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Postoperative ileus (POI) and postoperative gastrointestinal tract dysfunction (POGD) are
well-known complications affecting patients undergoing intestinal surgery. GI symptoms
include nausea, vomiting, pain, abdominal distention, bloating, and constipation. These
iatrogenic disorders are associated with extended hospitalizations, increased morbidity,
and health care costs into the billions and current therapeutic strategies are limited. This is
a narrative review focused on recent concepts in the pathogenesis of POI and POGD,
pipeline drugs or approaches to treatment. Mechanisms, cellular targets and pathways
implicated in the pathogenesis include gut surgical manipulation and surgical trauma,
neuroinflammation, reactive enteric glia, macrophages, mast cells, monocytes, neutrophils
and ICC’s. The precise interactions between immune, inflammatory, neural and glial cells
are not well understood. Reactive enteric glial cells are an emerging therapeutic target
that is under intense investigation for enteric neuropathies, GI dysmotility and POI. Our
review emphasizes current therapeutic strategies, starting with the implementation of
colorectal enhanced recovery after surgery protocols to protect against POI and
POGD. However, despite colorectal enhanced recovery after surgery, it remains a
significant medical problem and burden on the healthcare system. Over 100 pipeline
drugs or treatments are listed in Clin.Trials.gov. These include 5HT4R agonists
(Prucalopride and TAK 954), vagus nerve stimulation of the ENS—macrophage
nAChR cholinergic pathway, acupuncture, herbal medications, peripheral acting
opioid antagonists (Alvimopen, Methlnaltexone, Naldemedine), anti-bloating/
flatulence drugs (Simethiocone), a ghreline prokinetic agonist (Ulimovelin), drinking
coffee, and nicotine chewing gum. A better understanding of the pathogenic
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mechanisms for short and long-term outcomes is necessary before we can develop
better prophylactic and treatment strategies.

Keywords: postoperative gastrointestinal tract dysfunction, postoperative ileus, colorectal enhanced recovery after
surgery, gastrointestinal surgery, enteric glia, prokinetic agents, mechanosensation, 5HT4 receptor

INTRODUCTION

Postoperative gastrointestinal dysfunction (POGD), commonly
referred to as postoperative ileus (POI), is a widely known
complication characterized by a transient impairment of
gastrointestinal (GI) function after abdominal surgery. This
clinical entity has been linked to a significant perioperative
morbidity (e.g., enteral nutrition delay and patient discomfort)
with subsequent financial burden due to extended hospitalization
(Behm and Stollman, 2003; Wolthuis et al., 2016; Hedrick et al.,
2018). In the United States, POI may increase hospital expenses
up to 15% with an approximate annual cost of $1.46 billion
(Goldstein et al., 2007).

Nausea, vomiting, abdominal tenderness and distention,
absence of normal bowel sounds and/or delay in the passage
of flatus and stool are some of the signs and symptoms associated
with POI (Vather et al., 2013). However, the identification of
other symptoms and risk factors may be significantly limited due
to the ambiguous and heterogeneous definition of POI, making it
even more difficult to estimate its overall incidence (Vather et al.,
2013; Wolthuis et al., 2016). In 2018, the American Society for
Enhanced Recovery After Surgery (ERAS) and Perioperative Joint
Consensus considered forgoing the traditional definition of POI
for a more functional definition and scoring system of POGD, to
precisely describe the clinical manifestations of the GI Disorder
(Hedrick et al., 2018). Therefore, a scoring system was proposed
based on Intake, Feeling nauseated, Emesis, physical Exam, and
Duration of symptoms (I-FEED), which defined three categories
of postoperative GI functional impairment (Hedrick et al., 2018):

• Normal (I-FEED score 0–2): patients tolerate diet without
bloating symptoms but may experience postoperative
nausea and vomiting (PONV) within the first 24–48
postoperative hours.

• Postoperative GI Intolerance (POGI) (I-FEED score 3–5):
these patients experience nausea, small-volume emesis, and
bloating with or without bowel movements (stools or flatus)
48 h after surgery. However, most of them tolerate oral
fluids and no nasogastric tube (NGT) is required.

• Postoperative GI Dysfunction (POGD) (I-FEED score >6):
is the most severe level of impaired GI function. Patients
develop painful abdominal distention with tympany, no
bowel movements, nausea resistant to antiemetics and
large-volume bilious emesis.

Currently, the mechanisms involved in the onset, duration and
severity of POI and POGD remain unclear. Nevertheless, its
association with spinal-intestinal sympathetic neural reflexes,
sympathetic hyperactivity, inflammatory mediators, opioids
use, electrolyte abnormalities and exacerbation by anesthetic

or surgical techniques (e.g., size of the surgical incision and
tissue manipulation), have all been extensively described as
potential pathogenic mechanisms (Lobo et al., 2002; Luckey
et al., 2003; Bauer and Boeckxstaens, 2004; Shah et al., 2011).

In addition, the occurrence and duration of POGDmay also be
determined by intestinal inflammation as measured in peritoneal
fluid or surgical tissues, being longer periods of POI reported after
open surgery when compared to laparoscopic minimally invasive
procedures (Gomez-Pinilla et al., 2014; Vather et al., 2015).

This is a narrative review about POI and POGD and is not
intended to provide a comprehensive description and
understanding of the science related to the iatrogenic disease.
The published scientific literature indexed in PubMed (Medline
database), Scopus, LILACS and MEDSCAPE were searched for
studies. The search focused on articles from 2015 to 2020, key
words indexed in those articles and similar ones, as well as
selected earlier publications. This review intends to focus on
recent concepts of pathogenic mechanisms of POI and POGD,
covering cellular targets and how current and pipeline treatments
modulate these cellular mechanisms. An emerging cellular target
of considerable interest is the “reactive enteric glial cell
phenotype” in the pathogenic mechanism. CERAS guidelines
for the management of POI and POGD, new therapeutic strategies
and approaches to treatment in the neurogastroenterology field
are discussed. Current Trials on POI and POGD listed in Clinical
Trials.gov are briefly summarized in our review, with emphasis
on cellular mechanisms.

PATHOGENIC CELLULAR MECHANISMS
AND PATHWAYS LEADING TO
POSTOPERATIVE ILEUS AND TREATMENT
STRATEGIES

This section will summarize pathogenic cellular mechanisms and
signaling pathways leading to POI and highlight where in the
inflammatory response following surgical intestinal handling
treatments are intervening. Surgical trauma and gut
manipulation trigger an inflammatory response in the
muscularis externa involving a variety of immune,
inflammatory cells (macrophages, dendritic cells, mast cells,
monocytes, neutrophils), reactive enteric glia, neurons, smooth
muscle cells, ICCs, enteroendocrince cells, epithelial cells, as well
as the microbiome in the lumen of the gut. The resulting
neuroinflammatory response leads to gastrointestinal
dysfunction and postoperative ileus, associated with
disturbances in motility, slower transit and constipation.
Activation of the extrinsic nerve pathway via vagus nerve
stimulation contributes to protective mechanisms. Figure 1
illustrates the cellular mechanisms implicated in the
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pathogenesis of POI and POGD—these are potential targets for
treatment interventions.

The available evidence suggests it is likely that complex
communication pathways exist between neurons, glia, immune
cells, as well as other cells in the thickness of the gut wall,
including ICC/fibroblast-like cells/smooth muscle cells that
may contribute to the pathogenesis of POI and POGD. The
precise interactions between different cells is not well understood.
Findings from key recent studies on the role of various cell types
will be summarized in this review. Muscularis macrophages are
key immune cells in intestinal homeostasis and disease (Wehner
and Engel, 2017; Stakenborg et al., 2019). Interactions between
tissue macrophages and the enteric nervous system (ENS) are
known to contribute to intestinal motility, serve as a protective
mechanism during injury and infections, but they can also
contribute to tissue damage in POI and other GI disorders.
Extrinsic innervation modulates muscularis macrophages.
Neuronal regulation of intestinal immune functions in health
and disease was reviewed elsewhere (Fornai et al., 2018).

Enteric glial cells are involved in functional crosstalk with all
other cells in the gut wall, including muscularis macrophages
(Grubišić et al., 2020), although the consequences of all these
communications remain largely unknown (Chow and
Gulbransen, 2017; Fettucciari et al., 2017; Langness et al.,
2017; Gulbransen and Christofi, 2018; Valès et al., 2018).

Vagus—Intestinal Cholinergic (nAChR)
Anti-Inflammatory Pathway, Vagus Nerve
Stimulation, 5-HT4R Agonists, Enteral
Nutrition
Goverse et al. (2016) recently reviewed the role of the intestinal
cholinergic anti-inflammatory pathway involving the vagus
nerve, the ENS and muscularis macrophages. Vagus nerve
stimulation (VNS) has been shown to prevent POI in pre-
clinical models by reducing activation of α7-nicotinic receptor
(α7nAChR) positive muscularis macrophages and dampening
surgery-induced gut inflammation (de Jonge et al., 2005;
Cailotto et al., 2012; Matteoli et al., 2014; Stakenborg et al.,
2017). In a pilot clinical study, VNS was associated with a
significant reduction in interleukin 6 (IL-6) and IL-8
production in patients undergoing GI surgery (Stakenborg
et al., 2017). The effect of VNS is likely mediated via enteric
neurons to influence macrophages, since vagus nerve endings
synapse with enteric neurons that are in close proximity to
muscularis macrophages.

Enteric neurons dampen muscularis macrophage activation,
and this effect is mimicked by prucalopride, the 5HT4 receptor
(5HT4R) agonist (Stakenborg et al., 2019). Furthermore, similar
to VNS, preoperative treatment with prucalopride protects
against POI by preventing intestinal inflammation and
shortening POI in both mice and humans. In humans, data
was obtained from a randomized placebo-controlled pilot

FIGURE 1 | Cellular mechanisms and Pathways involved in the
Pathogenesis of POI and POGD. Gut manipulation and surgical trauma
triggers an inflammatory response in the muscularis externa. A variety of
immune, inflammatory cells, enteric glia, neurons, smooth muscle cells,
ICCs, enteroendocrine cells and microbes in the lumen of the gut, all
contribute to the inflammatory response. Interactions in both directions exist
between these cells in the intestinal wall but the precise trigger mechanisms
activated for the cascade of events leading to POI are not known. In the
context of inflammation, immune cell activation in coordination with reactive
glia, promote monocyte and neutrophil infiltration, and all together produce a
neuroinflammatory response leading to smooth muscle dysfunction and
postoperative ileus. In contrast to chronic intestinal inflammation such as in
IBD, after the surgery, in the absence of intestinal surgical manipulation, the
ENS and intestinal motility eventually recover. The
vagus—ENS—macrophage cholinergic (nAChR) pathway is a protective anti-
inflammatory pathway, and vagus nerve stimulation can protect against
development of POI and POGD.

Frontiers in Pharmacology | www.frontiersin.org November 2020 | Volume 11 | Article 5834223

Mazzotta et al. Treatment Beyond CERAS for POGD

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


study of 42 patients. An earlier randomized clinical trial with
prucalopride was also shown to reduce the duration of POI after
elective gastrointestinal surgery, and it proved to be a safe and
effective treatment without affecting post-operative
complications (Gong et al., 2016). It could be concluded from
these studies that preoperative administration of 5-HT4 agonists
should be further evaluated as a prophylactic treatment of POI.

Another study with the 5HT4R agonist mosapride was shown
to attenuate both macrophage and neutrophil recruitment into
inflamed sites in experimental POI (Kimura et al., 2019).
Recruitment of macrophage and neutrophils are regulated by
different types of AChR, α7nAChR on muscularis macrophages
and M2AChR (possibly in the ENS).

5-Hydroxytryptamine (5-HT) is one of the most important
enteric modulators of the peristaltic reflex (McLean et al., 1997;
Linan-Rico et al., 2016). The 5-HT4R agonist tegaserod was
shown to be effective in treating constipation in a subset of
patients diagnosed with constipation-predominant irritable bowel
syndrome (C-IBS) (Prather et al., 2000; Evans et al., 2007). As a
result, 5-HT4R agonists have emerged as a novel therapeutic
alternative for patients experiencing GI motility disorders.

Recent evidence suggests that the 5HT4R agonist prucalopride
reduces local tissue inflammation (Bouras et al., 1999; Gong et al.,
2016; Stakenborg et al., 2019). Moreover, early studies in animals
and healthy humans have shown that a new selective 5-HT4R
agonist, TAK-954 (previously known as TD-8954) has a potent
prokinetic effect. In a phase II clinical trial (NCT03281577), TAK-
954 significantly improved gastric emptying when compared to
metoclopramide (Beattie et al., 2011; Chapman et al., 2018).
Currently, a phase II multi-center Clinical Trial with TAK-954
is underway on POI and POGD.

Abdominal surgery induces gastric ileus and activation of M1-
like macrophages in gastric myenteric plexus is likely involved in
the pathogenic mechanism since central vagal activation
dampens postoperative gastric ileus and reduces intestinal
inflammation (Yuan and Taché, 2017).

TRPM2 in Macrophages
TRPM2 is a cation channel that is highly expressed in
macrophages and other immune/inflammatory cells and
regulates detrimental immune cell invasion in disease states
(Haraguchi et al., 2012; Isami et al., 2013; Knowles et al., 2013;
Gelderblom et al., 2014). Matsumoto et al. (2018) showed that
activation of TRPM2 in resident muscularis macrophages induces
release of chemokines and cytokines and in turn promotes
infiltration of monocytes and neutrophils into the muscle to
cause dysmotility. TRPM2 deficiency blocks or ameliorates these
effects. Therefore, more studies are needed to explore the role of
TRPM2 as a potential target in treating dysmotility due to POI.

CXCL1 Release from Macrophages
The cytokine CXCL1 released from macrophages during intestinal
surgical trauma was shown to suppress intestinal contractility.
CXCL1 may provide another target for intervention to ameliorate
POI and deserves further investigation (Docsa et al., 2020).

CCR2-Dependent Monocyte-Derived
Macrophages
In contrast to resident macrophages, CCR2-dependent
monocyte-derived macrophages play a critical role in restoring
intestinal homeostasis (Serhan and Savill, 2005; Shechter et al.,
2009; Stoffels et al., 2009; Nahrendorf et al., 2010; Grainger et al.,
2013; Zigmond et al., 2014) and this is also the case after surgical
trauma in POI (Farro et al., 2017). GI transit recovery was delayed
after gut manipulation in mice with defective CCR2-dependent
monocyte migration to tissues (i.e., in Ccr2−/− mice). Consistent
with this, bonemarrow reconstitution and treatmentwithmacrophage
colony stimulating factor 1 enhanced monocyte recruitment and
differentiation of macrophages, and could restore GI transit in
Ccr2−/− mice by releasing anti-inflammatory cytokines. This
raises the possibility that enhancing macrophage physiological
repair functions is a potential treatment strategy for POI.

Monocyte-derived macrophages are the major source of IL-10
in POI. Leukocyte-derived interleukin-10 aggravates POI and in
IL-10 deficiency, neutrophil extravasation into the postsurgical
bowel wall is reduced and protects mice from developing POI
(Stein et al., 2018).

Mast Cells
Lipid rich enteral nutrition is a physiologic approach to activate
the cholinergic vagal anti-inflammatory pathway by stimulating
cholecystokinin receptors (Luyer et al., 2005). Early oral nutrition
improves POI through the TRPA1/CCK1-R mediated mast cell-
nerve axis. Activation of the TRPA1 pathway regulates CCK1-R
to stabilize mast cells, but TRPA1 is not the target of the
downstream CCK1-R pathway (Sun et al., 2020). In a
randomized control trial, early enteral nutrition in patients
undergoing major rectal surgery has been shown to reduce
POI by improving recovery of gut motility, a reduction in the
time to first defecation and length of hospital stay (Boelens et al.,
2014). The contribution of mast cells to POI has been reviewed in
experimental and clinical studies. Intestinal manipulation during
surgery and mast cell degranulation releases pro-inflammatory
mediators that can trigger formation of a localized infiltrate in the
gut wall. The inflammation plays a significant role in POI by
disrupting GI motility that also includes non-manipulated bowel
segments (Peters et al., 2015). An earlier study provided proof of
the concept that intestinal handling-induced mast cell activation
and inflammation in human POI. Mast cell activation (tryptase
release) and inflammation were determined in peritoneal lavage
fluid in patients undergoing conventional and minimal invasive
surgery. The study showed that intestinal handling triggers mast
cell activation and inflammation associated with prolonged POI,
that may in part explain faster recovery with minimal invasive
surgery, although other cells and mechanisms are likely to be
involved as well (The et al., 2008). The role of mast cells in
functional GI disorders was reviewed byWouters et al. (2016) and
treatment with mast cell stabilizers offers a potential treatment
strategy for IBS patients not responding to other therapies.
Similar approaches deserve consideration in POI.
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Interstitial Cells of Cajal
Disruption of the pacemaker activity of interstitial cells of Cajal
(ICC) via a nitric oxide (NO) pathway contributes to POI (Kaji
et al., 2018). Administration of aminoguanidine, an inducible NO
synthase inhibitor, suppressed the disruption of the ICC networks
in POI. Acupuncture protects ICC’s in part by regulating miR-
222 in a rat model of POI (Deng et al., 2019), although the
underlying mechanisms remain unclear.

The effects of acupuncture on POI were also assessed in
patients after colorectal resection and in colocolic
anastomosis mice. Acupuncture was shown to inhibit
macrophage activation, IL-6 release and miR-19a up regulation
(an inflammation-related miRNA), while promoting anol
restoration and KIT in ICCs. Acupuncture also reduced high
serum miR-19a level in patients with colorectal surgery. In this
study, acupuncture ameliorates POI via the IL-6-miR-19a-KIT
Axis to protect ICC’s (Deng et al., 2017).

Role of Endogenous Gases Nitric Oxide,
Carbon Monoxide, and Hydrogen Sulfide in
Postoperative Ileus
The endogenous gases NO, carbón monoxide (CO), and
hydrogen sulfide (H2S) play a role in POI. The possible
involvement of NO in the pathogenesis of POI was described
many years ago (Moojen et al., 1999). Carbon monoxide
treatment was shown to ameliorate POI in mice (Moore et al.,
2003; Nakao et al., 2006). More recent studies have shown that
H2S is involved in cellular signaling and cytoprotection of the
colonic mucosa and other organ systems (Calvert et al., 2010;
Matsunami et al., 2012; Kimura, 2013). For example, H2S
releasing nonsteroidal anti-inflammatory drugs (NSAIDs)
protect the mucosa from ulceration (Wallace, 2007; Ekundi-
Valentim et al., 2013; Magierowski et al., 2017). Release of H2S
contributes to the anti-inflammatory effects of H2S-NSAIDs, by
reducing leukocyte infiltration, COX-2 activity and IL-1β
expression. A recent study in mice showed that the
H2S-releasing naproxen derivative ATB-346 and the slow
releasing H2S donor GYY4137 were effective in reducing
intestinal inflammation and restoring transit in postoperative
ileus (Van Dingenen et al., 2019), suggesting that targeting the
H2S pathway in the gut is a potential target for developing a
prophylactic treatment for POI. A systematic review and meta-
analysis revealed that NSAIDs reduce the time to recovery of gut
function after elective colorectal surgery (Milne et al., 2018).
Clinical trials with H2S-releasing NSAIDs seem feasible and safe
since ATB-346 has already been tested in phase 1 and phase 2
studies in patients with osteoarthritis (Wallace et al., 2018). The
underlying mechanisms by which H2S releasing compounds exert
their beneficial effects in POI remain unknown.

Acupuncture, Electroacupuncture and
Nucleus of the Solitary Tract Neurons
In China, acupuncture has been traditionally used as an
alternative treatment of GI disorders (Takahashi, 2006). Even
though several studies have determined the effectiveness of
acupuncture in the prophylaxis against POI after colorectal

surgery, current clinical evidence remains inconclusive (Meng
et al., 2010; Deng et al., 2013; Ng et al., 2013; Zhang et al., 2014).
Additional randomized controlled studies are necessary to prove
or disprove its effectiveness.

Electroacupuncture (EA) is a modern way of delivering
acupuncture used widely in various GI diseases around the
world. EA administered at ST36 shortened the recovery time of
GI and colonic transit and increased gastric emptying. The beneficial
effect of EA on POI was thought to be mediated by exciting neurons
in the nucleus of the solitary tract (NTS) and activating the vagus
efferent nerve pathway to improve GI tract transit, but not by
activating the cholinergic anti-inflammatory pathway (Fang et al.,
2017).

Enterochromaffin Cells
Transient receptor potential ankyrin 1 (TRPA1) agonists improve
intestinal transit in a mouse model of POI (Tsuchiya et al., 2016).
TRPA1 receptors on enterochromaffin cells are a potential
cellular target for the action of TRPA1 agonists. Intraluminal
TRPA1 stimulation is suggested to be a potential therapeutic
strategy for POI and GI motility disorders.

Mesothelial Cells
Inflammation in intestinal mesothelial cells in the abdominal
cavity is an important pathogenic mechanism in clinical
conditions such as POI and peritonitis. The anti-inflammatory
pathway regulated via α7nAChR in rat intestinal mesothelial cells
may also involve enteric nerves (Mihara et al., 2017).

Microbiome
Small bowel mucosal antimicrobial defense is disturbed in a gut
manipulation mouse model of POI and it is accompanied by
bacterial overgrowth and translocation. IL1R activation is
involved in gene expression of mucosal antimicrobial peptides
that serves to protect the epithelium from an increasing microbial
challenge (Stein et al., 2018).

HuR/p38/MK2 Signaling Pathway
In experimental studies in a mouse model of intraperitoneal
transduction of HuR-RNAi lentivirus, suppression of HuR
gene expression in mouse POI was shown to cause a
significant reduction in inflammation (in infiltration of
inflammatory cells, expression of pro-inflammatory genes, and
reduction in serum cytokines) via the p38/MK2 signaling
pathway (Xiong et al., 2017). The study did not evaluate the
impact of Lentivirus-mediated HuR RNA interference on
restoring normal GI transit in the POI model. Data suggest
that HuR is a potential candidate drug target for the
mitigation of POI, and further studies are necessary to prove this.

FUTURE PERSPECTIVES: TARGETING
ENTERIC GLIA

Despite the implementation of CERAS protocols, POI and POGD
remain a significant medical problem and burden on the
healthcare system. A better understanding of the pathogenic
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mechanisms of POI and POGD in both experimental models and
in the clinical setting are desperately needed. A cellular target of
growing interest in the field of neurogastroenterology and
motility is the enteric glial cell and in particular in GI
disorders. The following section is focused on the role of glia
as a therapeutic target in POI and POGD.

Enteric neuropathies are a hallmark of GI Diseases and
Disorders. A growing body of evidence supports the concept
that enteric glia are involved in the pathogenesis (Ochoa-Cortes
et al., 2016; Gulbransen and Christofi, 2018) and “reactive glia”
contribute to neuroinflammation and abnormal motility. There is
great interest in enteric glia in the field of neurogastroenterology
and motility—they are implicated in GI diseases and disorders
including IBS, IBD, postoperative ileus, chronic morphine-
induced constipation, and idiopathic constipation (Ochoa-
Cortes et al., 2016; Gulbransen and Christofi, 2018). Glial Ca2+

waves are required for normal motility, and disruption of these
waves disrupts motility. Enteric glia and neurons contribute to
enteric neuropathies underlying these disorders (Ochoa-Cortes
et al., 2016; Chow and Gulbransen, 2017; Gulbransen and
Christofi, 2018).

Pathogenesis of Postoperative Ileus and
Postoperative Gastrointestinal Tract
Dysfunction-Reactive Glial Phenotype
A working hypothesis of the pathogenic mechanism of POI and
POGD is illustrated in Figure 2. Enteric glial cells modulate
neural circuit activity in the enteric nervous system (ENS) or gut
“little brain” and are required for normal motility. Disruption of
glial cell activity leads to abnormal motility. Enteric glia is activated
by mechanical forces encountered during peristalsis that are
generated by coordinated movements of the gut. Glial activation
is involved in ongoing fine-tune modulation of motility through the
ENS. Abnormal mechanical forces on the gut and its mesentery
are encountered during intestinal surgery, which are believed to
cause a “reactive glial” phenotype. Reactive glia contributes to
neuroinflammation and abnormal motility associated with POI.

Gut surgical manipulation and trauma, holding the bowel in
place with a self-retaining retractor throughout the case, exerting
pressure on the segment or squeezing and stretching the gut can
activate glia and convert them to a pathogenic state referred to as
“a reactive glial phenotype” leading to POI and POGD. Edema
and high-pressure pneumoperitoneum (high PNP) resulting

FIGURE 2 | Working hypothesis of proposed glial pathogenic mechanism of postoperative ileus—Enteric glia are very sensitive to mechanical stimulation and
mechanical forces generated during peristalsis. Touch, stretch, shear stress, pressure, compression, membrane perturbations and centrifugal forces all operate during
peristalsis. Mechanosensation is a normal function of enteric glia in the modulation of motility through interactions with the ENS. Abnormal mechanical forces encountered
during GI surgery such as gut manipulation, surgical insult, fluid edema or high pressure pneumoperitoneumencountered inminimal invasive laparoscopic surgery, may
activate enteric glia (and immune cells) in themuscularis externa contributing to the induction of a reactive enteric glial cell phenotype.Reactive glia in coordinationwith immune
cells release pro-inflammatory mediators that disrupt the ENS to cause GI dysmotility associated with POI and POGD. Signs and symptoms include nausea, vomiting, Pain
distention, bloating and constipation. Pain pathways also activate the sympathetic nervous systemwhich has inhibitory effects onGI motility. Additionally, opioids, commonly
used during the perioperative period to treat pain, activate peripheral µ opioid receptors in the ENS and further depress peristalsis.
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from inflating the peritoneal cavity during laparoscopic surgery
can also activate glia. There is more finger manipulation of the
bowels with open surgery, but laparoscopic and robotic
instruments use higher pressure over smaller areas than one’s
fingers. In laparoscopic operations, patient positioning and
gravity are used for mass movement, but abdominal contents
are exposed to increased serosa pressure from carbon dioxide
insufflation. In addition to such high PNP, edema from
intravenous fluids causes swelling and stretch of glia to
activate them (Cooke et al., 2003; Christofi et al., 2004;
Alcaino et al., 2017). Mechanogated channels are activated by
such abnormal mechanical stimulation of the bowels during
intestinal surgery—The types of channels involved are under
investigation, but so far, the type of channel(s) linked to glial
mechanosensation remain elusive. Candidate channels include
various transient receptor potential channels, Piezo 1, 2 channels,
connexin hemichannels, pannexin channels, P2X7 channels and
Aquaporin channels (Kirischuk, 2008; Alcaino et al., 2017;
Suchyna, 2017; Wang et al., 2017). A better understanding of
these channels in enteric glia is important in developing better
strategies to prevent POI and POGD.

High Vs. Low-Pressure Pneumoperitoneum
Despite lower incidence of POI with a minimal invasive approach
compared with open surgery (laparotomy) (Behm and Stollman,
2003; Bragg et al., 2015) and improvements seen with the
implementation of CERAS protocols, this technique requires
carbon dioxide (CO2) and higher abdominal pressure in order
to enhance laparoscopic visualization for surgery. These factors
also contribute to POI and POGD and it can adversely affect the
patient’s homeostasis, leading to cardiovascular and respiratory
systems changes, as well as a decrease in perfusion of abdominal
organs (Bragg et al., 2015; Schietroma et al., 2016). High-pressure
pneumoperitoneum (PNP), may cause systemic inflammation
and affect the immune response in the early postoperative period
(Schietroma et al., 2013; Schietroma et al., 2016; Vasdev et al.,
2018; Rohloff et al., 2019). In order to overcome such adverse
effects, low CO2 PNP pressure could potentially be used to reduce
the risk of POI and POGD by reducing postoperative
inflammatory response (circulating levels of inflammatory
mediators or intestinal inflammation) and immune suppression.

It is hypothesized that the use of low PNP would reduce
intestinal inflammation, protect against smooth muscle
dysfunction, POI and POGD. To date, no clinical trials have
tested whether low-pressure pneumoperitoneum is protective
against intestinal and systemic inflammation, POI and POGD.
Our ongoing research has shown that intestinal glial cells are very
sensitive to physiologic mechanical forces such as those occurring
during peristalsis or excessive forces such as occur during surgical
manipulation. During laparoscopic surgery, excessive external
mechanical forces generated by high-pressure pneumoperitoneum
may overcome the autoregulation capacity of the intestinal glia,
and the constant increased intra-abdominal pressure (IAP) which
result in bowel compression would induce a reactive glial
phenotype. Therefore, one could expect that the reactive glia
phenotype may be responsible for some of the common
postoperative complications in patients undergoing laparoscopic

abdominal surgery (Liñán-Rico et al., 2016; Gulbransen and
Christofi, 2018). In a recent retrospective study, lower
pneumoperitoneum pressures were associated with a reduced
incidence of POI and LOS in 400 patients undergoing robotic-
assisted radical prostatectomy (Rohloff et al., 2019). Similarly, a
decreased postoperative inflammatory response and attenuation of
postoperative immunosuppression/human leukocyte antigen-DR
receptor expression were reported in patients undergoing
laparoscopic Nissen fundoplication (LNF) with low
pneumoperitoneum pressures (Schietroma et al., 2013).

Reactive glia together with other cells in the gut muscularis
externa (i.e., immune cell infiltration, neutrophils, monocytes,
resident macrophages and smooth muscle cells) produce and

FIGURE 3 | Working hypothesis of Glial Molecular Mechanisms
Implicated in the Pathogenesis of POI. Under normal physiological conditions,
glial cells modulatemotility by interactingwith neural-motor components of the
gut. Glia communicate with each other and the ENS via Ca2+ waves and
release of gliotransmitters. Recent evidence has revealed a number of
potential glial targets implicated in the pathogenesis of POI and POGD. Gut
surgical trauma and manipulation induces a reactive enteric glial phenotype
that contributes to the overall neuroinflammation and GI dysmotility.
Experimental evidence in reactive glia suggests that a variety of glial molecular
signaling mechanisms may be operating in POI. These include 1) abnormal
mechanosensation, 2) purinergic pathways via ATP, 3) the IL1β/IL1R Signaling
Pathway, 4) the ET-1/ETBR signalling pathway, 5) the s100β-RAGE/iNOS/NO
signaling pathway, and 6) a PPARα signaling pathway targeted by PEA to
inhibit inflammation.
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release pro-inflammatory mediators and activate pathogenic
mechanisms to induce POI and POGD. Diverse pathways and
mechanisms in reactive glia such as mechanogated channels, IL-
1β signaling, growth factors, s100β signaling, ATP signaling, Cx43
hemichannels, PPAR alpha receptors, and chemical messengers
like nitric oxide (NO) can alter ENS function, induce enteric
neuropathy, and cause POI. These are potential novel glial targets
for future drug development that have been described in a recent
review in IBD (2016) (Ochoa-Cortes et al., 2016) and a
commentary in Gastroenterology by Gulbransen and Christofi
(2018). Therefore, they will only be given a brief mention here.
Potential pathogenic mechanisms targeted in preclinical studies
for POI are shown in Figure 3.

Edema
Edema alone can decrease intestinal contractile activity (Uray
et al., 2006; Chu et al., 2012). During abdominal surgery and
surgical trauma, edema results in increased stretch of intestinal
smooth muscle cells that was shown to down-regulate MLC
phosphorylation (Chu et al., 2013). Therefore edema in the
gut wall and increased intestinal wall stress (Cox et al., 2008)
can also cause smooth muscle dysfunction after intestinal surgical
trauma.

EXPERIMENTAL TARGETS FOR THERAPY
ON ENTERIC GLIA

IL-1β/IL1R Signaling in Glia
Interleukin-1β activation of interleukin-1 receptor (IL-1R) in
enteric glia is a potential pathogenic mechanism in
experimental postoperative ileus induced by gut surgical
manipulation and trauma. In pre-clinical studies, Sven
Wehner’s group identified IL-1β and IL-1R signaling in enteric
glia as a potential contributing mechanism to GI motility
disruption and POI. These findings were supported by the fact
that the IL-1β receptor antagonist “anakinra,” was effective in
reducing inflammation and POI. Antagonist drugs at IL-1R
such as anakinra are in clinical use for rheumatoid arthritis and
their therapeutic benefit could be tested in POI and POGD (Stoffels
et al., 2014). A recent study showed that the “absent in melanoma
2” (AIM2) inflammasome-derived IL-1β induces POI in mice. IL-
1β production depends on AIM2 inflammasome formation and the
microbiome. Targeting this pathway might also be a promising
target to prevent POI in surgical patients (Hupa et al., 2019).

s100β Protein in Glia
Glial s100β protein is a marker of enteric glia but is also involved
in inflammation caused by pathogenic bacteria such as infection
with Clostridium difficile and it involved in UC and celiac diseases
(Esposito et al., 2007). Bacterial products activate the glial toll-like
receptor—4 via the s100β-RAGE/iNOS/NO signaling pathway via
nuclear transcription factor nfkB. This pathway is involved in
ENS neural dysfunction. RAGE inhibitors or drugs that interfere
with different components of the pathway, such as a NOS
inhibitor L-NMMA that demonstrated efficacy in a clinical
trial could be tested in POI and POGD (Galasko et al., 2014).

PPARα Receptors
Targeting PPARα receptors with palmitoylethanolamide (PEA), a
receptor agonist, can inhibit pro-inflammatory responses in
reactive enteric glia in pre-clinical IBD models. Testing PEA
in a clinical trial for POI, a disease associated with acute
inflammation of the muscularis externa may be possible since
it is available as a nutritional supplement for the relief of intestinal
symptoms of IBD. One caveat is that PEA also activates other
receptors in the gut and a more selective PPARα agonist would be
preferred (Esposito et al., 2014).

Endothelin-B Receptor Signaling in Glia
Our recent work supports the novel hypothesis that glial
endothelin-1 (ET-1)/endothelin-B receptor (ETBR) signaling in
enteric glia disrupts motility and it contributes to the
pathogenesis of POI and POGD in the context of intestinal
inflammation (Christofi et al., 2018; Mazzotta et al., 2019).

Pathogenic mechanism(s) under investigation include glial
hypersensitivity to ET-1/ETBR signaling, induction of a
reactive glial phenotype, enteric gliosis, enteric neuropathy and
ENS dysfunction, and specific alterations in neural-motor
pathways. Ongoing studies in our laboratory supported by the
National Institute of Diabetes, Digestive and Kidney Diseases
(NIDDK) will investigate whether the glial ET-1/ETBR signaling
pathway is a potential novel therapeutic target in the prophylaxis
against deleterious effects in glia, neurons and motility in POI
and POGD.

Ongoing studies in our laboratory supported by NIH R01
DK113943 and R01 DK125809 are aimed to expand our current
understanding of the pathogenic mechanisms in reactive glia
linked to POI. Pathogenic targets of investigation include ATP
purinergic signaling [or related nucleotides such as UTP, UDP,
ADP] mediated through P2X or P2Y receptors on glia,
endothelin-1/ETB receptor signaling and IL1β/IL1R Signaling.

DOES POSTOPERATIVE
GASTROINTESTINAL TRACT
DYSFUNCTION IMPACT LONG-TERM
FUNCTIONAL RECOVERY AFTER
SURGERY AND QUALITY OF LIFE IN THE
PATIENT?

Little is known about quality and functional recovery after
surgery (Feldman et al., 2015). It is not clear if POGD has a
downstream effect on long-term recovery and quality of life. The
enteric nervous system, often called “the little brain,” has
similarities with the central nervous system “the big brain.” It
is possible to draw some parallels between neuroinflammatory
disorders that affect these two organs, specifically POGD and
POCD (postoperative cognitive dysfunction). For instance, we
know that POCD is an important complication after surgery,
especially in the elderly patient, with short term and long-term
complications that significantly impact their quality of life
(Steinmetz et al., 2009; Rundshagen, 2014). It is also possible
and quite probable that POGD may represent short- and long-
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term complications during the acute phase involving
inflammation, and long term after inflammation has resolved
and the patient leaves the hospital. A recent study in
neurogastroenterology and motility provided proof of concept,
by showing for the first time that POI significantly decreases the
quality of life at 3 and 6 months (QoL) (Peters et al., 2020).
Therefore, it would be prudent to incorporate quality of life
questionnaires in the CERAS protocols and extending the
timeline to a longer postoperative period to uncover potential
complications occurring after intestinal or systemic inflammation
has resolved to further investigate long-term outcomes and
mechanisms in POGD.

COLORECTAL ENCHANCED RECOVERY
AFTER SURGERY PROTOCOLS

ERAS guidelines are evidence-based protocols designed to
standardize medical care, accelerate patient recovery, attenuate
surgical stress response, improve patients’ outcomes and reduce
the length of stay (LOS) and associated costs (Kehlet and
Wilmore, 2008). ERAS involves a holistic, multimodal and
articulate approach involving perioperative care.

Most of the Colorectal ERAS (CERAS) protocols combine
15–20 variables and a multidisciplinary group is required to
coordinate each phase of the perioperative periods (Kehlet and
Wilmore, 2008). Even though the relative contribution of each
element to the utmost outcomes has not been determined,
reduced stress response and accelerated recovery have been
consistently reported in patients undergoing surgery within
ERAS protocols (Varadhan et al., 2010; Kehlet and Joshi, 2017;
Slim and Joris, 2017). In spite of the favorable perioperative
outcomes reported in the first CERAS protocol in 2005, these
guidelines were not widely implemented until recent years (Greco
et al., 2014; Miller et al., 2014; Bakker et al., 2015; Nelson et al.,
2016; Kehlet and Joshi, 2017; Pecorelli et al., 2017).

Laparoscopic Surgery
Minimally invasive techniques are the cornerstone of ERAS
protocols. Initial pre-clinical and clinical trials showed an
association between smaller incisions and minimal or gentle
gut manipulation with reduced surgical trauma, inflammation,
and GI dysfunction (Böhm et al., 1995; Kehlet, 1999; Novitsky
et al., 2004; Mamidanna et al., 2012). A faster resolution of GI
dysfunction and reduced length of hospital stay have been
reported in patients undergoing laparoscopic surgery when
compared to conventional open surgical approaches (Schwenk
et al., 1998; Schwenk et al., 2005; Van Bree et al., 2011; Mazzotta
et al., 2020). However, when the open surgical approach is
combined with ERAS protocols, POI incidence may be
comparable between open and laparoscopic groups (Lei et al.,
2015). Nevertheless, a recent report suggests that in the context of
ERAS, laparoscopic techniques are associated with better
immunologic response and shorter duration of POI (Wang
et al., 2018).

Early Feeding and Nasogastric Tube
Nasogastric (NG) tube insertion along with liberal parenteral
hydration were routinely indicated during the postoperative
period of GI surgery. Traditionally, the common practice
involved leaving the GI tract to rest after surgery expecting
faster healing. Therefore, the return of GI function was
mandatory before the resumption of enteric nutrition (Verma
and Nelson, 2007). However, little evidence supported these
methods. In contrast, a growing body of evidence suggested
that early feeding was associated with a significant reduction
in postoperative complications and length of hospital stay (Lewis
et al., 2001; Andersen et al., 2006; Lewis et al., 2009; Zhuang et al.,
2013).

Multimodal Analgesia
Postoperative pain management after abdominal surgery may be
challenging for health care providers. Moreover, early pain
control and GI functional recovery are both essential in
CERAS protocols. Despite being effective analgesics, reduced
GI motility is commonly reported in patients receiving opioids
for postoperative pain management (Viscusi et al., 2009).

Multimodal analgesia combines regional analgesia, non-
opioid analgesics [acetaminophen, nonsteroidal anti-
inflammatory drug (NSAID) or cyclooxygenase (COX)-2
specific inhibitor], lidocaine infusions, gabapentinoids and
ketamine. Numerous studies have shown the opioid-sparing
effect of this approach resulted in an accelerated GI recovery
and improved outcomes. However, an optimal combination of
these elements has not yet been elucidated (Geltzeiler et al., 2014;
Miller et al., 2014; Helander et al., 2017; Wick et al., 2017).

Regional Analgesia
Thoracic Epidural
Thoracic epidural accelerates peristalsis by blocking pain
afferents and efferent sympathetic inhibitory nerves. Epidural
blocks are commonly used in patients undergoing open and
complex abdominal surgeries (Gustafsson et al., 2012). In
2016, a Cochrane review of patients undergoing abdominal
surgery reported a relevant association between epidural
analgesia with an accelerated return of flatus and bowel
movements (Khan et al., 2013; Guay et al., 2016). However,
some reports suggested that this technique may also increase
LOS after laparoscopic abdominal procedures under ERAS
protocols (Nimmo and Harrington, 2014; Hübner et al., 2015;
Borzellino et al., 2016).

Transverse Abdominis Plane Block
Transverse abdominis plane block (TAP block) is an effective
alternative in patients undergoing abdominal surgeries. Torgeson
et al. (2018) studied the non-analgesic outcomes in 78 patients
undergoing open and laparoscopic colorectal surgery under
general anesthesia, receiving either a TAP or an epidural
block. A significant reduction in LOS (2.8 vs. 3.3 days, p �
0.026) was reported in the TAP block group with comparable
results in GI recovery variables. Of note, the incidence of
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postoperative nausea and vomiting was higher in the TAP block
group (31.7 vs. 13.5%; p � 0.057) (Torgeson et al., 2018).

Nonsteroidal Anti-Inflammatory Drugs and
Acetaminophen
Nonsteroidal anti-inflammatory drugs (NSAIDs) such as
ketorolac and ibuprofen, mainly block the cyclooxygenase
(COX) enzyme inhibiting the prostaglandin biosynthesis with
subsequent decreased pain receptor activation. Similarly, an
opioid-sparing effect and decreased opioid-related side effects
have been reported after NSAIDs use (Elia et al., 2005; Straube
et al., 2005).

Pre-clinical data suggests that eicosanoids play a key role in the
development of POI, with NSAIDs being potentially able to
accelerate GI recovery (Cheng et al., 1996; Kalff et al., 1998).
However, NSAIDs’ analgesic ceiling and clinically relevant side
effects (i.e., platelets dysfunction, GI bleeding, and renal
dysfunction) may limit their use in patients with GI tract
pathologies (Strom et al., 1996). Moreover, selective COX-2
inhibitors have a potent analgesic and anti-inflammatory effect
but, its use in this patient setting has been associated with higher
rates of anastomotic leak (Klein et al., 2011; Rushfeldt et al., 2011).
In contrast, acetaminophen may be an acceptable alternative
therapy for pain management (Apfel et al., 2013). Oral,
intravenous and rectal formulations are available.

Adjuvant Analgesic Medications
Lidocaine infusion is commonly known for its anti-inflammatory
properties and opioid-sparing effect (Knotkova and Pappagallo,
2007; Dunn and Durieux, 2017). In addition to reduced
postoperative pain scores, lidocaine infusion may improve GI
recovery and shorten LOS after open abdominal surgeries (Sun
et al., 2012). Other adjuvant agents such as gabapentin and
ketamine, are widely known by their anti-hyperalgesic effect
and a subsequent reduction in opioid consumption that
potentially decreases the incidence and duration of POGD
(Bell et al., 2006; Hurley et al., 2006; Mishriky et al., 2015).

Peripherally Acting μ-Opioid Receptor
Antagonist (PAM-OR)
Autonomic GI dysfunction is a well-known side effect of
µ-receptor agonists. Opioids’ effects on central and intestinal
µ-receptors may result in impaired GI motility. Some
pharmacologic agents decrease the incidence and duration of
POI by selectively blocking the intestinal (i.e., peripheral)
µ-receptor (Sobczak et al., 2014). Alvimopan, an oral PAM-
OR, has been approved by the Food and Drug Administration
(FDA) for more than a decade to prevent opioid-induced
constipation and POI. There is an important body of
evidence indicating that Alvimopan enhances GI recovery in
patients who received high doses of opioids after open
abdominal surgery (Delaney et al., 2007; Vaughan-Shaw
et al., 2012). However, in light of ERAS protocols involving
reduced opioids requirement, the usefulness of Alvimopan in

minimally-invasive colorectal surgery has been recently
questioned (Keller et al., 2016).

Bowel Preparation
Mechanical bowel preparation with oral antibiotics (MBP-OAB)
is commonly indicated to prevent surgical site infection (SSI),
anastomotic leak and ileus after elective colorectal surgery (Kiran
et al., 2015; Morris et al., 2015; Holubar et al., 2017). However, a
recent randomized clinical trial by Koskenvuo et al. (2019)
reported that MBP-AOB does not reduce SSI or the overall
morbidity (including POI) when compared to no bowel
preparation (NBP) in patients undergoing elective colonic
surgery.

Perioperative Fluid Management
The gut is highly susceptible to interstitial edema. Excessive
perioperative fluid administration may lead to edema
contributing to POI and delay in GI recovery, delay in the
gut’s anastomotic healing and delay in hospital discharge (Gan
et al., 2002; Holte et al., 2002; Lobo et al., 2002; Moore-Olufemi
et al., 2005; Nisanevich et al., 2005; Uray et al., 2006; Schnüriger
et al., 2011). However, in the context of CERAS programs with
more conservative fluid therapies, the effects of edema may be
importantly attenuated (Srinivasa et al., 2013; Gómez-Izquierdo
et al., 2015; Gómez-Izquierdo et al., 2017).

Supportive Treatment and Symptom
Control
Supportive treatment and symptom control are paramount
during POGD management. The first step is to rule out any
acute intra-abdominal condition or other surgical complications.
Serial radiographic imaging and computed tomography (CT)
scan should be considered (Sandrasegaran and Maglinte,
2005). Supportive care may include the removal of any
potential triggers such as opioids and fluid overload.
Moreover, bowel rest with NG tube insertion may be
considered for gastric decompression and pulmonary
aspiration risk (Adiamah and Lobo, 2020).

CURRENT THERAPIES LISTED IN
CLINICAL TRIALS.GOV

A search of Clinical Trials.gov identified 125 ongoing clinical
trials, with many in advanced clinical trials (Phase III or Phase IV
trials), including new or old drugs, herbal medications,
acupuncture and Vagus Nerve Stimulation (VNS).
Methylnaltrexone and Naldemedine are peripheral acting
μ-opioid antagonists to prevent opioid induced slow transit
constipation. Simethiocone is in a Phase IV clinical trial for
POI that acts as an anti-bloating and anti-flatulence
medication by reducing the surface tension of the gas.
Ulimovelin is a ghrelin agonist being tested as a prokinetic
agent in a new Phase III clinical trial. Ulimorelin was shown
to be ineffective in preventing POI in an earlier large RCT (Shaw
et al., 2013). Historically, prokinetic agents have been commonly
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used to treat POI. However, a large body of evidence has shown
little or no benefits after administrating neostigmine,
erythromycin, or metoclopramide in patients with impaired GI
function (Myrhöj et al., 1988; Tollesson et al., 1991; Smith et al.,
2000). Lidocaine infusion is in a Phase II clinical trial for
prophylaxis of POGD for radical systectomy. Beet root juice
and TU-100 are examples of herbal medications in Phase II trials
for POI and POGD. Drinking coffee and nicotine chewing gum
are other approaches under investigation. Chewing gum was
traditionally known to expedite GI recovery after abdominal
surgery (Li et al., 2013). However, most of the studies
supporting this effect were published before the
implementation of early postoperative feeding as part of the
ERAS protocols (Ho et al., 2014). The effects of chewing gum
are described in a systematic review (Short et al., 2015).

Caffeine is widely known as a stimulant to colonic motor activity
in animals and humans (Rao et al., 1998). Clinical trials have shown
that caffeinated drinks decrease the time to flatus and first bowel
movement and if given as soon as 2 h after surgery, it may
accelerate GI recovery and reduce LOS (Müller et al., 2012;
Dulskas et al., 2015; Göymen et al., 2017; Kane et al., 2020).

CONCLUSION

Our review focused on recent advances and understanding in
pathogenic mechanisms, treatment strategies, pipeline drugs and
ongoing clinical trials and approved medications for those targets
for POI and POGD. Further clinical studies on 5HT4R agonists
and vagal nerve stimulation are required to establish their
usefulness as novel therapies, and more work needs to be
done of short and long term impact of gut surgical
manipulation on patient outcomes. A key target of
investigation should be to pinpoint the triggering
mechanism(s) in various cells in the intestinal wall, and better
understand the dynamic interactions between various cells
implicated in the disease. Enteric glial cells (EGCs) are
abundant in the gut and they may play a role in the
pathophysiology of POI and POGD. Our review provides
some examples of how targeting different cells in the gut wall,
can potentially identify novel therapeutic targets for POI and
POGD. Despite the implementation of enhanced recovery
protocols for GI surgeries, there is still significant POI and
POGD associated with prolonged hospitalizations, and
increased morbidity and healthcare costs. We cannot deny
that significant progress has been made with ERAS protocols
and other advances in the field to reduce the incidence and overall
morbidity associated with this iatrogenic disorder. Novel
therapies in the pipeline offer some hope for better treatments,

but a better understanding of the pathogenic mechanism(s) of
POI is required to develop better therapeutic strategies (Collins
et al., 2016). As food for thought, the NIH recently published its
strategic plan. In that document, NIH reaffirmed its strong
commitment for basic scientific discovery noting that many of
the most important medical advances trace back to basic research,
which had no explicit link [NIH, NIH-Wide Strategic Plan (www.
nih.gov/about-nih/nih-wide-strategic-plan)]. Further research
into basic mechanisms of immune/inflammatory cells
(muscularis macrophages, dendritic cells, leukocytes,
monocytes, mast cells), “reactive enteric glia”, ICC’s, intrinsic
and extrinsic neural pathways, and the microbiome in the gut
lumen is an essential step in developing novel treatment
strategies, but a big hurdle is translatability of findings in
animal models to humans. This will allow us to improve our
CERAS protocols in the prophylaxis against POI and POGD.
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