (LC3) for coupling to autophagosomal membranes

(Figure 1). In this fashion, the virus uses a specific proteo-

lytic event of the macroautophagy machinery to process

its protein products.

Thus, both viruses and their hosts have evolved various

ways to utilize or subvert macroautophagy for their bene-

fit. The many pathways by which viruses target this

catabolic process suggest that it is important for innate

immunity against these pathogens.

Autophagic Defense against Intracellular Bacteria
and Parasites
In contrast to viruses, a number of microbial pathogens

have been described to be successfully targeted by mac-

roautophagy during innate immune responses. However,

most of these studies have been performed in vitro, and

it remains to be established whether macroautophagy

can restrict bacteria and parasites in vivo.

Bacteria and parasites have been found to be suscepti-

ble to macroautophagy in two cellular compartments after

entering their host cells. Free bacteria in the cytosol can

fall prey to macroautophagy, and pathogen-conditioned

phagosomes can either fuse with or get engulfed by auto-

phagosomes (Figure 2). Group A Streptococci multiply

freely in atg5�/�mouse embryonic fibroblasts after escap-

ing from endosomes (Nakagawa et al., 2004). In contrast

in wild-type cells, cytosolic group A Streptococci become

enveloped by autophagosomes and are delivered for lyso-

somal hydrolysis. Similarly, the cytoplasmic bacterium

Rickettsia conorii was observed in autophagosomal struc-

tures in endothelial cells by electron microscopy (Walker

et al., 1997). Proinflammatory cytokines lead to increased

macroautophagy and Rickettsia clearance from the cyto-

plasm. However, it has not been conclusively shown that

the protective cytokines required autophagy for restriction

of Rickettsia. Furthermore, metabolic inhibition of Listeria

monocytogenes after phagosome lysis renders these bac-

teria susceptible for macroautophagy and lysosomal

clearance (Rich et al., 2003). Engulfment of Listeria can

be blocked by pharmacological autophagy inhibitors

and accelerated by starvation. In addition to eliminating

pathogens in the cytosol, macroautophagy can also target

phagosomes that have been conditioned by bacteria or

parasites to avoid fusion with lysosomes. The best-stud-

ied examples for these are Mycobacterium tuberculosis

and Toxoplasma gondii (Andrade et al., 2006; Gutierrez

et al., 2004; Ling et al., 2006). M. tuberculosis was shown

to be cleared from mouse macrophages and a human

macrophage cell line by macroautophagy (Gutierrez

et al., 2004; Singh et al., 2006). Starvation-induced clear-

ance of the M. tuberculosis variant bovis BCG is inhibited

by pharmacological inhibitors of macroautophagy. In

addition to starvation, lipopolysaccharide (LPS)-induced

autophagic clearance of M. tuberculosis-containing

phagosomes via TLR4-TRIF-RIP1-p38MAPK signaling

(Xu et al., 2007 [this issue of Immunity]) has been ob-

served. An autophagy-dependent protective mechanism

is the lysosomal generation of bactericidal peptides from
14 Immunity 27, July 2007 ª2007 Elsevier Inc.
ubiquitin after autophagic delivery of ubiquitinylated pro-

tein aggregates (Alonso et al., 2007). The induction of au-

tophagy by starvation resulted in enhanced delivery of

ubiquitinated proteins to microbacteria-harboring phago-

somes and increased the bactericidal activity of lyso-

somes. Similarly, T. gondii appears to be susceptible to

macroautophagic degradation in mouse and human mac-

rophages (Andrade et al., 2006; Ling et al., 2006). Clear-

ance of T. gondii tachyzoites upon macrophage activation

could be inhibited by pharmacological inhibitors of macro-

autophagy and siRNA silencing of Atg6 (Beclin-1). Less

well characterized is the macroautophagic degradation

of Salmonella enterica and uropathogenic Escherichia

coli-containing vacuoles (Amer et al., 2005; Birmingham

et al., 2006). However, S. enterica at least seems to stim-

ulate macroautophagy via injection of its SipB protein into

the cytosol through the bacterial type III secretion system

(Hernandez et al., 2003).

As summarized above for viruses, bacteria have also

developed counteracting mechanisms against innate re-

striction by macroautophagy. Again, both autophago-

some generation and maturation into autolysosomes are

targeted (Figure 2). However, unlike viruses, these mech-

anisms do not seem to generally inhibit macroautophagy

of the host cell in trans but rather prevent autophagic

clearance of the particular bacterial pathogens in cis, with-

out affecting the degradation of other autophagy sub-

strates. Shigella flexneri inhibits macroautophagy, which

is induced by the binding of its VirG protein to Atg5

(Ogawa et al., 2005). This specific interaction of the auto-

phagic machinery with a bacterial protein is disrupted by

Shigella’s IcsB protein, and loss of IcsB leads to auto-

phagic clearance of these bacteria from the cytosol. A

number of other bacterial and parasitic pathogens trigger

macroautophagy for their efficient replication. Instead of

using autophagosomal membranes as scaffolds for repli-

cation, as discussed above for single-stranded RNA vi-

ruses, they replicate most effectively inside autophago-

somes and autolysosomes. Pathogens of this category

include Francisella tularensis, Brucella abortus, Porphyro-

monas gingivalis, Leishmania mexicana, Chlamydia tra-

chomatis, Coxiella burnetii, and Legionella pneumophila

(Al-Younes et al., 2004; Amer and Swanson, 2005; Celli

et al., 2003; Checroun et al., 2006; Dorn et al., 2001; Gu-

tierrez et al., 2005; Pizarro-Cerda et al., 1998; Schaible

et al., 1999). At least some of these bacteria use their

type III and type IV secretion systems to trigger autophagy

and also inhibit fusion of autophagosomes with lysosomes

to generate their replication niche. For example, 10–30

kDa components of Legionella type IV secretion sub-

strates are able to stimulate macroautophagy in mouse

macrophages (Amer and Swanson, 2005). In contrast,

the type IV secretion system of Brucella is required to pre-

vent fusion of the vesicular Brucella replication compart-

ment with lysosomes (Celli et al., 2003). Establishment of

this compartment can be inhibited by pharmacological in-

hibitors of macroautophagy (Pizarro-Cerda et al., 1998).

Thus, by using their elaborate secretion systems, suc-

cessful bacterial pathogens can subvert macroautophagy
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for their benefit, and therefore avoid autolysosomal degra-

dation in their host cells.

Apart from pathogen clearance, macroautophagy pro-

vides another type of protection from bacterial pathogen-

esis during Vibrio cholerae infection. This noninvasive

intestinal pathogen secretes the hemolytic exotoxin cyto-

lysin, but gut epithelial cell lines resist cell death induced

by this toxin through the induction of macroautophagy

(Gutierrez et al., 2007). Atg5-deficient cells on the contrary

displayed poor survival upon exposure to Vibrio cytolysin.

Thus, bacterial pathogens, both after escaping from

endosomes into the cytosol and in phagosomes, can

become substrates for macroautophagy. The efficiency

of this innate immune defense mechanism most probably

forced successful bacterial pathogens to develop escape

mechanisms against autophagic degradation.

Antigen Presentation via Autophagy
In addition to limiting pathogen replication in host cells,

macroautophagy also delivers viral, parasitic, and bacte-

rial antigens to late endosomal compartments, where

macroautophagy substrates are then degraded by

lysosomal hydrolases. The fusion vesicles between auto-

phagosomes and late endosomes, the so-called amphi-

somes, have been isolated and ultrastructurally character-

ized by electron microscopy (Berg et al., 1998; Liou et al.,

1997). In these studies, double-membrane-enveloped

autophagosomes receive colloidal gold after endocytosis,

and the resulting amphisomes could be stabilized by inhi-

bition of lysosomal degradation. The amphisomes display

multivesicular and multilamellar morphology. Exactly the

same characteristics have been reported for major histo-

compatibility complex (MHC) class II loading compart-

ments (MIICs) (Zwart et al., 2005), which are now consid-

ered to be conventional late endosomes that are equipped

with the molecular machinery to load antigenic fragments

onto MHC class II molecules for presentation to CD4+

T cells.

We have recently shown that GFP-Atg8 (GFP-LC3)-

positive autophagosomes fuse frequently with MIICs, as

identified by the presence of MHC class II, the lysosomal

membrane protein LAMP-2 and the chaperone HLA-DM,

which is involved in peptide loading onto MHC class II

molecules (Schmid et al., 2007). We observe 50%–80%

overlap between Atg8 (LC3) and MHC class II in profes-

sional antigen-presenting cells, such as dendritic cells

and B cell lines, as well as epithelial cell lines, in which

MHC class II expression was induced by proinflammatory

cytokines. This cell-biological evidence suggests that

macroautophagy frequently delivers autophagosome

content, including pathogen-derived proteins, to MIICs

(Figure 3).

Biochemical isolation of natural MHC class II ligands re-

veals that up to 20% of eluted peptides originate from cy-

tosolic and nuclear proteins (Chicz et al., 1993; Dengjel

et al., 2005; Dongre et al., 2001; Rammensee et al.,

1999). Among them, two fragments of Atg8 (LC3)

(MAP1LC3B93-109 and MAP1LC3B93-110) have been iso-

lated from HLA-DR molecules of Epstein Barr virus
(EBV)-transformed B cell lines (Dengjel et al., 2005). Other

sources of natural MHC class II ligands also fit the charac-

teristics of autophagy substrates. Some long-lived pro-

teins, which appear to be preferentially degraded by au-

tophagy (Henell et al., 1987), have been frequently found

to give rise to MHC class II peptide cargo. For example,

glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

with the extraordinarily long half-life of 130 hr (Dice and

Goldberg, 1975) has been described as a substrate of

chaperone-mediated autophagy (Aniento et al., 1993)

and has been isolated from autophagosomes (Fengsrud

et al., 2000b). In good agreement with autophagic delivery

of antigens for MHC class II loading, GAPDH-derived pep-

tides have been isolated from four different MHC class II

molecules, but no natural MHC class I ligands have

Figure 3. Role of Macroautophagy in Adaptive Immune
Responses
Autophagic pathways can deliver antigens for MHC class II presenta-
tion. Autophagosomes and LAMP-2a, the transporter associated with
chaperone-mediated autophagy, can transport antigens into the
MHC-class-II-loading compartment (MIIC). In MIICs, the antigen is
processed and loaded onto MHC class II molecules for CD4+ T cell
stimulation. Activated CD4+ T cells can then in turn enhance macro-
autophagy and autophagosome-lysosome fusion via type II IFN and
TNF family members (IFN-g, TNF, TRAIL, and CD40L). In addition,
Th2-polarized CD4+ T cells are susceptible to cell death by macro-
autophagy.
Immunity 27, July 2007 ª2007 Elsevier Inc. 15
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been described from this protein so far (Rammensee et al.,

1999). In contrast, cyclins with half-lives in the order of

minutes are one of the most frequent sources of MHC

class I peptides and have been eluted from 17 different

MHC class I molecules, but only one MHC class II ligand

from this group of proteins has been described so far

(Rammensee et al., 1999). Short and long half-life corre-

late to some extent with the degradation route of proteins.

For example, the nuclear antigen 1 of EBV (EBNA1) con-

tains a glycine alanine (GA)-repeat domain, which inhibits

its degradation via the proteasome and presentation on

MHC class I (Hoyt et al., 2006; Lee et al., 2004; Levitskaya

et al., 1995; Levitskaya et al., 1997). EBNA1’s half-life is

very long (Levitskaya et al., 1997; Tellam et al., 2001) but

is shortened considerably upon deletion of the GA repeat

(Levitskaya et al., 1997). GA-deleted EBNA1 is degraded

by the proteasome and efficiently presented on MHC

class I (Lee et al., 2004; Levitskaya et al., 1997). In con-

trast, long-lived wild-type EBNA1 is presented on MHC

class II after macroautophagy (Paludan et al., 2005). Sim-

ilarly, influenza matrix protein 1 (MP1) is intracellularly

processed onto MHC class II (Jaraquemada et al.,

1990), but when the half-life of MP1 is shortened by

N-end-rule modification with enhanced proteasomal deg-

radation, endogenous MHC class II presentation is lost

(Gueguen and Long, 1996).

Further evidence, consistent with the hypothesis that

proteins with long half-lives are preferentially processed

for MHC class II presentation, comes from analysis of

the RAD23 protein. Not unlike EBNA1, this protein con-

tains a domain that prevents proteasomal proteolysis

(Heessen et al., 2005). Deletion of this UBA2 domain

shortens RAD23’s half-life and makes it more susceptible

to proteasomal degradation. Interestingly, when auto-

phagy is induced by starvation and then natural HLA-DR

ligands are eluted, peptides derived from cytosolic and

nuclear antigens are upregulated, whereas natural ligands

from membrane and secreted proteins are not affected

(Dengjel et al., 2005). A protein whose MHC class II pre-

sentation is strongly upregulated after 24 hr of starvation

is RAD23. Taken together, all these examples suggest

that long-lived autophagy substrates are efficiently pro-

cessed for MHC class II presentation to CD4+ T cells.

CD4+ T Cell Stimulation after Autophagy
Direct involvement of the molecular machinery for auto-

phagy in intracellular antigen presentation on MHC class

II has been documented only for a few antigens so far.

The first study implicating macroautophagy in antigen

processing onto MHC class II demonstrated that phar-

macological inhibition of autophagosome formation de-

creased MHC class II presentation of the overexpressed

complement C5 protein in mouse macrophage and B

cell lines (Brazil et al., 1997). In this study and many

follow-up studies, inhibitors of the class III PI3 kinase

complex, including 3-methyladenine (Seglen and Gordon,

1982), have been used to inhibit macroautophagy.

However, 3-methyladenine has additional effects on

membrane trafficking such as endocytosis, on lysosomal
16 Immunity 27, July 2007 ª2007 Elsevier Inc.
acidification, on phosphorylation of some signal transduc-

tion molecules, and on mitochondrial permeability (Miz-

ushima, 2004). Therefore, pharmacological inhibition of

macroautophagy can be used as a first indication that

this pathway is involved, but this finding should be con-

firmed by RNA interference or in knockout cells. With

these caveats of pharmacological inhibitors in mind, two

additional studies have used those to implicate macroau-

tophagy in intracellular MHC class II antigen processing of

the tumor antigen Mucin gene 1 (MUC1) product (Dörfel

et al., 2005) and the model antigen neomycin phospho-

transferease II (NeoR) (Nimmerjahn et al., 2003). Of these,

the latter study controlled, as carefully as possible, for

macroautophagy-independent side effects of the phar-

macological inhibitors by demonstrating that CD8+ T cell

recognition of the tumor antigen tyrosinase and MHC

class II antigen processing of extracellular NeoR were

not influenced by 3-methyladenine. In addition, NeoR

accumulated intracellularly and was excluded from

delivery to lysosomes by this treatment. Therefore, the

authors provided good evidence that NeoR is delivered

by macroautophagy for MHC class II presentation in

EBV-transformed B cells and in renal cell carcinoma cells.

In addition to these studies on self, tumor, and model

antigens, we have demonstrated that the viral antigen

EBNA1 is processed intracellularly for MHC class II pre-

sentation to CD4+ T cells via macroautophagy in EBV-

transformed B cells and EBNA1-transfected EBV-nega-

tive Hodgkin’s lymphoma cells (Münz et al., 2000; Paludan

et al., 2005). Upon inhibition of lysosomal degradation, we

have found EBNA1 accumulating in autophagosomes,

visualized as multiple membrane-enveloped vesicles or

isolation membranes in electron microscopy. Further-

more, intracellular EBNA1 processing for MHC class II

presentation is inhibited by siRNA-mediated silencing of

the essential autophagy gene Atg12. According to these

data, EBNA1 is the first antigen for which physiological

amounts have been demonstrated to be processed onto

MHC class II after macroautophagy. More recently, we

have shown that targeting of influenza MP1 to autophago-

somes by fusing this antigen to Atg8 (LC3) enhanced MHC

class II presentation to MP1-specific CD4+ T cell clones 5-

to 20-fold, whereas MHC class I presentation to MP1-

specific CD8+ T cell clones was not affected by attach-

ment to Atg8 (LC3) (Schmid et al., 2007). We have

observed increased MP1-Atg8 (MP1-LC3) presentation

on MHC class II in epithelial cells, EBV-transformed B lym-

phoblastoid cells, and dendritic cells. Targeting of the

fusion antigen for MHC class II presentation is dependent

on coupling of MP1-Atg8 (LC3) to the autophagosomal

membrane because a mutant protein lacking the glycine

residue (Gly120) used for the ubiquitin-like conjugation

reaction does not show enhanced MHC class II presenta-

tion. Furthermore, inhibition of macroautophagy by RNA

silencing of Atg12 inhibited MP1-Atg8 (LC3) transport to

vesicles that are MHC class II positive. Taken together,

these data suggest that several antigens can enter the

MIIC via macroautophagy and that this pathway leads to

efficient MHC class II presentation to CD4+ T cells.
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In addition to macroautophagy, chaperone-mediated

autophagy has also been implicated in delivering cytosolic

antigens for MHC class II presentation (Figure 3). The two

autoantigens glutamate decarboxylase 65 (GAD65) and

the mutant human immunoglobulin k chain SMA showed

enhanced processing onto MHC class II after overexpres-

sion of LAMP-2a, the transporter of chaperone-mediated

autophagy (Zhou et al., 2005). Because MHC class II pro-

cessing of these antigens also requires proteasomal and

calpain-mediated degradation (Lich et al., 2000), Zhou

and colleagues suggested that these autoantigens are

processed into peptides in the cytosol and then are

imported into MIICs by LAMP-2a. Thus, both macro-

autophagy and chaperone-mediated autophagy can de-

liver cytosolic and nuclear antigens into MIICs for efficient

MHC class II presentation to CD4+ T cells. Future studies

now need to address to which extent these pathways con-

tribute to CD4+ T cell responses in vivo.

Role of Autophagy in CD4+ T Cell Immunity
and Tolerance
CD4+ T cell stimulation after autophagy-mediated antigen

processing could be crucial both during steady-state tol-

erance induction and immune control of pathogens and

tumors. Self-antigen presentation on MHC class II of

both thymic epithelial cells and dendritic cells could lead

to central and peripheral tolerance maintenance in the

CD4+ T cell compartment. In agreement with this hypoth-

esis, thymic epithelia display great amounts of autopha-

gosomes in the GFP-LC3 transgenic macroautophagy re-

porter mouse in the steady state (Mizushima et al., 2004).

Interestingly, more autophagosomes could be found in

this tissue in newborns than in adult mice. These findings

correlate with T cell selection and central tolerance induc-

tion for CD4+ T cells being most active at a young age

(Starr et al., 2003). In addition, we find considerable au-

tophagy in immature dendritic cells (Schmid et al., 2007),

which have been implicated in peripheral tolerance induc-

tion (Steinman et al., 2003). Some of these tolerance

mechanisms might be compromised in patients with mu-

tations in Atg16 and Crohn disease (Hampe et al., 2007;

Rioux et al., 2007). This inflammatory bowel disease oc-

curs in individuals with genetic predisposition and is prob-

ably triggered by the enteric microflora. Therefore, de-

creased macroautophagy due to Atg16 mutations might

either impair innate resistance to invading bacteria in in-

testinal epithelial cells and thereby trigger inflammation

as a result of increased antigenic load or lead to insuffi-

cient tolerance induction against commensals in the gut

and trigger Crohn disease. On the basis of these findings,

it is tempting to speculate that macroautophagy might

contribute to self-antigen presentation during central

and peripheral tolerance maintenance for CD4+ T cells.

CD4+ T cells are crucial orchestrators of adaptive immu-

nity. Their activation is required for both B cell differentia-

tion and immunoglobulin maturation during humoral im-

munity, as well as efficient noninflammatory CD8+ T cell

priming and maintenance of CD8+ T cell function during

cell-mediated immunity (Bevan, 2004; McHeyzer-Williams
and McHeyzer-Williams, 2005). In addition, CD4+ T cells

can have direct effector functions against infected and

transformed cells (Heller et al., 2006). Therefore, auto-

phagic delivery of intracellular antigens for MHC class II

presentation could lead to efficient CD4+ T cell priming

by infected professional antigen-presenting cells, such

as dendritic cells. This mechanism could also contribute

to CD4+ T cell immune surveillance of inflamed tissues,

which upregulate MHC class II upon exposure to pro-

inflammatory cytokines (Reith and Mach, 2001), as we

observed for epithelial cells (Schmid et al., 2007).

Taken together, the discussed findings show that intra-

cellular antigen processing via autophagy broadens the

immunological functions and usefulness of MHC class II

presentation. This pathway expands the traditional view

that MHC class II presentation is restricted to professional

antigen-presenting cells with considerable endocytic ac-

tivity to the new paradigm that MHC class II molecules

also enable immune surveillance and tolerance induction

for intracellular antigens during immune activation and in

the steady state. Therefore, MHC class II might play

a much broader role, similar to MHC class I, at sites of

inflammation and MHC class II upregulation.

Autophagy Regulation as an Effector Mechanism
of the Adaptive and Innate Immune System
In addition to macroautophagy as an innate immune

mechanism in infected host cells, this pathway is also in-

duced as an effector mechanism of innate and adaptive

lymphocytes via interferons (IFNs) and members of the

tumor necrosis factor (TNF) family (Figure 3).

Both type I and II IFNs have been reported to modulate

macroautophagy. Restriction of HSV-1 infection by macro-

autophagy in vitro and in vivo was found to be dependent

on the type I IFN-inducible double-stranded-RNA-

dependent protein kinase R (PKR) (Orvedahl et al., 2007;

Tallóczy et al., 2002). In order to develop neurovirulence,

HSV-1 carries the ICP34.5 protein, which inhibits PKR-

dependent macroautophagy induction by binding to

Atg6 (Beclin-1) (Orvedahl et al., 2007). Type II IFN has

been reported to enhance Mycobacterium tuberculosis

and Ricksettia conorii degradation by macroautophagy

in infected cells (Gutierrez et al., 2004; Singh et al., 2006;

Walker et al., 1997). Mouse macrophages seem to be

most susceptible to IFN-g-induced upregulation of mac-

roautophagy, whereas in human tissues, this effect is

more difficult to demonstrate and probably proceeds

with slower kinetics (Pyo et al., 2005). Type II IFN seems

to induce macroautophagy and mycobacterial clearance

through immunity-related GTPases (IRGs), also known

as p47 GTPases, including the mouse LRG-47 and the

human IRGM proteins. Mouse tissues are probably more

susceptible to this macroautophagy regulation mecha-

nism because their IRGs are IFN-g inducible, whereas

the human IRG is not. In addition, IFN-g might also induce

macroautophagy via death-associated protein kinases

(DAPk). Overexpression of DAPk and its close family

member DAPk-related protein kinase (DRP)-1 has been

shown to increase macroautophagy in human epithelial
Immunity 27, July 2007 ª2007 Elsevier Inc. 17
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cell lines (Inbal et al., 2002). Irrespective of the exact

signaling pathways, these studies suggest that not only

infected cells can upregulate macroautophagy via IFN-

a and IFN-b but also potent type I IFN producers such

as pDCs, as well as IFN-g-secreting natural killer (NK)

and T cells, might induce clearance of intracellular patho-

gens and enhance MHC class II presentation in infected

tissues via this pathway.

Macroautophagy induction via TNF family members has

been primarily investigated in cell-death research. The

interplay between autophagy and apoptosis underlying

these studies has been recently reviewed (Kroemer and

Jaattela, 2005). First, TNF-a itself was found to upregulate

macroautophagy in cells lacking NF-kB activation (Djava-

heri-Mergny et al., 2006). Second, TNF-related apopto-

sis-inducing ligand (TRAIL) was described to induce

autophagy in human epithelial cells (Mills et al., 2004).

Consistent with this, inactivation of Fas-associated death

domain (FADD), the signaling adaptor protein of the TRAIL

receptor, decreases autophagy induction by TRAIL (Thor-

burn et al., 2005). As a third TNF family member, CD40L

has been demonstrated to induce macroautophagy-medi-

ated fusion of Toxoplasma gondii-containing phagosomes

with lysosomes via CD40 signaling on mouse and human

macrophages (Andrade et al., 2006). RNA silencing of

Atg6 (Beclin-1) inhibited CD40-mediated clearance of

T. gondii. Various cell types of the innate and adaptive im-

mune system could potentially use this macroautophagy

induction that is TNF family member mediated, including

TNF-a-secreting dendritic cells, TRAIL-expressing NK

and T cells, and CD40L-presenting CD4+ T cells. However,

future studies are required to investigate whether macro-

autophagy induction during immune responses contrib-

utes substantially to resistance against infections in vivo.

Regulation of T Cell Survival and Death
by Macroautophagy
Dendritic cells and NK and T cells might induce macro-

autophagy in infected cells to fight infections, but at the

same time the fate of these immunological effectors

seems to be determined by their own capacity to perform

macroautophagy. The extent to which this process con-

tributes to cell survival and cell death has so far primarily

been investigated in T cells. Although the relationship be-

tween autophagy and apoptosis is still not entirely clear,

a picture is emerging that autophagy often precedes apo-

ptosis, often as a last rescue attempt before cell death

(Kroemer and Jaattela, 2005). In some instances, how-

ever, macroautophagy is required for cell death or can

even execute it, especially when the apoptosis machinery

is compromised. These different modulations of cell death

by macroautophagy are also reflected in studies on T cells

(Figure 3). Atg5 deficiency leads to decreased T and B cell

numbers in mice, and both CD4+ and CD8+ T cells fail to

undergo efficient proliferation upon T cell receptor stimu-

lation (Pua et al., 2007). These findings were interpreted as

macroautophagy playing a role in T cell maintenance dur-

ing the steady state and after activation. Furthermore, Th2

polarized CD4+ T cells, which are thought to support
18 Immunity 27, July 2007 ª2007 Elsevier Inc.
humoral immune responses most efficiently, display

more GFP-Atg8 (GFP-LC3)-positive autophagosomes

than Th1 cells, which have been shown to support cell-

mediated immunity better (Li et al., 2006). In this study,

the Th2 cell line D10 was more resistant to cell death

upon growth-factor withdrawal when macroautophagy

was inhibited by RNA silencing of Atg7 or Atg6 (Beclin-

1), whereas steady-state survival and proliferation were

not affected by macroautophagy inhibition. These studies

suggest that Th2-polarized CD4+ T cells either die by mac-

roautophagy or need the autophagy machinery to execute

apoptotic cell death upon growth-factor deprivation. The

latter interpretation is more likely because HIV-1 envelope

protein induces CD4+ T cell apoptosis via macroauto-

phagy and is inhibited upon RNA silencing of Atg7 or Atg6

(Beclin-1) (Espert et al., 2006). According to these studies,

macroautophagy seems to be more important for CD8+

than CD4+ T cell survival, and Th2-polarized CD4+ T cells

are more sensitive to cell death via macroautophagy than

Th1-polarized cells. These data suggest that when manip-

ulating macroautophagy for enhanced pathogen clear-

ance, one should keep in mind that cellular components

of the immune system, such as Th2 cells, might be sensi-

tive to cell-death induction via macroautophagy. There-

fore, any benefit gained by innate clearance of pathogens

in infected cells via macroautophagy enhancement might

be lost by compromising another arm of immune control,

including Th2-supported humoral immunity.

Conclusions and Future Perspectives
Previous studies on autophagy in innate and adaptive im-

mune responses have revealed interesting roles for this

pathway in innate and adaptive immunity. However, these

now need to be investigated in vivo. With the demonstra-

tion that macroautophagy inhibition is required for neuro-

virulence of HSV-1 in mice (Orvedahl et al., 2007), a step

into this direction has been taken, but more such in vivo

studies need to be performed. In vivo characterizations

of the role of autophagy during tolerance induction and

in dendritic cells for the initiation of immune responses

are of special interest. With conditional knockout mice

for essential macroautophagy genes (Hara et al., 2006;

Komatsu et al., 2006), siRNAs for silencing Atg genes

(Jackson et al., 2005; Schmid et al., 2007), and viral inhib-

itors of macroautophagy (Orvedahl et al., 2007; Pattingre

et al., 2005), these studies become feasible in mice. A

second important area is the investigation of substrate

characteristics for pathogen and antigen import into auto-

phagosomes. Although ubiquitination has been proposed

as an import signal for macroautophagy (Bjorkoy et al.,

2005), no firm evidence for this hypothesis has been pre-

sented. Finally, starvation-independent regulation of au-

tophagy, especially during infections, is just beginning to

become unraveled. A better understanding of this pro-

cess, however, is required to evaluate it for therapeutic

potential, especially because macroautophagy can not

only support cell survival and pathogen clearance but

also cell death. For manipulations of this pathway in
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patients, one has to walk a fine line between evoking its

beneficial effects and avoiding tissue damage.
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