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Abstract

Genetic diversity and genomic rearrangements are a driving force in bacterial evolution and niche adaptation. We
sequenced and annotated the genome of Lactobacillus johnsonii DPC6026, a strain isolated from the porcine intestinal tract.
Although the genome of DPC6026 is similar in size (1.97mbp) and GC content (34.8%) to the sequenced human isolate L.
johnsonii NCC 533, a large symmetrical inversion of approximately 750 kb differentiated the two strains. Comparative
analysis among 12 other strains of L. johnsonii including 8 porcine, 3 human and 1 poultry isolate indicated that the genome
architecture found in DPC6026 is more common within the species than that of NCC 533. Furthermore a number of unique
features were annotated in DPC6026, some of which are likely to have been acquired by horizontal gene transfer (HGT) and
contribute to protection against phage infection. A putative type III restriction-modification system was identified, as were
novel Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) elements. Interestingly, these particular elements
are not widely distributed among L. johnsonii strains. Taken together these data suggest intra-species genomic
rearrangements and significant genetic diversity within the L. johnsonii species and indicate towards a host-specific
divergence of L. johnsonii strains with respect to genome inversion and phage exposure.
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Introduction

The Gastro-intestinal (GI) tract is colonized by a vast and

diverse community of microbes. Lactobacilli represent an

important part of the natural gut microbiome of both humans

and animals and have been extensively studied for their health

promoting properties. Lactobacillus johnsonii is a member of the

closely related ‘‘acidophilus complex’’ of lactobacilli and an

autochthonous species of the gastro-intestinal tract. L. johnsonii

strains are of interest due to the number of probiotic characteristics

associated with this species, including immunomodulation,

[1,2,3,4] attachment to epithelial cells [5,6] and pathogen

exclusion [7,8,9].

For organisms commonly found in GI tract such Lactobacillus

acidophilus, Lactobacillus gasseri and L. johnsonii there are a number of

genome sequences available which have identified genetic traits

that most likely function in gastric survival and promote

interactions with the intestinal mucosa [9,10,11,12]. It has been

proposed that GI-associated strains have adapted to their niche

with a specialized set of metabolic and surface-related proteins

[13]. In the L. johnsonii NCC 533 genome for example, large cell

surface proteins were identified thought to be involved glycopro-

tein adhesion and persistence in the intestinal tract [12,14]. A

common trait documented also for this group of organisms is a

general lack of genes encoding biosynthetic pathways for amino

acids, purine nucleotides and cofactors which may be reflective of

their ‘‘symbiont’’ nature and an abundance of ABC transporters,

peptidases and phosphotransferases [10,11,12].

Genomic heterogeneity within a bacterial species can be driven

by the selective pressure of different environmental niches and

can result from recombination events and the presence of mobile

genetic elements (MGE), such as bacteriophage and IS elements.

Genetic diversity and horizontal gene transfer (HGT) among

closely related gut lactobacilli has been observed [11,12,15,16].

Within the ‘acidophilus complex’ previous polyphasic analysis

and comparative genomic analysis has indicated significant inter

and intra-species diversity among MGE and at the region around

the terminus of replication [15]. The possibility of genomic

rearrangements at this region within L. johnsonii strains has also

been previously suggested [17] (Contribution by Pridmore D;

[18]).

Here we present the whole genome sequence of the porcine L.

johnsonii isolate DPC6026 (previously named L. acidophilus

DPC6026; [19]) and explore the genetic content, the potential

genomic rearrangements and diversity within the L. johnsonii

species. This study also presents a number of MGE novel to the L.

johnsonii species and previously unidentified phage resistance

mechanisms.
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Materials and Methods

Bacterial strains, growth conditions
L. johnsonii DPC6026 was originally isolated from a porcine

small intestine [19]. This strain was previously identified as L.

acidophilus DPC6026 however more refined 16S sequencing

demonstrated that it belongs to the L. johnsonii species rather than

the closely related L. acidophilus. All isolates used in this study are

outlined in Table 1. Cultures isolated from faecal samples were as

previously described [20] and screened on Lactobacilli selective

agar (LBS). L. johnsonii strains were cultured anaerobically in MRS

(Difco) media at 37uC.

Speciation of isolates
DNA was extracted from 10 ml overnight cultures using the

procedure previously described [21]. The 16S rDNA were

amplified from gDNA from each strain using species specific

primers for L. johnsonii, L. gasseri and L. acidophilus as previously

described [22]. Chosen isolates were confirmed by amplification

using 16S Eubacterial primers [23] and the 16S region was

sequenced by conventional Sanger sequencing. The species was

determined by nucleotide alignments (.98%) with deposited

species in the NCBI database. Strains of the same species were

confirmed to be different isolates by Pulsed-Field-Gel-Electropho-

resis using the apaI enzyme (not shown).

Phylogenetic analysis
Reconstruction of evolutionary relationships were carried out

using the MEGA 4 package [24]. 16S rRNA sequence data was

obtained from GenBank (L. johnsonii AE017198, L. gasseri

CP000413, L. acidophilus CP000033, Lactobacillus sakei CR936503,

Lactobacillus reuteri CP000705, Lactobacillus fermentum AP008937,

Lactobacillus brevis HQ622718, Lactobacillus plantarum CP002222,

Lactobacillus salivarius CP000233 and Lactobacillus casei FM177140)

and was used to construct a consensus neighbour joining tree from

500 bootstrapping replicates.

Genome sequencing, assembly and comparative
genomic analysis

Massively parallel 454 pyrosequencing with paired end tags of

DPC6026 to a coverage of 23X was performed by 454 Beckmann

Coulter Genomics (www.beckmancoulter.com) on a FLX se-

quencer followed by initial assembly in to 83 contigs using the

Newbler program (roche-applied-science.com). Order and orien-

tation of assembled contigs and predicted scaffolds was determined

using the published genome sequences of L. johnsonii NCC533 [12]

and L. johnsonii FI9785 [9]. Primers were designed at gap edges

using primer3 [25] for PCR amplification of gap regions using

Platinum Hi-fidelity PCR Supermix (Invitrogen) or Kod DNA

Polymerase (Novagen). Reactions were performed in a Biometra

TGradient followed by directed sequencing of PCR products by

primer walking, and whole genome assembly was performed using

the PHRED-PHRAP-CONSED package [26,27]. Raw assembly

reads were visualised and verified using the programme Hawkeye

(Amos) [28]. Unmapped contigs were mapped using combinatorial

PCR followed by primer walking. Frameshifts and ribosomal

operons were annotated but not verified by conventional Sanger

sequencing.

Coding regions were predicted using Glimmer 2 [29] and

annotation was performed using GAMOLA [30]. Complementary

annotation data were provided by the SEED [31] and the RAST

annotation server [32]. Data was manually curated (Oct 2010)

using Artemis software V11 [33] where additional programmes

were used including, PROSITE (www.expasy.ch) RBS finder [29]

and GATU [34]. Comparative genomics was performed using the

Artemis comparison tool [35] and MAUVE software [36].

Circular maps were created using DNA plotter [37].

Detection of novel features of DPC6026
Primers specific to the regions of genomic rearrangements were

designed based on the genome sequences of DPC6026 and

NCC533 (Table S1). Primers specific to 4 regions of the integrated

prophage and the site of prophage integration were designed based

on DPC6026. The primers used to detect the CRISPR elements

and restriction modification systems were designed based on

DPC6026 with at least 2 different specific combination of primers

used (Table S1). PCRs were performed on all strains (Table 1) to

confirm genomic structure and elements using either Platinum Hi-

fidelity PCR Supermix (Invitrogen) or Biotaq (Bioline).

Phage Induction
The induction of the prophage Flj6026 was attempted by heat

where the culture containing the phage was subjected to a thermal

stress of 42uC for 1 hour or following the addition of mitomycin C

(2–6 mg/ml) (Sigma Chemical Co., St. Louis, MO). L. johnsonii was

grown overnight in MRS broth at 37uC anaerobically. Fresh broth

was inoculated with a 1% inoculum of the overnight strain and

grown to OD600nm 0.1–0.3. The culture was centrifuged and the

supernatant was filtered through a 0.45 mm filter. The filtered

supernatant was spotted on an overlay of a range of indicator

strains and prophage release was determined by observing zones of

lysis following incubation at 37uC for 24 h (Table 1).

Public data sources
The genome sequence of L. johnsonii DPC6026 is available from

GenBank/EMBL under the accession number CP002464.

Table 1. Strains used in this study.

Strain Species Source Reference

aDPC6026 L. johnsonii Porcine [19]

DPC6092 L. johnsonii Porcine [19]

DPC6214 L. johnsonii Porcine [19]

DPC6560 L. johnsonii Porcine This study

DPC6561 L. johnsonii Porcine This study

DPC6562 L. johnsonii Porcine This study

DPC6563 L. johnsonii Porcine This study

DPC6564 L. johnsonii Porcine This study

DPC6565 L. johnsonii Porcine This study

NCC533 L. johnsonii Human [12,60]

DSM10533 L. johnsonii Human/Type strain bDSM

ATCC120883 L. johnsonii Human/Type strain cATCC

LMG9433 L. acidophilus Type strain dLMG

ATCC4356 L. acidophilus Human/Type strain cATCC

DPC6489 L. gasseri Human [61]

LMG9203 L. gasseri Type strain dLMG

aDPC collection; Dairy Product Collection, Moorepark Food Research Centre,
Fermoy, Co. Cork.

bDSM; DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen.
cATCC; American Type Culture Collection.
dLMG; BCCM/LMG Bacteria collection.
doi:10.1371/journal.pone.0018740.t001

Genomic Diversity in Lactobacillus johnsonii
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Results

General features of the genome of L. johnsonii DPC6026
The DPC6026 genome consists of a singular circular

chromosome of 1.97 mbp with an average G+C content of

34.8% and does not harbour any plasmids (Figure 1). Overall, the

genome of DPC6026 was highly similar to the previously

sequenced members of the species L. johnsonii in size, G+C

content and gene synteny [9,12]. Total GC-skew analysis and the

ORF orientation drift identified the oriC proximal to dnaA and the

terC at ,1.05 mb (Figure 1). In silico analysis predicted 1795

protein coding genes.

Phylogenetic analysis based on the 16S rRNA gene sequences of

L. johnsonii and other Lactobacilli revealed, in accordance with

previous work [38], that L. johnsonii is closely related to other L.

acidophilus complex members (Figure 2). It is most related however

to the gut bacterium L. gasseri as they occupy the same branch on

the phylogenetic tree (Figure 2).

Genetic homogeneity of the core genome of L. johnsonii
sequenced isolates

Among the genes encoded in DPC6026, 150 genes (,9%) were

not found in the human isolate NCC 533 [12], 84 genes (5%) were

novel to the L. johnsonii species and just 18 (1%) genes were not

previously identified in the genus Lactobacillus. These results are in

accordance with previous work by Berger et al., (2007) which

indicated a conservation of genes between L. johnsonii isolates to be

between 83–92% with 5% strain specific genes [15]. Genes novel

to DPC6026 largely represented mobile DNA including genes

encoding proteins with homology to phage related proteins,

transposase and insertion elements.

The metabolic capabilities and biosynthetic pathways of

DPC6026 are in accordance with the reliance of L. johnsonii on

the surrounding environment for nutrients [12]. DPC6026 has a

high number of PTS systems and ABC transporters enabling

utilization of sugars available in the GI tract, similar to the closely

related genomes of the ‘acidophilus complex’ [10,11,12]. There

Figure 1. Genome Atlas of L. johnsonii DPC6026. The tracks from the outside represent 1. Forward CDS, 2. Reverse CDS, 3. Misc. features/MGE, 4.
tRNA, rRNA 5. % GC plot 6. GC skew.
doi:10.1371/journal.pone.0018740.g001

Genomic Diversity in Lactobacillus johnsonii
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were also 20 proteins with homology to peptidases annotated in

the DPC6026 genome, including eight aminopeptidases, six

dipeptidases and three endopeptidases. This is in agreement with

the dependency of the L. johnsonii on exogenous amino acids for

growth. The extracellular cell wall bound proteinase (LJ1840) that

was annotated in NCC533 however was not found in the porcine

strain. PCR analysis indicated that this was not present in any of

the porcine isolates tested (not shown). This was surprising as the

L. johnsonii DPC6026 strain was previously indicated to have

proteolytic ability [19] and it was reported that DPC6026

generates antimicrobial peptides from casein in milk-based

fermentations [19]. However, our phenotypic analysis supports

the genomic prediction that this strain alone cannot hydrolyse milk

efficiently and further analysis to the possibility of indigenous

microbiota from the fermentation substrates contributing to

proteolysis and the liberation the antimicrobial peptides is

ongoing.

The abundance of transport and regulatory proteins is also

reflected in the genomes of L. johnsonii NCC533 [12] and FI9785

[9], however, there were differences in the genetic content of these

proteins within each of the three genomes. These differences may

be due to a differing GI environment among the disparate host

species. Of note also is the differing complement of adhesion and

cell surface proteins present in DPC6026 and in NCC533.

Pridmore et al., (2004) identified cell surface components (LJ0382,

LJ0391, LJ1128, LJ1711, LJ1839) in the human isolate thought to

be unique to NCC 533 and predicted to be secreted and attached

to the cell surface. These proteins were all either absent or

appeared to be fragmented (LJP0353, LJP0366, LJP0707 and

LJP1463) in the porcine isolate. This could further indicate the

importance of these proteins in colonisation of a human host.

Genome Architecture and Synteny
Despite a relatively conserved gene synteny between the

sequenced L. johnsonii isolates, there is a large (,750 kb)

symmetrical inversion across the replication axis between the

human isolate NCC 533 and the porcine isolate DPC6026

(Figure 3). Whole genome alignments also indicate that the

porcine isolate DPC6026 and poultry strain FI9785 share the

same genomic arrangement (not shown).

Despite the large genomic inversion, the ori and ter regions do

not appear to be disrupted based on the location of the inversion

and on the GC-skew data. Indeed, while a slightly imbalanced

replichore is evident, there is not a significant change in the

replichore sizes of the two strains (Figure 1). The existence of the

inversion also did not lead to a significant difference in the growth

rate of the strains (not shown). The inversion between DPC6026

and NCC 533 was confirmed by site-specific PCR. Two primer

pair sets were designed that overlap the left and right junction sites

in DPC6026 and yield an amplicon in this strain but should not in

NCC 533 if this region had undergone an inversion. When the 2

primer sets are used in the combination (F/F) and (R/R), a PCR

product is generated in NCC 533 but not in DPC6026, thus

confirming the differing genomic structures and an inversion event

(Figure S1). The genomic structure of 8 further porcine isolates

and 2 human isolates of L. johnsonii was investigated using these

primer sets. Results indicate all the porcine isolates harboured the

same genomic structure as DPC6026. One human isolate, a type

strain ATCC12088, harboured the same genomic arrangement as

NCC 533 (Figure 4). The second human/type strain tested did not

give a PCR product for either structure.

At both the right and left junction sites in NCC 533 a 1,460 bp

sequence of inverted repeats was identified including an insertion

element ISLjo2 of the ISL3 family which may be responsible for

the inversion event in NCC 533 or in an ancestral strain (Figure

S1). It has been documented that recombination involving direct

repeats can lead to genomic inversions [39] and has been

suggested previously as a possibility for the NCC 533 strain

[18]. Differing genomic structures are also apparent on alignments

of L. johnsonii strains with the closely related L. gasseri (Figure 2) (4,

11) indicating rearrangements in this group of bacteria can occur

frequently and ‘X-shaped’ inversions across the replication

terminus between species of the acidophilus group have been

documented [15].

Based on the comparative genomic PCR assays it is likely that

the structure of DPC6026 is the more commonly found genomic

Figure 2. Phylogenetic tree based on the 16S rRNA gene sequences of Lactobacillus species.
doi:10.1371/journal.pone.0018740.g002

Genomic Diversity in Lactobacillus johnsonii
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structure of L. johnsonii. The repeat region and IS element present

in NCC 533 was not present at this location in DPC6026 but was

however at 4 other locations within the porcine genome. Given

that this is a common element in L. johnsonii genomes it may be an

indication of significant genome plasticity within the species.

Novel Mobile Genetic Elements of L. johnsonii
Acquisition of genes by HGT is considered a major driving force

in bacterial evolution and can impact on genomic structure and

stability. Laterally acquired DNA provides a readily available pool

of genes for developing physiological properties that are helpful in a

particular niche. A number of previously unidentified MGEs were

identified in the DPC6026 genome (Figure 5a, 5b and 5c).

(i) Integrated prophage. Prophages of L. johnsonii have been

previously characterised [40,41] and are indicated to have large

role in the diversification within the species [17,42]. Genomic

analyses revealed the presence of one complete prophage

sequence, Flj6026 (LJP0764-LJP0819), which is integrated next

to tRNA loci at ,900 kbp within the DPC6026 genome. Of note

this prophage is within the region that is inverted relative to the

human isolate, however is integrated in the opposite orientation

(Figure 3).

Flj6026 is 43,608 bp in length and encodes 56 proteins

comprising the typical phage regions of integration, replication,

packaging, structural and lysis domains (Figure 5a). Flj6026 phage

shares an integration site with the NCC533 phage Flj928 but most

nucleotide identity with the NCC533 phage Flj965 [40]. We

attempted to induce Flj6026 by mitomycin C and heat treatments

using the closely related L. johnsonii, L. acidophilus and L. gasseri

strains as indicator organisms. Release of the prophage was not

detected by the methods used. The apparent non-functionality of

Flj6026 is in accordance with previous work that has indicated

that the related prophages Flj965 and Flj928 are not inducible

[40]. Distribution of Flj6026 was investigated among L. johnsonii

strains and strains of the closely related species L. gasseri and L.

acidophilus (Figure 4). Of the isolates tested only the porcine L.

johnsonii isolate DPC6092, in addition to DPC6026, appeared to

harbour the full phage. Partial matches were obtained with the

human type strain DSM10533. Based on in silico analysis, the

poultry isolate, FI9785 was found to also have a similar but not

identical phage within the genome (Figure 4).

(ii) IS Elements. IS elements are recognisable by DNA

recombination machinery and can play a large role in

chromosomal rearrangements. The annotation of DPC6026

identified 51 gene features with similarity to either characterized

or predicted transposases or to putatively truncated or degenerate

transposase enzymes. The type of IS elements differed

considerably among the L. johnsonii sequenced isolates. In

DPC6026, insertion elements of the family IS1223 that had

been identified in NCC 533 and FI9785 were found in addition to

copies of IS605 of in L. acidophilus NCFM [10] and ISLhe1 of L.

helveticus DPC4571 [43].

(iii) Restriction Modification System. Restriction

Modification (RM) systems function to cleave foreign DNA and

are the most common systems used to degrade incoming phage

DNA. A novel restriction modification system was annotated on

the genome of DPC6026. It is located at ,1.57 mbp and consists

of a restriction (LJP1436) and a methylase (LJP1437) component

typical of the type III family of RM systems (Figure 5b). This type

III system has not been previously identified in L. johnsonii and,

although it does share amino acid identity with the restriction

component of L. gasseri (90%) [11] and the modification

component of Lactobacillus fermentum (55%) [44], the complete

system does not have a close homolog in any sequenced LAB. The

type III R/M system is located in a ,15 kb region (LJP1432-

LJP1446) that is absent from NCC 533 (Figure 5b). This region

also contains a protein (LJP1446) with identity (30% amino acid)

to abortive phage resistance proteins which suggest a combination

of different phage defence mechanisms present. Comparative

genomic analysis indicated that this element is not widely

Figure 3. Pairwise comparison of the chromosomes L. johnsonii DPC6026 and NCC 533 using ACT (a). The sequences have been aligned
from the predicted replication origins (oriC). The colored bars separating each genome (red and blue) represent similarity matches identified by
BlastN analysis, with a filter cutoff of 100. Red lines link matches in the same orientation; blue lines link matches in the reverse orientation.
doi:10.1371/journal.pone.0018740.g003

Genomic Diversity in Lactobacillus johnsonii
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distributed as it was not found in any of the other strains tested in

this study (Figure 4).

Analysis of the CRISPR locus in DPC6026
Clustered regularly interspaced short palindromic repeats

(CRISPR) represent a family of DNA repeats shown to provide

acquired immunity against foreign genetic elements [45,46]. A

novel CRISPR-cas system of 6.1 kb was identified in the genome

of the porcine isolate. This element is positioned at the centre of

the region that is inverted relative to NCC 533. A slight alteration

in GC content compared to the surrounding region suggests that

this element was transferred by horizontal gene transfer (Figure 5c).

CRISPR systems have been identified in nine Lactobacillus

genomes to date [47], including closely related members of the

acidophilus complex, L. acidophilus [10] and L. helveticus [43].

Despite this, the content of the CRISPR loci (LJP1108-1110) in L.

johnsonii was not identical when compared to elements in closely

related organisms. Differences within the repeat region and in the

CRISPR associated (Cas) proteins were also observed. The 36 bp

repeat 59ATCTAAACCTTATTGATCTAACAACCATCTAA-

AAC39 is present 28 times with 27 unique spacer sequences.

The three genes upstream of the repeats encode homologues for

Cas proteins which are invariably associated with CRISPR repeats

(Figure 5c). This system does share some similarities with CRISPR

loci in L. salivarius UCC118 [48] and Lactobacillus casei ATCC 334

[49]. Upstream of the first cas gene, remnant CRISPR repeats

were also identified. This phenomenon has previously been

reported in Streptococcus thermophilus [50] and Bifidobacterium animalis

[51] and Bifidobacterium adolescentis [47]. The distribution of the

element in other L. johnsonii strains was investigated and it was

indicated by PCR analysis that only the L. johnsonii porcine isolates

DPC6092 and DPC6214 contained a similar element indicating

these elements may not be widespread in L. johnsonii strains

(Figure 4).

Discussion

The GI tract is a complex environment that provides a variety

of ecological challenges. The significant differences presented in

this study highlight strain specificity among the species of the gut.

Importantly based on genomic structure analysis it is suggested

that the human strain of L. johnsonii diverged from both animal and

poultry isolates at some time, however, more representative strains

of each species would need to be sequenced to shed more light on

this.

The chromosomal inversion, a characteristic ‘X-shaped’

symmetrical rearrangement in this study occurs within strains of

the same species and based on previous analysis on closely related

species it would seem that inversions across the replication axis

occurs frequently in this group of Lactobacilli during evolution

[15,16]. Large genomic inversions are generally not common

among bacteria of the same species but have been described in a

number of pathogens such as E. coli [52], Salmonella sp. [53],

Yersinia pestis [54], Staphylococcus aureus [55] and also in the non-

pathogenic Lactococcus lactis [56]. It has been indicated that

inversions may not necessarily have a selective advantage or

disadvantage or dramatic phenotypic effect [56], however

rearrangements have also been shown to have an effect on

phenotype and cell fitness [57]. Although both strains NCC 533

(49) and DPC6026 (Figure 1) appear to have a slightly unbalanced

replichore, it does not appear to have had a detrimental effect on

the growth of the strains (not shown).

Despite the relative genetic homogeneity among the core

regions of the sequenced L. johnsonii and the gene content reflecting

a similar metabolic lifestyle in the GI tract, there are significant

differences among adhesion proteins, mobile genetic elements and

cell protection mechanisms. Notably, large differences between L.

johnsonii isolates are in the phage complement and in putative

phage resistance mechanisms. Phage integration within a repli-

chore may influence genome stability leading to chromosomal

inversions between highly conserved regions [58]. L. johnsonii

phages Flj965, Flj928 [40,41] and Flj771 [17] have been

characterised and have been shown to contribute to strain

diversity within the species [17]. Flj6026 presented in this study

is integrated within the region inverted to NCC 533 and although

it shares most homology with Flj965 they are not integrated at the

Figure 4. Comparative genomics of Lactobacillus strains. The
distribution of the genomic inversion, the CRISPR loci, the type III
restriction modification system and the integrated prophage among a
panel of L. johnsonii isolates of human (red), poultry (blue) and porcine
(green) origin, L. gasseri and L. acidophilus strains. A filled square
indicates presence of the element, a hatched square indicates a partial
element and an empty square indicates the element in absent.
doi:10.1371/journal.pone.0018740.g004

Genomic Diversity in Lactobacillus johnsonii
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Figure 5. Graphic representation of the phage Flj6026 (a), the restriction modification (RM) system (b) and the CRISPR loci (c) in the
genome of DPC6026. Genes within a mobile element that are annotated to have a similar function are coloured the same. The RM system of
DPC6026 (LJP1432-LJP1446) is absent from NCC 533 where hypothetical proteins LJ1697 and LJ1698 are shown by grey arrows. The CRISPR (csn)
gene is represented by dark orange arrow and CRISPR-asocciated genes (cas1, cas2) are represented by light orange arrows. Repeat/spacer region (36
DR; Direct Repeats) are represented by brown lines. The entire CRISPR associated region is represented by a filled grey rectangle corresponding to the
lowered GC content as predicted by Artemis (33).
doi:10.1371/journal.pone.0018740.g005

Genomic Diversity in Lactobacillus johnsonii
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same site in the chromosome suggesting the phage was taken up

separately by the strains and therefore it may have a particular

advantage to the cell. However the functionality of this phage was not

confirmed in this study. The existence of unique phage resistance

mechanisms indicate that the DPC6026 genome may preferentially

defend against foreign DNA integration using the CRISPR loci and/

or the type III restriction modification system. As the particular

elements were not found in many of the other strains tested, strain

specific mechanisms for phage defence appear to be present.

It has been documented that the flora of the gut is thought to be

largely modulated by the selective pressure imposed by the host

and the other microbiota present [59]. As a commensal of the GI

tract, L. johnsonii appears to be a versatile and changing bacterium

that can perhaps adapts to its niche by acquiring mobile genetic

elements and through chromosomal recombination events.

Supporting Information

Figure S1 Schematic diagram of the genetic elements at
the left and right junction sites in NCC533 with

reference to DPC6026. In both junction sites, a transposase

with an IS element (hatched box) and 140bp conserved sequence

(filled grey box).

(TIF)

Table S1 DPC6026 specific primers used in this study.

(DOC)
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