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Abstract: Glioblastoma (GBM) is a progressive and lethal brain cancer. Malignant control of actin
and microtubule cytoskeletal mechanics facilitates two major GBM therapeutic resistance strategies—
diffuse invasion and tumor microtube network formation. Actin and microtubule reorganization is
controlled by Rho-GTPases, which exert their effects through downstream effector protein activation,
including Rho-associated kinases (ROCK) 1 and 2 and mammalian diaphanous-related (mDia)
formins (mDia1, 2, and 3). Precise spatial and temporal balancing of the activity between these
effectors dictates cell shape, adhesion turnover, and motility. Using small molecules targeting
mDia, we demonstrated that global agonism (IMM02) was superior to antagonism (SMIFH2) as
anti-invasion strategies in GBM spheroids. Here, we use IDH-wild-type GBM patient-derived cell
models and a novel semi-adherent in vitro system to investigate the relationship between ROCK
and mDia in invasion and tumor microtube networks. IMM02-mediated mDia agonism disrupts
invasion in GBM patient-derived spheroid models, in part by inducing mDia expression loss and
tumor microtube network collapse. Pharmacological disruption of ROCK prevented invasive cell-
body movement away from GBM spheres, yet induced ultralong, phenotypically abnormal tumor
microtube formation. Simultaneously targeting mDia and ROCK did not enhance the anti-invasive/-
tumor microtube effects of IMM02. Our data reveal that targeting mDia is a viable GBM anti-
invasion/-tumor microtube networking strategy, while ROCK inhibition is contraindicated.

Keywords: glioblastoma; invasion; tumor microtube; actin; mDia formin; Rho-kinase; cytoskeleton

1. Introduction

Glioblastoma (GBM) is a rapidly progressive and universally lethal brain cancer that
represents nearly half of all primary malignant central nervous system (CNS) tumors [1].
The poor outcomes that characterize GBM are rooted in multiple interconnected mecha-
nisms of therapeutic resistance that make this disease particularly difficult to effectively
treat [2–10]. This multifactorial foundation of GBM therapy resistance suggests that a
clinically meaningful improvement in GBM outcomes will require a therapeutic strategy
that addresses each of these mechanisms. Consequently, therapeutic strategies that can
singly address multiple molecular programs underlying GBM therapy resistance represent
particularly high-value therapeutic targets.
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Malignant control of cytoskeletal mechanics facilitates at least two major strategies
of GBM therapeutic resistance—diffuse CNS invasion [11] and tumor microtube network
formation [5,12,13]. These two GBM hallmarks are symbiotic, yet distinct pathobiological
mechanisms of GBM therapeutic resistance [3–6,9,14]. In each case, dynamic remodeling of
the actin and microtubule cytoskeletal systems generates the mechanical forces that propel
cells into the extracellular matrix (ECM) [5,15]. Both mechanisms additionally require
cytoskeletal plasticity to polarize cells for directed movement [16], to transport extracellular
matrix (ECM) degrading enzymes to leading-edge structures [17,18], and to coordinate
leading and trailing edge cellular adhesion formation, maturation, and turnover [13].

Tumor microtubes are invasive neurite-like protrusions that extend from the cell bodies
of diffuse astrocytoma cells into the surrounding brain parenchyma [5]. Tumor microtube
networks facilitate resistance to all three components of GBM standard of care therapy. The
cellular cohort that survives radiation and chemotherapy treatment is overwhelmingly
comprised of tumor microtube-connected cells [5,6]. Tumor microtubes are composed of
organized arrays of microtubules and actin cytoskeleton filaments [5]. Thus, adaptable
control over cytoskeletal mechanics is essential to remodel, reinforce, and maintain the
long-term stability of tumor microtube networks [12,19].

Actin and microtubule reorganization is controlled, in part, by the Rho family of small
GTPases. In GBM, differential activation of Rho GTPases coordinates the cytoskeletal
remodeling required for invasive motility and dictates specific invasion programs [20].
Expression of the Rho GTPases Cdc42 and Rac1 is upregulated in gliomas relative to normal
brain tissue [21]. Cdc42 and Rac1 activation is associated with pseudopodial extension into
the brain parenchyma and guidance of other cells with lower Cdc42 and Rac1 activation
towards the invasive front [20]. In U87 GBM spheroid invasions, activated Cdc42 increased
migration and invasion, while Cdc42 depletion reduced invasion [22]. Rac1 inhibition
similarly suppresses GBM cell invasion [23].

In contrast, RhoA’s role in GBM invasion is less clear. RhoA expression decreases with
increasing grade of glial malignancy [24]. RhoA and Rac1 are known to be functionally
antagonistic, with Rac1 activation predominating in mesenchymal migration and RhoA me-
diating the contractility required for amoeboid motility. Amoeboid motility is uncommon in
GBM cells, especially in vivo. However, some RhoA activity is required for early adhesion
and trailing-edge contraction in mesenchymal motility, and RhoA regulates the expression
of transmembrane MMPs that remodel the ECM for mesenchymal invasion [25]. In vivo,
RhoA activation is predominantly associated with perivascular invasion in vivo [20].

Rho GTPases exert their effects through the activation of downstream effector pro-
teins [26]. Rho-associated kinases (ROCK1 and 2) and mammalian diaphanous-related
formins (mDia1, 2, and 3) are major effectors for the Rho subgroup of the Rho GTPase
family (RhoA-C, for instance) [27–29]. ROCK is a Rho family-specific serine-threonine
kinase with many described functions [30], but its most well-characterized function is the
coordination of actomyosin crosslinking and cellular contractility [31]. In contrast, mDia
is known to additionally act downstream of Rac and Cdc42 [32,33], and nucleates and
polymerizes linear actin filaments and stabilizes microtubule arrays [27,34], fundamental to
the formation of cellular protrusions. Precise spatial and temporal balancing of the activity
between these two effectors ultimately dictates cell shape, adhesion turnover, and motility
strategies in both normal and tumor cells [35].

The effects of ROCK inhibition (ROCKi) in GBM are disputed. In some cases, ROCKi
significantly decreased invasion and provided significant survival benefits in animal mod-
els of high-grade glioma [36,37]. Other times, ROCKi significantly increased invasion [38],
stabilized pro-invasive tumor microtube networks, and decreased sensitivity to standard of
care radiation and chemotherapy [39]. We previously demonstrated that both global activa-
tion and inhibition of mDia are effective anti-invasive and anti-tumor microtube strategies
in GBM, with activation representing the superior approach [12,40]. Here, we used multiple
patient-derived 3D models of IDH-wild-type GBMs and a novel semi-adherent in vitro
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model of tumor microtube networks to investigate the relationship between ROCK and
mDia in GBM invasion and tumor microtube network formation.

2. Materials and Methods
2.1. GBM Patient Cell Line Isolation and Culture, Reagents, and Drugs

De-identified surgical samples were used to establish the GBM patient-derived cell
lines termed Pat9, Pat27, Pat 31 parental (Pat31p), Pat31 recurrence (Pat31r), and Pat48r
(therapy-resistant recurrence). These were derived from 4 separate patients. The Pat9 cell
line was derived from a surgical resection from a 32-year-old Caucasian male and was
IDH1/2 wild-type. The Pat27 cell line was derived from a surgical resection from a 39-year-
old Caucasian male and was IDH1/2 wild type. Pat 31p is from a 58-year-old Caucasian
female and was IDH1/2 wild type; her recurrent tumor was resected 6 months later and
was called Pat31r. Pat48r is a recurrent tumor from a 66-year-old male (NIH racial category
not identified) who had previously undergone surgery, radiotherapy, temozolomide, and
Optune treatments prior to recurrence 3 years and 2 months later. All participating donors
gave written informed consent prior to surgical tissue collection. The study was conducted
in accordance with the declaration of Helsinki, and the protocol was approved by the
University of Toledo/ProMedica Hospitals Joint Institutional Review Board (IRB#201913).

De-identified surgical samples were collected from the University of Toledo Medical
Center or ProMedica Toledo Hospital. Resected tumors were transported in PBS on ice.
Single-cell isolation was performed as described previously [12]. Briefly, tumors were
washed with D-PBS and documented with an iPhone camera. Tumors were minced with
surgical scalpels. For cell isolation, a portion of minced tumors was placed in 0.05%
trypsin (Gibco-Thermo Fisher Scientific, Waltham, MA, USA) and rotated at 37 ◦C for
at least 45 min. Tumors were triturated and tissue returned to 37 ◦C with rotation and
neutralized with DMEM/10% FBS. Cells were treated with red blood cell lysis buffer
(0.15 M NH4Cl, 10 mM NaHCO3, and 0.1 mM EDTA) and centrifuged and resuspended in
neural basal media (Gibco-Thermo Fisher Scientific) supplemented with 1X B27 (Gibco-
Thermo Fisher Scientific), 20 ng/mL bFGF and EGF (Peprotech, Cranbury, NJ, USA),
1× sodium pyruvate, 1× GlutaMax, and 1× anti-anti (Gibco-Thermo Fisher Scientific).
Cells were strained through 70 µM strainers (Thermo Fisher Scientific, Waltham, MA, USA)
and plated into 6-well tissue culture plates (USA Scientific, Ocala, FL, USA). Media were
changed at 24 h.

Spheres spontaneously formed in isolated patient sample monolayer cells. Spheres
that had detached from monolayers were collected using wide-orifice pipette tips and
moved to poly-HEMA (Millipore-Sigma, St. Louis, MO, USA) coated U-bottom 96-well
plates. Spheres were used for assays upon reaching 200–250 µm in diameter. Upon
reaching 350 µm, spheres were dissociated and re-plated in poly-HEMA U-bottom plates
at 2000 cells/well.

To form what we termed “2.5D” semi-adherent patient-derived cell cultures, free-
floating spheres were dissociated into a single-cell suspension using either 0.25% trypsin
(Gibco) or Accumax Solution (Innovative Cell Technologies, San Diego, CA, USA) and
mechanical trituration. Neutralized single-cell suspensions were passaged into polystyrene
dishes pre-coated with 10 µg/mL type I collagen (Corning, Tewksbury, MA, USA) and
1 µg/mL fibronectin (BD Biosciences, Franklin Lakes, NJ, USA).

All cell lines were routinely screened for mycoplasma, as described [41]. IMM02 was
provided as a kind gift from the late Dr. Arthur Alberts (Van Andel Research Institute,
Grand Rapids, MI, USA) and Y-27362 was from Abcam (Cambridge, UK).

2.2. Invasion Assays, Immunofluorescence, and Microscopy

Patient-derived 3D spheroid invasion assays were as described [12]. In brief, thin lay-
ers of 5 mg/mL GFR matrigel (Corning) were pipetted in 8-well chamber glasses (Thermo
Fisher Scientific). Spheres were embedded when they reached 240–260 µm in size. Spheres
were added and topped with a thin layer of Matrigel. Matrigel polymerized for 45 min at
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37 ◦C before the addition of 250 µL of media with IMMs [15,17]. Invasions were imaged at
time zero (T0) and every 24 h for experimental durations. Invaded spheroids/spontaneous
spheres were imaged using an EVOS inverted microscope (Advanced Microscopy Group,
Bothell, WA, USA) with an Olympus 4x UplanFL N0.13 PhP objective lens. Invasive areas
were measured by forming a polygon by circularly connecting vertices of the furthest
invaded point in each direction and measuring the total internal area of the polygon. All
measurements were calibrated to and completed with MetaMorph software (Molecular
Devices, San Jose, CA, USA).

Tumor microtube lengths were measured in Metamorph using the polyline flexible
line measurement, from the cell body to the vertex of each individual tumor microtube.

Cell body movement measurements were performed in Metamorph by measuring the
distance from a straight line from the center of the neurosphere core to the center of the
invading cell body.

Immunofluorescence staining of fixed 3D-invaded spheres was performed as previ-
ously described [12]. The following antibodies were used: mDia2 and mDia1 (1:100)
or β-Tubulin (1:100) (Millipore-Sigma, Burlington, MA, USA), or Glu-Tubulin (1:100)
(Millipore-Sigma), nestin (1:100) (Thermo Fisher Scientific), and GAP-43 (1:300) (Protein-
tech) antibodies were incubated at 4 ◦C for 48–72 h. Invasions were washed with PBS-T
before adding AlexaFluor 2◦ antibodies (1:200–500), AlexaFluor Phalloidin (1:100), or DAPI
(1:50) (Thermo Fisher Scientific) for 24–48 h at 4 ◦C.

Immunofluorescent imaging was performed on a Leica TCS SP5 multiphoton laser
scanning confocal microscope. A Leica HCX PL APO 10x/0.40 CS dry or HCX PL APO
20x/0.70 CS dry UV objective lens (Leica Microsystems, Buffalo Grove, IL, USA) was
used to generate Z-stack images with optical sections taken in 2.5 µm steps. Presented
confocal images are projection maximum superimpositions of all optical sections for a
single neurosphere. Phase contrast and bright field images were generated using an
EVOS inverted microscope) equipped with an Olympus UPlanFL 4x/0.13 PhP or UPlanFL
10x/0.30 objective lens (Olympus, Center Valley, PA, USA).

2.3. Western Blotting and Reagents

Free-floating patient-derived 3D spheres were collected, pelleted, and resuspended
in lysis buffer (0.5 M Tris-HCL pH 6.8, glycerol, 10% (w/v) SDS, and bromophenol blue
supplemented with dithiotheritol (DTT)). Spheres were rotated in lysis buffer at 4 ◦C for
45 min. A modified Lowry method was used to quantify total lysate protein concentration
(Bio-Rad Laboratories). Samples were mixed with 2X Laemmli sample buffer (Bio-Rad)
and boiled for ten minutes prior to loading into gels. Electrophoresis was used to resolve
proteins in a 4–20% mini-protean TGX gel before transfer to PVDF membranes using the
BioRad Trans-Blot Turbo System. Membranes were blocked in 5% non-fat dry milk and
probed with primary antibodies against mDia1 (Proteintech), mDia2 (Proteintech), ROCK1
(Proteintech), ROCK2 (Proteintech), and GAPDH (Proteintech). Membranes were washed
with TBST, then incubated with peroxidase-conjugated secondary antibodies (Proteintech).
Blots were exposed using chemiluminescence via Clarity Western ECL (BioRad) and imaged
using a G:BOX2 imaging station (Syngene, Frederick, MD, USA). Densitometry analysis was
performed by normalizing the chemiluminescent signal to GAPDH controls using ImageJ
image analysis software. Whole-cell lysates from 2.5D patient-derived semi-adherent
cultures were collected directly in lysis buffer by scraping culture dishes. Lysates were
transferred to Eppendorf tubes, rotated at 4 ◦C for 45 min, and processed as above.

2.4. Statistical Analysis

Statistical analyses were performed using PRISM 9 software (GraphPad, San Diego,
CA, USA). Ordinary one-way ANOVA was used to assess normally distributed data with
Tukey’s range test used for post hoc analyses. A combination of the Kruskal–Wallis test and
Dunn’s multiple comparison test was used equivalently for non-parametric data. Error bars
reflect the standard error of the mean (SEM) across an indicated number of experimental
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replicates. All experiments were replicated to provide at least 80% power. For all statistical
analyses, p-values ≤ 0.05 were considered significant.

3. Results
3.1. mDia Agonism Induces Loss of mDia Protein Expression and Is Associated with the
Elimination of Tumor Microtube Networks

We previously observed that continuous pharmacological mDia2 activation with the
small-molecule intramimic agonist IMM02 triggers a mesenchymal-to-amoeboid transition
in invading patient-derived Pat9 GBM spheres that is associated with inhibition of new
tumor microtube formation, loss of existing tumor microtubes, and a block of invasion [12].
Using a panel of patient-derived GBM primary cell lines cultured as spheres (with cell
doubling times of several days), we first evaluated if mDia agonism with IMM02 equally
affected invading cells derived from different patients, as well as within the same patient
from matched primary and recurrent tumors (see Methods and Materials for cell line
descriptions, Figure S1). Our GBM patient-derived spheroids invaded to various extents,
but all showed sensitivity to IMM in invasion assays over 96 h, which was slowly recovered
after drug removal, indicating a cytostatic, as opposed to cytotoxic IMM response. To
investigate the mechanism by which sustained IMM02-mediated pharmacological mDia2
agonism functionally disrupts GBM tumor microtube dynamics, we examined protein
expression levels in patient-derived GBM spheres treated with IMM02. Morphologically,
free-floating patient-derived Pat9 GBM spheres treated with IMM02 for 96 h progressively
disbanded and sphere surfaces became ragged by 72 h of treatment, relative to the smooth
sphere surfaces of control DMSO-treated spheres (Figure 1A). Interestingly, this phenotypic
response is well associated with mDia inhibition in our previous breast and ovarian cancer
2D and 3D spheroid models, not mDia agonism, as seen here in GBM spheres [42–44]. We
performed Western blots of 3D sphere lysates to investigate the stability of mDia1 and
mDia2 protein expression through 96 h of IMM02 treatment, which surprisingly revealed a
progressive loss of both mDia1 and mDia2 protein expression in response to the extended
duration of IMM02 agonist treatment, relative to control-treated cells (Figure 1B and Figure
S2A), with some variations in kinetics between experiments, pointing to experimental
variability and/or compensatory expression mechanisms from other mDia formins, as seen
previously [32].

We then examined whether these observations could be extended to an experimental
system in which GBM patient-derived cells are reinforced through a highly connected
tumor microtube network. To do this, we similarly evaluated mDia1 and mDia2 protein
expression dynamics through 96 h of IMM02 treatment in semi-adherent “2.5D” GBM
patient-derived Pat27 cell cultures. In this experimental system, thin-layer type-I collagen
and fibronectin ECM protein coatings promote robust and long-lived tumor microtube
formation that interconnects large well-formed clusters of cells. We found that cell lysates
can be more easily and reproducibly prepared using the “2.5D” system, relative to 3D
systems, and the ultralong tumor microtube architecture is preserved. In control-treated
“2.5D” Pat27 cultures, we observed a robust interconnected network of ultra-long tumor
microtubes connecting well-formed clusters of GBM cells that grew in both the X, Y, and Z
directional planes. Over the 96 h sustained IMM02 treatment course, we again observed a
clear and progressive rounding of peripheral cells that was accompanied by dissolution
of the tumor microtube network and spheres themselves (Figure 1C). These phenotypic
changes similarly correlated with a progressive loss of mDia1 and mDia2 protein expression
relative to controls which proved even greater in magnitude than previously observed
in 3D (Figure 1D). Relative to DMSO treatment, mDia2 protein expression in Pat27 cells
demonstrated the most immediate and robust decrease in response to IMM02 treatment,
with 66.1% of expression remaining at the 24 h timepoint and only 2.6% detected after 96 h
(Figure 1D and Figure S2B). Thus, the loss of mDia1 and mDia2 protein expression observed
in response to sustained IMM02-induced global mDia agonism could be considered broadly
as an “event-driven” pharmacologic strategy [45] that could reasonably be used to alter
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the molecular and functional cellular phenotypes in our GBM patient-derived cell line
experimental system. For the bulk of the remaining experiments, we utilized Pat9 GBM
spheres as they reproducibly and quickly formed compact spheres of uniform sizes for
embedding into invasion assays.

Figure 1. Pharmacological mDia agonism dynamically affects its expression and is accompanied by
loss of GBM patient-derived sphere and tumor microtube integrity. (A) 10X phase-contrast images
of free-floating Pat9 3D spheroids at indicated timepoints (in hours) maintained in DMSO (top) or
50 µM IMM-02 (bottom). Scale bars = 400 µm. (B) Western blots of cell lysates from free-floating Pat9
3D spheroids treated with DMSO or 50 µM IMM-02 at indicated time points (in h). Molecular weight
markers (kDa) are listed on left. Blotting antibodies are listed on right of blot. (C) 4X phase-contrast
images of Pat27 2.5D cultures at indicated time points maintained in DMSO (top) or 50 µM IMM-02
(bottom). Scale bars = 1000 µm. (D) Western blots of cell lysates from 2.5D Pat27 cultures treated with
DMSO or 50 µM IMM-02 at indicated timepoints.

3.2. ROCK-Directed Contractility Machinery Regulates Patient-Derived GBM Pro-Invasive
Tumor Microtube Networks

The balance of both distribution and activities of ROCK and mDia proteins exert a
strong influence over tumor cell motility strategies and mesenchymal–amoeboid transi-
tions [35]. To interrogate how this relationship is affected in IMM02-mediated amoeboid
transitions, we first evaluated the independent role of ROCK-mediated actinomyosin con-
tractility in Pat9 GBM sphere invasion and tumor microtube polymerization. We treated
patient-derived Pat9 spheres embedded in a 3D matrix with either vehicle (water) or Y-
27632 dihydrochloride, an ATP-competitive inhibitor of ROCK I/II. With vehicle treatment,
embedded Pat9 GBM spheres readily invaded 3D matrices through 96 h. Confocal imaging
of spheres revealed ultra-long cellular projections consistent with tumor microtubes; this
was confirmed in untreated spheres by assessing the expression of markers for GBM cell
and tumor microtubes, including nestin, GAP-43, tubulin, and F-actin, consistent with GBM
tumor microtubes (Figure 2A,B and Figure S3). Upon ROCKi with Y-27632, Pat9 spheres
invading for 96 h formed tumor microtubes that were significantly longer than those mea-
sured in vehicle-treated invasion assays (Figure 2A–C), consistent with a previous report in
GBM [39]. Interestingly, while pro-invasive tumor microtubes were elongated in ROCKi
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cells, Pat9 cell movement as a unit independent of a cytoskeleton projection was static
(Figure 2A,B, leftmost panels). That is, relative to vehicle controls, Y-27632 significantly
reduced the movement of Pat9 cell bodies (measured from the center of the nucleus) in
the direction of invasion, as seen with a lack of cell bodies distally invading from sphere
cores. Control cell nuclei were measured having moved hundreds of microns away from
sphere cores over 96 h. Thus for ROCKi cells, this effectively diminished overall cellular
egress from sphere cores (as measured from the sphere center) relative to vehicle controls
(Figure 2A,B (left panels) and 2D). Taken together, elongated tumor microtubes and dimin-
ished cell body movement resulted in a total invasion area (encircling the invasive front)
that was comparable between vehicle-treated and ROCKi invasion assays (Figure 2E), yet
the mechanisms of motility in control and ROCKi GBM cells are distinct from one another.
As in Figure 1, we examined whether ROCKi via Y-27632 treatment impacted target protein
expression levels. Indeed, ROCKi did not suppress ROCK2 expression, yet there was
a measurable increase in ROCK1 expression—a possible compensatory mechanism for
ROCKi (Figure S4A,B). mDia1 and mDia2 expression were unaffected durably at 96 h of
Y-27632 treatment.

We examined if these observations could be reproduced in Pat9 spheres that were
allowed to invade for 48 h before Y-27632 treatment (invade-then-treat; ITT), yielding a
more clinically relevant experimental scenario. Relative to vehicle-treated controls (from
Figure 2B, see Figure legend note) and within this experimental cohort, ROCKi triggered
a significant increase in actin- and tubulin-enriched tumor microtube length in already
invading cells (Figure 2F,G). Upon ROCKi, there were associated decreases in the motility
of previously (first 48 h of the experimental timeline) invasive cell bodies relative to controls
(Figure 2H). While 48 h of uninterrupted invasion facilitated substantial cell egress from
sphere cores, we did not detect significant differences in the total invasion area between
ITT-treated and untreated conditions at the experimental endpoint (Figure 2I). ROCK
inhibition in GBM patient-derived spheres can therefore be considered to reliably constrain
cell body movement at the expense of facilitating tumor microtube elongation.

3.3. Targeting ROCK and mDia Has Opposing Effects on Patient-Derived GBM Cell Motility and
Tumor Microtube Extension

We showed that combined ROCKi and mDia2 inhibition is more effective at preventing
invasive egress in epithelial ovarian cancer spheroids than individual targeting of either
effector alone [44]. In our GBM system, mDia protein expression is lost in response
to IMM02-driven mDia global activation in patient-derived GBM spheroids (Figure 1).
We next investigated whether IMM02-directed mDia agonism, when combined with Y-
27632, enhanced the anti-invasive effects beyond those effects observed with either drug
alone (Figure 3A) [12,46]. Upon treating already invading (48 h) patient-derived Pat9
GBM spheres in 3D matrix with a combination of Y-27632 and IMM02, we observed
a significant reduction in tumor microtube length in invading cells, relative to vehicle-
and Y-27632-treated invasion assays (Figure 3B). Interestingly, tumor microtube length
in combination-treated invasion assays was not significantly reduced in comparison to
assays treated with IMM02 alone (Figure 3B). Combination treatment also diminished
cell body movement of leading-edge cells and total area of invasion in comparison to
vehicle-treated and Y-27632-treated invasion assays, but not in comparison to those treated
with IMM02 alone (Figure 3C,D). IMM02 treatment alone proved more effective than
combination treatment at inhibiting cell body invasive egress away from the sphere core
relative to vehicle (Figure 3C). Relative to vehicle-treated invasion assays, Y-27632 and
IMM02 combinations phenotypically disrupted the ability of Pat9 spheres to polymerize
tumor microtubes in a way similar to IMM02 treatment alone (Figure 3E–H). However,
the invasive edge of combination-treated spheres was notably more disorganized with a
greater degree of de-adhesion than the invasive edges of spheres treated with IMM02 alone
(Figure 3G,H). These findings suggest that in our GBM patient-derived spheroid invasion
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assays, combined treatment with IMM02 and Y-27632 is not superior to IMM02 treatment
alone.

Figure 2. ROCK-directed contractility machinery regulates patient-derived GBM pro-invasive tumor
microtube networks. (A) Confocal images of leading edge at T96 in fixed Y-27632-treated (90 µM) Pat9
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3D invasion assay stained for β-tubulin, phalloidin, and DAPI. Scale bars = 100 µm. (B) Confocal
images of leading edge at T96 in fixed H2O-treated Pat9 3D invasion assay stained for β-tubulin,
phalloidin, and DAPI. Scale bars = 100 µm. (C) Tumor microtubule length in H2O- or Y-276632-
treated (90 µM) Pat9 96 h 3D invasion assays. **** p ≤ 0.0001; *** p ≤ 0.001; ns = not significant.
(D) Distance of cell body movement from the sphere core in H2O- or Y-276632-treated (90 µM) Pat9
96 h 3D invasion assays. **** p ≤ 0.0001. (E) Increase in total area of invasion over T0 in H2O- or
Y-276632-treated (90 µM) Pat9 96 h 3D invasion assays. (F) Confocal images of leading edge at T96 in
fixed Pat9 3D invade-then-treat (ITT) assays treated with Y-276632 (90 µM). Stained for β-tubulin,
phalloidin, and DAPI. Scale bars = 100 µm. (G) Tumor microtubule length in H2O- or Y-276632-ITT
(90 µM) Pat9 96 h 3D invasion assays. Dotted line shows time of drug introduction. **** p ≤ 0.0001.
(H) Distance of cell body movement from the neurosphere core in H2O- or Y-276632-ITT (90 µM) Pat9
96 h 3D invasion assays. Dotted line shows time of drug introduction. **** p ≤ 0.0001. (I) Increase in
total area of invasion over T0 in H2O- or Y-276632-ITT (90 µM) Pat9 96 h 3D invasion assays. Dotted
line shows time of drug introduction. Note: (G–I) experimental procedure was performed in the
same experiment/time as (C–E), but results were split onto 2 graphs for clarity. The same controls
are accordingly graphed in (G–I) as in (C–E).

3.4. ROCKi Priming in GBM Cells Fails to Augment Cellular Sensitivity to mDia Agonism

The order and schedule of drug administration can significantly affect therapeutic
synergy [47]. To investigate if these factors impact the synergistic potential of combined
mDia/ROCK targeting in our experimental system, we next administered Y-27632 and
IMM02 in series rather than in parallel, as in Figure 3. Patient-derived Pat9 GBM spheres
were again embedded in a 3D matrix. Invaded cells were treated with Y-27632 or vehicle
for 48 h, then switched to IMM02 or vehicle treatment for an additional 48 h (Figure 4A
experimental schematic). At the 96 h experimental endpoint, we did not observe a sig-
nificant difference in tumor microtube length between invasion assays that were treated
with a combination of Y-27632-then-IMM02 and invasions that were treated with vehicle-
then-IMM02 alone (Figure 4B). In contrast to parallel administration of Y-27632 and IMM02
(Figure 3B), invasions pre-treated with Y-27632 displayed tumor microtubes that were
significantly longer than invasions pre-treated with vehicle at every other experimental
timepoint (Figure 4B). Invasion assays in the Y-27632-then-IMM02 experimental group
also demonstrated the greatest experimental reductions in both the distance of cell body
movement (Figure 4C) and the total invasion area (Figure 4D) after 96 h, relative to controls.
The switch to IMM02 treatment after ROCKi in invading cells halted further cell body
movement and eliminated further invasive motility irrespective of what invading cells
were treated with first (Y-27632 or vehicle).

Morphologically, leading-edge cells in the Y-27632-then-vehicle cohort exhibited TMs
that were distinct from control invasion assays after 96 h (Figure 4E,F). Control invasion
assays formed directed and linear tumor microtubes (Figure 4E), and this morphology
was consistent with observations from our experiments with Y-27632 alone (Figure 2B)
and Y-27632 + vehicle in parallel (Figure 3F). In contrast, tumor microtubes in the Y-27632-
then-vehicle invasion group exhibited directionality but were notably rippled along their
length (Figure 4F). This phenotype was seen upon complete washout of vehicle and drug
(Figure S5). Leading-edge cells from invading spheroids in the vehicle-then-IMM02 group
were predominantly morphologically amoeboid at experimental endpoints (Figure 4G).
By comparison, the invasive front of the Y-27632-then-IMM02 treatment group remained
predominantly mesenchymal upon IMM02 exposure and marked cytoskeletal interruptions
were evident in tumor microtubes after 96 h (Figure 4H). We observed fewer F-actin and
β-tubulin disruptions throughout the remaining tumor microtubes of vehicle-then-IMM02-
treated invasion assays; these interrupted tumor microtubes largely originated from the
few cells that retained a somewhat polarized shape under these conditions (Figure 4G).
Thus, tumor microtube morphological disruption associated with Y-27632 pretreatment
does not sensitize invasive cells to IMM02 and may instead promote tumor microtube
cytoskeletal maintenance.
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Figure 3. Combined targeting of ROCK and mDia halts GBM patient-derived sphere invasion, yet is
not superior to mDia formin agonism alone. (A) Schematic of drug exposures in combination drug
3D invasion assays (Y-27632 = 90 µM; IMM02 = 50 µM). Bars at left indicate 48 h invasion prior to
indicated drug treatment. (B) Tumor microtubule length in indicated Pat9 96 h 3D invasion assays.
**** p ≤ 0.0001; ns = not significant. (C) Distance of cell body movement from the neurosphere core in
indicated Pat9 96 h 3D invasion assays. ** p ≤ 0.01; *** p ≤ 0.001, **** p ≤ 0.0001. (D) Increase in total
area of invasion over T0 in indicated Pat9 96 h 3D invasion assays. *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05.
(E) Confocal images of leading edge at T96 in fixed Pat9 3D invasion assays treated with H2O + DMSO.
Stained for β-tubulin, phalloidin, and DAPI. Scale bars = 75 µm. (F) Confocal images of leading edge at
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T96 in fixed Pat9 3D invasion assays treated with Y-27632 + DMSO. Stained for β-tubulin, phalloidin,
and DAPI. Scale bars = 75 µm. (G) Confocal images of leading edge at T96 in fixed Pat9 3D invasion
assays treated with H2O + IMM02. Stained for β-tubulin, phalloidin, and DAPI. Scale bars = 25 µm.
(H) Confocal images of leading edge at T96 in fixed Pat9 3D invasion assays treated with H2O +
IMM-02. Stained for β-tubulin, phalloidin, and DAPI. Scale bars = 25 µm.

Figure 4. Altered the sequencing of combined ROCKi/mDia targeting does not modulate GBM
invasion. (A) Schematic of drug exposures in drug-switch 3D invasion assays (Y-27632 = 90 µM;
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IMM-02 = 50 µM). (B) Tumor microtubule length in indicated Pat9 96 h drug-switch 3D invasion
assays. Dotted line shows time of drug switch. **** p ≤ 0.0001; * p ≤ 0.05; ns = not significant.
(C) Distance of cell body movement from the neurosphere core in indicated Pat9 96 h drug-switch
3D invasion assays. Dotted line shows time of drug switch. **** p ≤ 0.0001; ** p ≤ 0.01. (D) Increase
in total area of invasion over T0 in indicated Pat9 96 h drug-switch 3D invasion assays. Dotted line
shows time of drug switch. **** p ≤ 0.0001; *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05. (E) Confocal images
of leading edge at T96 in fixed Pat9 drug-switch 3D invasion assays treated with H2O-then-DMSO.
Stained for β-tubulin, phalloidin, and DAPI. Scale bars = 100 µm. (F) Confocal images of leading
edge at T96 in fixed Pat9 drug-switch 3D invasion assays treated with Y-27632-then-DMSO. Stained
for β-tubulin, phalloidin, and DAPI. Scale bars = 100 µm. (G) Confocal images of leading edge at T96
in fixed Pat9 drug-switch 3D invasion assays treated with H2O-then-IMM02. Stained for β-tubulin,
phalloidin, and DAPI. Scale bars = 50 µm. (H) Confocal images of leading edge at T96 in fixed Pat9
switch-drug 3D invasion assays treated with Y27632-then-IMM02. Stained for β-tubulin, phalloidin,
and DAPI. Scale bars = 100 µm.

3.5. Sustained ROCKi Delays Cellular Responses to mDia agonists in Invading Patient-Derived
GBM Spheroids

IMM02-driven mDia agonism induced patient-derived GBM cell tumor microtube
collapse in both invasion assays pre-treated with Y-27632 and those pre-treated with vehicle.
However, the rate of tumor microtube collapse (mean reduction in length/day) was signifi-
cantly slower in invasions pre-treated with Y-27632 than in those pre-treated with vehicle
(Figure 4B). We, therefore, hypothesized that ROCK activity could be required for the
IMM02-mediated collapse of tumor microtubes. To address this question, we pre-treated
already invading 3D spheres with Y-27632 for 48 h, but instead of performing drug washout
and switching to IMM02 after pre-treatment, we added IMM02 while maintaining Y-27632
for an additional 48 h of combination treatment (Figure 5A). This allowed for sustained
ROCKi through the addition of IMM02. Such pre-treatment with Y-27632 followed by
combination treatment with Y-27632 and IMM02 delayed the IMM02-mediated reduction
in tumor microtube length to an even greater degree than pre-treatment with Y-27632
alone. Within 24 h of IMM02 addition to vehicle-treated invading cells, there was signifi-
cantly reduced tumor microtube length (−40.5%), while adding IMM02 to Y-27632-treated
invasions insignificantly reduced tumor microtube length by only 7% (Figure 5B). Still,
the difference in tumor microtube length remained insignificant between the vehicle and
Y-27632 pre-treated cohorts at the 96 h experimental endpoint. Interestingly, the effects
of sustained Y-27632 exposure did not similarly delay the IMM02-mediated reduction in
cell body movement (Figure 5C) or the prevention of further significant increases in total
invasion area (Figure 5D). Individual cells at the invasive front displayed morphology
that mirrored these quantifications—cells remained mesenchymal in shape at the 72 h
timepoint (24 h after the addition of IMM02) (Figure 5E) but were far more compact and
amoeboid after 96 h (48 h after the addition of IMM02) (Figure 5F). Collectively, these
findings support a role for ROCK in pro-invasive tumor microtube dynamics but highlight
a complex interplay between ROCK and mDia proteins in maintaining pro-invasive tumor
microtubes.
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Figure 5. Sustained ROCKi postpones cellular responses to mDia agonists in invading GBM spheroids.
(A) Schematic of drug exposures in add-drug 3D invasion assays (Y-27632 = 90 µM; IMM-02 = 50 µM).
(B) Tumor microtubule length in indicated Pat9 96 h add-drug invasion assays. Dotted line shows
time of drug addition. **** p ≤ 0.0001; *** p ≤ 0.001; * p ≤ 0.05; ns = not significant. (C) Distance of
cell body movement from the sphere core in indicated Pat9 96 h add-drug invasion assays. Dotted
line shows time of drug addition. **** p ≤ 0.0001; * p ≤ 0.05. (D) Increase in total invasion area over
T0 in indicated Pat9 96 h add-drug 3D invasion assays. Dotted line shows time of drug addition.
** p ≤ 0.01; * p ≤ 0.05. (E) Confocal images of leading edge at T72 in Pat9 add-drug 3D invasion
assays treated with Y-27632-then-(Y-27632 + IMM-02). Stained for β-tubulin, phalloidin, and DAPI.
Scale bars = 100 µm. (F) Confocal images of leading edge at T96 in fixed Pat9 add-drug 3D invasion
assays treated with Y-27632-then-(Y-27632 + IMM-02). Stained for β-tubulin, phalloidin, and DAPI.
Scale bars = 100 µm.
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4. Discussion

In this study, we provide evidence that diffuse CNS invasion and tumor microtube
network formation in GBM rely on balancing the antagonistic activities of mDia and ROCK.
We demonstrated that persistent pharmacological activation of mDia using IMM02—a
small molecule mDia agonist—indirectly disrupts the function of mDia in multiple patient-
derived models of IDH-wild-type GBM. Pharmacological disruption of ROCK activity
prevented invasive cell body movement away from the spheroid core but induced the
formation of ultra-long and phenotypically abnormal tumor microtubes in a 3D patient-
derived model of GBM invasion. When combined with IMM02 in a variety of dosing
schedules, ROCK inhibition did not enhance the previously described anti-invasive and
anti-tumor microtube effects of IMM02 treatment [12]. In contrast, ROCK inhibition delayed
and lessened the magnitude of the IMM02-mediated collapse of invasive tumor microtubes.

We used growth-factor reduced (GFR) Matrigel for our invasion assays for our GBM
patient-derived spheres. While Matrigel is not a perfect model matrix or brain ECM
because it is enriched in laminin and collagen, GFR Matrigel also has heparin sulfate
proteoglycans which are a component of intraparenchymal brain ECM. While imperfect,
other factors support the use of GFR Matrigel to study tumor microtubes. For instance,
others have found that laminin may be a component of the ventricular zone, subplate, and
marginal zone of the developing cerebral wall, and that laminin expression along routes
of migrating neurons implies that glial laminin may serve as a substratum for neuronal
attachment [48–50]. Additionally, the tumor microtube phenotype is more associated with
intraparenchymal invasion pattern, not perivascular invasion pattern in vivo, suggesting
that GFR Matrigel sufficiently models this niche [51].

GBM cells predominantly rely on a proteolysis-guided mesenchymal or collective
pattern of motility [13,52,53]. Wherein active mDia drives extension of leading-edge
protrusions (such as tumor microtubes) [54], active ROCK coordinates trailing edge de-
tachment and retraction [52]. In our experimental system, ROCK inhibition induced
changes consistent with these described roles. Previous studies in GBM show that target-
ing mDia activation [12,46] or preventing proteolytic ECM degradation [55] can induce a
mesenchymal-to-amoeboid transition in which invasive cells abandon directed mesenchy-
mal migration in favor of a ROCK-dominant contractility-based motility strategy [56]. This
phenomenon also occurs in other systemic cancers, where combined targeting of proteolysis
or mDia and ROCK blocked both the mesenchymal and amoeboid modes of motility and
proved superior to targeting either motility pathway alone [44,57]. Here, we again observed
a mesenchymal-to-amoeboid transition upon introduction of IMM02 [12] but found that
combination targeting of these two Rho effectors was inferior to targeting mDia alone.

The universal superiority of IMM02 in our experiments may be explained by our
observation that IMM02 indirectly disrupts the function of mDia. In multiple patient-
derived models of IDH-wild-type GBM, IMM02 consistently and progressively induced the
loss of mDia1 and mDia2 protein expression over a 96 h experimental time course. Though
we previously showed that IMM-mediated mDia pharmacological activation is superior to
direct SMIFH2-mediated mDia inhibition as an anti-invasion and anti-tumor microtube
strategy in multiple models of GBM, these findings may offer a rudimentary mechanistic
explanation for why both mDia targeting strategies noticeably inhibit GBM invasion and
tumor microtube formation [12,46]. There is a precedent for proteosomic elimination [58]
and small-molecule-mediated loss of mDia protein expression in other systems [59]. To
the best of our knowledge, this is the first reported incidence of a small-molecule agonist
inducing the endogenous destruction of multiple mDia formins. Thus, we propose that
IMM02 could be conceptualized as an activator of endogenous mDia inhibition in GBM, by
acting in an event-driven mode of pharmacological suppression of protein expression.

The observed effects of IMM02 treatment in GBM models are better understood by
examining the consequences of mDia loss. mDia function is essential to maintaining and
remodeling both the actin and microtubule cytoskeletal systems. These systems support dif-
fuse CNS invasions, tumor microtube formation, and long-term tumor microtube network
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stability. Consequently, GBM invasive motility is consistently and significantly affected
by mDia knockdown [54,60–63]. We and others also showed that GBM invasion and tu-
mor microtubes are highly sensitive to nocodazole and other novel microtubule targeting
agents [12,19], but it remains to be determined whether these processes are similarly af-
fected by isolated inhibition of actin dynamics. Profound mDia loss may also explain why
the IMM02-induced mesenchymal-to-amoeboid morphological transition is not associated
with a switch to amoeboid motility [12]. ROCK is traditionally considered to be a master
regulator of cellular contraction and amoeboid motility, but mDia-dependent actin polymer-
ization is required to retract the non-apoptotic blebs that drive amoeboid motion [42,64].
Loss of this function would prevent amoeboid motility and is consistent with the robust
non-apoptotic blebbing and subsequent bleb rupture that we observe upon high-powered
microscopic examination of IMM02-treated invasion assays (unpublished observation).
mDia formins are also required for the maturation and turnover of focal adhesions [54],
orientation of the microtubule-organizing center, mitotic chromosomal segregation [65],
and they essentially participate in the maintenance of the stem phenotype in both GBM [66]
and normal neural progenitor cells [67].

It is of note to point out that ROCK inhibition consequently leads to changes in
cellular tension that ultimately could impact cell–cell interactions or cellular engagement
with extracellular matrix (ECM) components. Likewise, mDia interrogation in other 3D
sphere systems impacted cell–cell adhesions [44]. In our recent work in ovarian cancer
monolayers, altering mDia formin function using genetic or pharmacodynamics approaches
altered sphere integrity via modifying cell–cell junctions and 2D-junctional integrity while
concurrently reducing vinculin and junctional protein localization to junctions, indicating
changes in junctional tension [68]. Interestingly RhoA-directed ROCK has been shown to
regulate the activity of gap-junctional protein Connexin-43 in neuronal cells and in brains
in vivo [69]. As Connexin-43 is an integral protein in tumor microtube dynamics in GBM
cells [5], it would be interesting to further understand in future studies whether altering
mDia or ROCK activities impacts tumor microtubes and/or cell-cell/ECM junction via
targeting connexin-43 expression.

Correspondingly, mDia formins embody many similar roles in normal neurodevelop-
mental processes where mDia loss is clinically associated with microcephaly [70,71] and
experimentally linked to defects in axonogenesis, neural progenitor migration, dendritogen-
esis, and synaptogenesis [67,72–74]. While mDia silencing is linked to increased metastasis
and invasion in some systemic cancers, these CNS-specific roles for mDia mitigate concerns
for a similar phenomenon in GBM. A reasonable and related question remains of whether
IMM02 may induce the collapse of stable adult axons. We did not observe increased cell
death upon IMM02 treatment in an ex vivo rat brain slice model of GBM invasion [46], nor
did we observe neurodevelopmental abnormalities in embryonic zebrafish treated with
IMM02 [40]. However, this possibility has not yet been ruled out and experiments are
currently underway to examine the effects of IMM02 on in vitro cultures of IPSC neurons.

5. Conclusions

Despite the clinical availability of FDA-approved ROCK inhibitors, these findings
support previous assertions that ROCK inhibition is not a viable therapeutic strategy in
GBM because it enriches the pro-invasive tumor microtube network and thereby likely
facilitates the development of chemo and radioresistance in these tumors [39]. In contrast,
IMM02—a small molecule mDia agonist—prevents the formation and maintenance of GBM
tumor microtubes and prevents both mesenchymal and amoeboid invasive motility.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11091559/s1, Figure S1: Multiple glioblastoma patient-derived
cell lines are sensitive to IMM02-mediated sphere invasion suppression; Figure S2: Densitometry of
Figure 1 blots; Figure S3: Immunofluorescence validation of tumor microtube markers; Figure S4:
Evaluating protein expression changes in Y-27632-treated cells; Figure S5: Y-27632 drug washout
impacts upon spheroid invasion.
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