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A B S T R A C T

Under the green chemistry perspective, bis[(L)prolinate-N,O]Zn (also called zinc–proline or Zn

[(L)-pro]2) has proven its competence as a promising alternative in a plethora of applications

such as catalyst or promoter. Owing to its biodegradable and non-toxic nature of bis[(L)

prolinate-N,O]Zn, it is being actively investigated as a water soluble green catalyst for synthetic

chemistry. Bis[(L)prolinate-N,O]Zn are readily utilized under mild conditions and have high

selectivity and reactivity with broad range of substrate acceptance to make it better reaction
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medium for a wide variety of organic transformations. This Review summarizes the till date lit-

erature on its synthesis, characterization, and its catalytic role in various organic reactions.
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Introduction

The recent past scientific and technological advances have pro-
vided a great insight regarding the catalytic properties and
mechanism of metal-amino acid complexes. Metal salts with

chiral amino acid have been used as promising materials for
biological as well as chemical advancement as they tend to
exhibit the advantage of the metal salts and the asymmetrical

organic amino acids [1,2]. a–Amino acids could act as chelat-
ing ligands and form five member ring because they have two
types of coordination atoms [3–7] due to the presence of pro-
ton acceptor amino group (NH2) and the donor carboxylic

acid group (COOH) in them.
Zinc catches eyes of several researchers due to several rea-
sons, as it can show various coordination geometries, is abun-
dant in nature, is redox-inactive [8], and forms stable
complexes with nitrogen. Zinc is an essential micronutrient,

which is involved in various biological processes such as tran-
scription, cell signaling catalysis, hormone synthesis, and
structural integrity of cell membrane [9,10]. From the biologi-

cal point of view, more than 300 zinc metallo-enzymes cover-
ing all six classes of enzymes have been discovered [11,12]. In
most cases, the zinc ion is an essential cofactor for the

observed biological function of these metalloenzymes. By the
virtue of biological activity, thousands of synthetic zinc com-
plexes have been formed either to mimic natural structure or

to completely diverge from the natural platform [13–18].
Moreover zinc is present in active site of class II aldolases
(an enzyme) witnessing the bis[(L)prolinate-N,O]Zn as a valid
candidate for aldolase mimics.

Deprotonated amino acid coordination chemistry is domi-
nated by the formation of the nitrogen and oxygen chelating
motif producing the geometrically (and energetically) favoured

five membered metallocyclic compounds [19].
Stability of the zinc complexes varies with different amino

acids [20–23]. Metal ion-ligand affinity increases as the polar-

izability of the donor atom is increased (O < N< S) [24].
So there is an increase in selectivity for the amino acid having
(N, S) linkage followed by (N, O). It has been shown that cys-
teine and its derivatives are more selective for metal ion-ligand

binding as compared to other amino acid having (N, O) link-
age [25]. The cumulative energy required for the acid dissocia-
tion of carboxylic acid to carboxylate ion and ammonium ion

to secondary amine for proline with Zinc (II) is lower than
other amino acid which has primary amine group and acid
group. In secondary amine, there is more inductive effect

which makes it more labile for acid dissociation constant
[26,27].

Complex synthesis

Originally Darbre and Machuquiero have synthesized this bis
[(L)prolinate-N,O]Zn complex. They have synthesized bis[(L)

prolinate-N,O]Zn complex by adding small quantity of Et3N

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 1H NMR of proline and bis[(L)prolinate-N,O]Zn.
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as base to the proline in methanol followed by zinc acetate

(double ratio of amino acid) (Scheme 1). After stirring a white
precipitate was obtained which could be separated from reac-
tion medium by simple filtration with good yield [28].

Structure and characterization of the catalyst

1H NMR analysis

In the comparison of 1H NMR of proline and bis[(L)prolinate-
N,O]Zn complex in Fig. 1, 1H NMR of the bis[(L)prolinate-N,

O]Zn showed that there is proton shielding of protons of pro-
line and the splitting pattern resolved in the presence of Zinc
metal ion. Shielding is more in C(2), which indicate the
formation of carboxylate ion; moreover, there is a noticeable

shielding in C(5) as compared to proline, which further con-
firms the synthesis of bis[(L)prolinate-N,O]Zn [28].

FTIR analysis

In IR spectra of bis[(L)prolinate-N,O]Zn complex shown in
Fig. 2, the shift observed confirms the formation of the target
compound in comparison with L-proline. There was decrease

in broad band at 3422 cm�1 for OH stretching of COOH.
The NH stretching band at 3220 cm�1 was very prominent
while twisting was observed at 1205 cm�1. The COO� vibra-

tion peak appeared comes at 1410 cm�1 along with the
carbonyl peak of carboxylic group at 1608 cm�1 while the in-
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Fig. 2 FTIR of bis[(L)prolinate-N,O]Zn.

Fig. 3 Single crystal X-ray diffraction of bis[(L)prolinateo-N,O]

Zn.

Fig. 4 Powder XRD of bis[(L)prolinate-N,O]Zn.

248 R. Poddar et al.
plane deformation at 774 cm�1, scissoring at 703 cm�1 and
rocking vibrational peak o at 530 cm�1 were also observed.
The CH2 stretching, wagging, and rocking were observed at

2800–3216, 1330–1300, and 938–847 cm�1 respectively. The
CAN stretching was observed in between 1330 and
1450 cm�1 while the CAN stretches due to absorption were

noticed at 1077 and 1064 cm�1 [29].

Single crystal X-ray diffraction

Structure of bis[(L)prolinate-N,O]Zn complex was first shown
by Chew H-N, and he described trans complex [Zn
(C6H7NO2)2] in Fig. 3 [30], as a spiral structure formed along

the 21 direction with atoms O4 (2�x, y�1/2, �z), Zn, N(2), C(7)
and C(6) constituting a repeating unit. The Zn atom is penta-
coordinate, the fifth coordination site being occupied by the
symmetry related atom O(4 i) [symmetry code: (i) 2�x, y�i

�, �z] of a neighboring proline molecule so that an infinite
polymeric chain is generated. The polymer shows a helical
structure along the 2� direction. The zinc coordination

here is unique, as most zinc-amino acid complexes are
hexacoordinate. The Zn atom has trigonal bipyramidal geom-
etry with O(4 i), N(1) and N (2) while O(1) and O(3) occupying

the axial position and the pyrrolidine rings are transformed
from planner to 3-dimension shape. The distance ZnAO and
ZnAN and all the bond lengths of the proline unit were com-
parable and normal for metal-coordinated amino acids [31–

34]. The angle between O(3)AZn(1)AO(1) is nearly linear with
value of 173.8 (1)�.

Powder X-ray diffraction

Kidwai and his coworkers group have shown for the first time
X-ray diffraction of the complex in the range 2h = 0–100 as

shown in Fig. 4. The characteristic peak obtained from powder
XRD of bis[(L)prolinate-N,O]Zn of specific d value has showed
that the complex is orthorhombic in structure since it is in

agreement with data card 47-1919JCDPS [35,36].

TEM image

For crystal assessment of bis[(L)prolinate-N,O]Zn, TEM tech-

nique was used. Kidwai and his co-workers (2011) had



Fig. 5 TEM images of fresh bis[(L)prolinate-N,O]Zn.

Fig. 6 TGA/DTA graph of bis[(L)prolinate-N,O]Zn.

Fig. 7 DSC graph of bis[(L)prolinate-N,O]Zn.
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acquired various images of complex on carbon coated grid and
confirmed the crystalline in nature of the complex as depicted

in Fig. 5 [37].
Thermal analysis

The thermal stability of bis[(L)prolinate-N,O]Zn complex was

evaluated by TG/DTA and DSC experiments as described by
kidwai and research group in Figs. 6 and 7 [38]. Briefly the
complex was heated at the rate of 10 K min�1 in N2 atmo-

sphere. A blunt endothermic peak due to the release of adhered
water molecules was observed at 100.62 �C in the DTA curve.
The purity of crystal was further confirmed by the sharpness of

endothermic peak at 342.81 �C in the DTA curve which
matches the melting point of bis[(L)prolinate-N,O]Zn. TGA
curve showed the detailed decomposition of the complex

(Fig. 6). Differential scanning calorimetry (DSC) study was
carried in the inert atmosphere from the temperature range
20–500 �C with a heating rate of 10 K min�1. Bis[(L)
prolinate-N,O]Zn undergone through an irreversible endother-

mic transition at its melting point 342.81 �C. Henceforth it was
confirmed that the material is stable up to its melting point
making it suitable for various applications, where the complex

is utilized at high temperatures.

Solubilities of bis[(L)prolinate-N,O]Zn

Bis[(L)prolinate-N,O]Zn is highly soluble in water and insol-
uble in organic solvent due to its ionic nature. The N, O and
Zn atoms form H-bond with water molecules and make it
hydrated which is not possible in organic solvent. The recycla-

bility of complex depends upon its solubility in the reaction
medium. Majority of the reactions with complex are per-
formed in aqueous medium and extracted with organic solvent

(Ethyl acetate, ether, chloroform or DCM) from the aqueous
layer and reused for further reaction [29,36,37]. In aqueous
medium the reactivity of metal complexes is restricted because

water molecules can participate as substrate for metal bonding.
Criterion for water stable Lewis acids (improbable to hydroly-
sis) has been investigated based on the relationship between

the catalyst activity with two parameters viz water exchange
rate constant and hydrolysis constant [26]. Zinc complexes
are found to be appropriate for various organic reactions in
aqueous medium.
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Bis[(L)prolinate-N,O]Zn distribution in biological system

Although metal ions and complexing agents occur ubiqui-
tously in biological tissues and fluids, few studies have been

done for the distribution of the metal ions among the compet-
ing ligands in such systems [39,40]. First time equilibria of
complex were understood in Bjerrum’s book ‘‘Metal Ammine

Formation in Aqueous Solution” that was published in Den-
mark in 1941 [42]. It has been confirmed that the equilibrium
between a complex forming agent and an ion is usually ther-
modynamically reversible and occurs instantaneously without

significant energy of activation. So equilibria can be written
in mass-action equations. Furthermore, Bjerrum has estab-
lished that complex formation is occurred in stepwise course.

Quantitative studies by Albert (1950) for the avidity of L-
proline for Zn(II) ion have been reported [41]. It was found
that pKa value for L-proline is 10.68 and stability constant

of the bis[(L)prolinate-N,O]Zn complex is 10.2, implying that

L-proline has the greatest avidity for Zn(II) ion and forms a

stable complex with it.
The computed distribution of Zn(II) ion among seven-

teen amino acids present in human blood plasma had been

studied and approximately 50% of the Zn(II) is coordi-
nated to cysteine and histidine (as their stability constant
is highest among all amino acids), but considerable amino

acid complex formation occurs with most of the other
amino acids [43].

Recently, metal ions have been used in metallization of
biomacromolecules [44]. These processes rely upon the specific

metal ion amino acid interaction, which allow an efficient
metal deposition and attachment to biological systems. The
molecular mechanism of the metallization process was studied

by means of chemical quantum calculations of metal ion-
amino acid interaction [45]. An interesting feature of the zinc
(II) ion is its ability to adopt a tetrahedral, a trigonal bipyra-

midal, or an octahedral geometry depending on the ligands
bonded to the ion. On the other hand the Zn2+ aqua ion, as
well as Zn2+ complexed to two N donors, is six-coordinated
[46,47]. Zinc(II) ion coordinated by at least three N or S donor

forms either tetrahedral or trigonal bipyramidal complexes
[48]. A theoretical study of Zn(II) interaction with L-proline
was carried out using density functional theory method with

Becke’s three parameter, hybrid exchange functional and the
Lee-Yang-Parr correlation functional (B3LYP). A moderately
high affinity (�13.4 kJ mol�1) was predicted for the proline

residue complexing a zinc ion via the nitrogen atom of the five
membered ring [49].

In plant, there is increase in concentration of proline to get

rid of heavy metals which are toxic in nature. To check the
importance of proline in plant reactions to heavy metal stress,
Sharma et al. have studied the effect of proline on Zn-induced
inhibition of glucose-6-phosphate dehydrogenase and nitrate

reductase in vitro. Proline appeared to protect both enzymes
against Zinc. There were no indications of any significant role
for proline-water or proline-protein interactions. The signifi-

cance of these findings with regard to heavy metal-induced
proline accumulation in vivo has been discussed [50]. A syner-
gistic immunological adjuvant formulation having bis[(L)

prolinate-N,O]Zn complex as synergist has been patented
which showed the pharmaceutical properties associated with
the complex [51].
Bis[(L)prolinate-N,O]Zn in organic synthesis as catalyst

Bis[(L)prolinate-N,O]Zn has received immense attention over
the last eight years which provided intriguing opportunities

in organic synthesis because of its ability to act as Lewis acid
and ease of preparation. The following section illustrates var-
ious synthetic approaches exploiting bis[(L)prolinate-N,O]Zn

as a catalyst. In most cases, water had been used as a part of
the reaction media. Henceforth, in each synthetic approach,
examples related to the use of this organometallic complex in
biphasic systems, water saturated organic solvents and even

water as a sole reaction media have been described. This sec-
tion examines the growing opportunities and applications of
bis[(L)prolinate-N,O]Zn catalyzed reactions. Originally Darbre

et al. (2003) have shown bis[(L)prolinate-N,O]Zn as a selective
catalyst for the direct aldol reaction in aqueous media. They
have investigated that 5 mol% of the Zn complexes of lysine,

arginine and proline are catalysts for the aldol addition of ace-
tone (1) and p-nitrobenzaldehyde (2) in aqueous medium, giv-
ing considerable yields and enantiomeric excess up to 56% at

room temperature (Scheme 2) [28].
The catalytic ability of other with 5 mol% Zn-(L)-amino

acid complexes had been studied in water-acetone medium.
The complexes were prepared and isolated as described for

Zn-proline [52–57]. In the absence of zinc, product (3) was
obtained in 74% yield and 6% ee with the R-1 enantiomer in
excess. The higher ee values were observed with different

amino acids requiring chiral Lewis acid as catalyst. Moreover
in 2004, Darbre and Reymond et al. together explored the bis
[(L)prolinate-N,O]Zn complex catalyzed pathway for the for-

mation of sugars [58]. Bis[(L)prolinate-N,O]Zn complex cat-
alyzed the aldolization of unprotected glycolaldehyde (4) in
water to give tetroses (5,6) in 51 % yield which further

aldolization gave hexoses (9) with 10% enantiomeric excess
of the D-isomer (Scheme 3). A mixture of pentoses (8) was pro-
duced by the reaction of glycolaldehyde with glyceraldehyde
(7) in the presence of bis[(L)prolinate-N,O]Zn complex in

water.
The aldol reaction of 4-nitrobenzaldehyde catalyzed with

three different ketones (2-butanone, cyclopentanone and

cyclohexanone) in three different combinations with aqueous
media, has been studied to explore selectivity of environmen-
tally benign reaction. The combination included conditions

are bis[(L)prolinate-N,O]Zn complex, NaHCO3/bis[(L)
prolinate-N,O]Zn complex and L-proline/bis[(L)prolinate-N,
O]Zn complex. For the synthesis of b-hydroxy ketones
NaHCO3 was surprisingly found to be a proficient catalyst,

showing high-quality diastereo- and regioselectivity within
9 h. Cyclopentanone (17) were mainly found to give syn
diastereoisomers while cyclohexanone (19) produced anti iso-

mers being the major product which was an exceptional result
(Scheme 4) [59].
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Sivamurugan and his research group have performed the
reaction of o-phenylene diamine (21) and a-hydrogen carbonyl
(22) with 0.2 mmol of bis[(L)prolinate-N,O]Zn as catalyst to
produce 1,5-benzodiazepine derivatives a one pot reaction
under solvent-free conditions [60]. The effectiveness of the cat-
alyst has been checked by microwave irradiation technique as
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well as conventional method. 1,5-Benzodiazepine (23) was
obtained in moderate to good yield (90–93%) in all the reac-
tions within a shorter reaction time (2–3 mins) under micro-

wave irradiation while in conventional the yield (80–88%)
was lower and had in longer reaction time (2 h). The catalyst
was recycled up to five times with marginal loss of its catalytic

reactivity (Scheme 5).
To explore the wide applicability of bis[(L)prolinate-N,O]

Zn, the aldolization of different hydroxyl aldehydes and
ketones was studied by Darbre group using the complex [61].

Glycolaldehyde (4) gave mainly tetroses whereas in the cross-
aldolization of glycolaldehyde and rac glyceraldehydes (7),
pentoses accounted for 60% of the sugars formed with 20%

of ribose. They suggested that generally, unprotected a-
hydroxy aldehydes and ketones could undergo aldol additions
in the presence of bis[(L)prolinate-N,O]Zn as catalyst in water.

Depending on the starting aldehyde, the products formed may
include tetroses, pentonse, hexoses, keto-pentoses, keto-
hexoses with smaller yields of higher sugars. For the simplicity

of analysis, the sugars were also reduced to polyols using
NaBH4 (Schemes 6 and 7) [62].

An appropriate mechanism was proposed by darbre for bis
[(L)prolinate-N,O]Zn to catalyze the aldol reaction shown in

Fig. 8. The chelating enolate formation took place by bonding
of glycolaldehyde (4) to the zinc. This is similar step which
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occurs in class II aldolase enzyme having zinc (II) in active site
as cofactor. The electron deficient carbonyl reacted with the
enolate which does not require to coordinating with zinc.

The main difficulty to use pentoses as probable prebiotic
reagents was the lack of stabilities in earlier days. Previously,
the self condensation of formaldehyde in basic medium was

used to synthesize pentoses to yield less than 1% of riboses
[63]. So the investigations were carried out to escalate the
amount and stability of pentoses. The results showed that syn-
thesis of pentoses should be done using Lewis acid and maxi-

mum stability of products could be achieved at room
temperature in aqueous.

In another publication by Lopez et al. [64], bis[(L)prolinate-

N,O]Zn complex was depicted to catalyze the very famous
aldol reaction of acetone (1) and broad range of aromatic alde-
hydes (32) in aqueous media, and even less reactive aromatic

aldehydes such as methoxybenzaldehyde gave good yields.
The reaction was also comprehensive to hydroxyacetone and
dihydroxyacetone as donors (Schemes 8 and 9).
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to be appropriate substrate for the aldol reaction. Variation
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Zn complex catalyzed reaction with Hydroxyacetone and
Dihydroxyacetone. Encouraging results were obtained with

ketones too. They postulated a mechanism linking a formation
zinc-assisted enamine, where zinc complexation stabilized the
enamine intermediate [65]. Coordination to zinc stabilized
the enamine in aqueous, possibility of the condensation with

the aldehyde shown in Fig. 9.
In 2006, Kofoed et al. have explored the dual mechanism of

bis[(L)prolinate-N,O]Zn complex catalyzed aldol reactions in

water. They found that the aldol condensation of aldehydes
with acetone in water medium under numerous catalyst e.g.
proline, bis[(L)prolinate-N,O]Zn complex, (S)-(+)-1-(2-pyrroli

dinomethyl)pyrrolidine and (2S,4R)-4-hydroxyproline pro-
gressed via an enamine mechanism, while the aldol reaction
of dihydroxyacetone catalyzed by bis[(L)prolinate-N,O]Zn

complex and by organic bases such as N-methylmorpholine
occured under rate-limiting deprotonation of the a-carbon
and formation of an enolate intermediate [66]. Bis[(L)
prolinate-N,O]Zn complex appeared to be a particularly effi-

cient catalyst for both enamine and enolate type catalyses.
Addition of a base to bis[(L)prolinate-N,O]Zn complex
induced precipitation of Zn(OH)2 above pH 9, implying that

the conjugate base [(OH)((L)prolinate-N,O)2]Zn was not avail-
able as a general base for deprotonating dihydroxyacetone,
while the pH curve showed that proline could easily disinte-

grate from zinc upon protonation from pH 8 to pH 6
(Scheme 10).

Bis[(L)prolinate-N,O]Zn complex was shown to be an cap-
able catalyst for the Hantzsch synthetic route for the synthesis

of 1,4-Dihydropyridine (DHP) (41) derivatives using a broad
variety of aromatic aldehydes (39) and dicarbonyl compounds
(40) in aqueous medium under microwave irradiation. The Bis

[(L)prolinate-N,O]Zn exhibited greater catalytic activity even
with low MW power (�200 W) and gave excellent yield (90–
98%) in short reaction times (<5 min) [67] (Scheme 11).

Quinoxaline derivatives show broad spectrum of biological
activities. They have been used in dyes [68,69], pharmaceuticals
[70,71] and building blocks for the synthesis of organic semi-

conductors [72]. An ecofriendly straightforward, proficient
method for the preparation of quinoxalines (44) by the con-
densation of 1,2-diamines (43) with various 1,2-diketones
(42) using bis[(L)prolinate-N,O]Zn as a catalyst has been

reported by Heravi et al. in 2007 [73]. In his reaction acetic acid
was used as a solvent which was unable to precede the reaction
(Scheme 12).

Direct nitroaldol reaction by bis[(L)prolinate-N,O]Zn com-
plex was performed in 2007 by Reddy et al. [74]. The Henry
reaction or nitroaldol is one of the influential Carbon-

Carbon bond formation reactions in organic chemistry to
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produce important functionalized skeletons such as a-hydroxy
carboxylic acids and 1,2-amino alcohols [75,76]. The standard

nitroaldol reaction is carried out in the presence of inorganic
(alkali metal hydroxides, calcium hydroxide, alkoxides, alu-
minum ethoxides, carbonates, bicarbonates) or organic base

(primary, secondary, and tertiary amines) in an organic solvent
[77]. To conquer some of the inconveniences associated, the
selective, homogeneous and reusable catalysts are highly
recommended. Hence, bis[(L)prolinate-N,O]Zn complex was
used as a catalyst for this reaction (Scheme 13).

Bis[(L)prolinate-N,O]Zn complex also acted as a water-
soluble and recyclable Lewis acid catalyst for the selective syn-
thesis of 1,2-disubstituted benzimidazoles via the reaction of

substituted o-phenylenediamines (48) and aldehydes (49) in
moderate to excellent isolated yields (42–92%) using water as
solvent at ambient temperature [78]. Under the optimized reac-

tion conditions, in all cases the yields were high and 1,2-
disubstituted product (50) was formed selectively rather than
2-substituted product (51). This selectivity could be useful in

synthesizing a mini library of biologically relevant 1,2-
disubstituted benzimidazoles in moderate to excellent yields
(Scheme 14).

Shah and co-worker have revealed [79] that the bis[(L)

prolinato-N,O]Zn, a Lewis acid catalyst under microwave irra-
diation could afford 3-methyl-1-substituted-phenyl-1H-
chromeno[4,3-c]pyrazol-4-ones (54) by cyclization of hydra-

zones of 3-acetyl-4-hydroxycoumarin. The range of yields of
various products was obtained to be 82–93%. In the absence
of the catalyst, no reaction occurred. There was no remarkable

increase in the yields of product at high temperatures and at
high microwave power (Scheme 15).

Itoh et al. have utilized the concept that that stereospecific

aldol reactions are catalyzed by aldolase enzymes in a reversi-
ble manner. Aldolases enzymes are subdivided into two classes
aldolase I (on catalyzing stereospecific aldol reaction through
the enamine intermediates) and aldolase II (in which Zn2+

enolates of substrates react with acceptor aldehydes) [80] in
Fig. 10. Mechanistic studies suggested that the amino acid part
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and the Zn2+ ion of the catalyst function in a cooperative
manner to generate Zn2+ - enolates to give aldol adducts

(Fig. 11).
Transition metal ion catalyzed coupling reaction is one of
the most significant reactions to form a carbon–heteroatom
bond. Out of carbon-heteroatom, the CAS bond formation
has received much attraction due to its occurrence in many

molecules that are of pharmaceutical used in drugs,
building block material interests and biologically active. In
2009, Sheng-Rong et al. reported a palladium-free and mild

synthetic procedure for the cross-coupling reaction of thiols
(66) and aryl chlorides (65) with bis[(L)prolinate-N,O]Zn
with K2CO3 as inorganic base, in ionic liquid 1-butyl-3-

methylimidazolium tetrafluoroborate ([bmim]BF4) (Scheme 16)
[81].

Multicomponent reactions (MCRs) are one pot processes in
which three or more reactants come together in a single reac-

tion vessel to form a product containing substantial elements
of all the reactants [82]. Pyrano[2,3-d]pyrimidines derivatives
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have acquired much attraction during the last decade owing to
their broad spectrum of biological activities. Uracil derivatives
have shown antibacterial, antitumor, antihypertensive, bron-
chiodilator, vasodilator, cardiotonic, hepatoprotective and

antiallergic activities. Some of them also demonstrate herbici-
dal, analgesic, antifungal and antimalarial properties [83–91].
Influenced by this attractive importance of pyrano[2,3-d]

pyrimidine derivatives, Heravi et al. in 2010 have synthesized
these compounds using bis[(L)prolinate-N,O]Zn complex as a
catalyst [92] (Scheme 17).

Siddiqui and her research groups have further explored the
activity of bis[(L)prolinate-N,O]Zn as a Lewis acid catalyst in
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Knoevenagel condensation. The Knoevenagel condensation
products from 5-chloro-3-methyl-1-phenylpyrazole-4-carboxal
dehyde (71) with different cyclic active methylene compounds,

using water soluble and recyclable bis[(L)prolinate-N,O]Zn
both are under solvent-free conditions and using water as a
reaction medium in good yields [93,94] (Scheme 18).

Naturally origin as well as synthetic chromone derivatives
forms an important constituent of pharmacophores of a vari-
ety of biologically active molecules having significant medici-

nal applications [95–102]. On the other side, chalcones family
correspond to flavanoid class and have shown a remarkable
range of biological activities [103]. Bis[(L)prolinate-N,O]Zn
catalyzed the preparation of a library of chromonyl chalcones

(85) from different cyclic active methyl groups (84) and 3-
formylchromones (83) [104]. The yield of substituted chromo-
nyl chalcones was found to 79–92% in 15–30 mins

(Scheme 19).
From the point of view of green chemistry to use green sol-

vent, water is the best option for reaction solvent to proceed

and there is no requirement to mention properties of water
[105,106]. Since water has specific properties [107–114] a disad-
vantage comes with the insolubility of organic compounds

[115–117]. A novel, greener approach was adopted for the syn-
thesis [118] of dicoumarols (88) using bis[(L)prolinate-N,O]Zn
as a mild, non-toxic, Lewis acid catalyst in water employing
4-hydroxycoumarin (86) and aromatic/heteroaromatic aldehy-

des (87) (Scheme 20).
Kidwai and his research group [37] have done more pro-

gress toward the catalytic evaluation of bis[(L)prolinato-N,O]

Z, they synthesized v, d-Acetylenic ketones (91) from pheny-
lacetylene (89) and benzalacetophenone (90) using bis[(L)
prolinato-N,O]Zn as a catalyst and Et3N as an additive

(Scheme 21) and the yield of product was up to 85%.
It was also indicated that only bis[(L)prolinate-N,O]Zn was

capable of acting as an efficient catalyst for the synthesis of c,
d-acetylenic ketones. The reason is only in bis[(L)prolinato-N,
O]Zn, and amino acid contains secondary amine which ulti-
mately enhances the catalytic efficiency of bis[(L)prolinato-N,
O]Zn. The use of zinc reagent to affect the 1,4 - addition of

an alkynyl group to an a,b-unsaturated ketone could be
explained by the tendency with which zinc binds to alkyne
ligand. It suggests that highly water soluble catalyst could

coordinate with the alkyne easily and could transform it into
product via intermediate. A plausible pathway involves the
intramolecular delivery of an alkynyl group through a six

membered transition state [A], which has been shown in the
O
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+
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Scheme 2
mechanism in Fig. 12. This on further rearrangement gives
desirable product. Mechanism illustrates that there is no scope
for the formation of side product. Furthermore, it is also

shown that Et3N was added in fractional amount to deproto-
nate the terminal alkyne and could be recovered back in the
aqueous layer, when product was extracted.

To explore more from bis[(L)prolinate-N,O]Zn as a cat-
alyst to devise greener chemical transformations, kidwai
and Jain [38] have further used bis[(L)prolinate-N,O]Zn as

a catalyst for the preparation of triazoles by the reaction
of alkyne, azide and benzyl halides in water as a solvent
(Scheme 22).

A probable mechanism for this reaction is shown in Fig. 13.

Since the reaction is carried out in water, hence in bis[(L)
prolinate-N,O]Zn complex, metal ion would exist in the form
of hydrated cation and the corresponding amino acid in the

form of anion. The bis[(L)prolinate-N,O]Zn complex would
be abstract proton from alkyne and make it acetylide
[119,120]. With the bonding of azide with acetylide, the reac-

tion would take the conduit frequently permitted for this trans-
formation to form a triazolide intermediate, which then
ultimately forms the target triazole and the recycling of the

catalyst.
b-Amino carbonyl compounds are found to be attractive

targets for various chemical syntheses as they are widely used
in biologically active molecules as well as are important reac-

tants for various pharmaceuticals [121]. Kidwai and his
research group [29] have reported bis[(L)prolinate-N,O]Zn cat-
alyzed three-component stereoselective Mannich reaction for

the synthesis of b-amino carbonyl compounds in aqueous med-
ium (Schemes 23 and 24). One of the most significant rewards
of this reaction is the purity of the products. All the products

were of very high purity and do not need any additional purifi-
cation application such as recrystallization or column
chromatography.

Products formed showed excellent anti selectivity. The anti
105 and syn 106 isomers were identified by the coupling con-
stants (J) of the vicinal protons adjacent to C‚O and NH in
their 1H NMR spectra (Fig. 14).

A plausible transition state was possible in which bonding
of imine and enol with zinc produces cyclohexanone
(Fig. 15). Transition state (107) gives less steric repulsion

between the methylene groups of cyclohexanone and aryl
group on the carbon atom and more space for the aryl groups
of the aldimine, which is the most stable transition state, pro-

duces the anti-isomer shown in Fig. 16.
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In continuation of further studies on developing economi-
cally viable and environmentally benign methodologies for

organic reactions and to reveal the efficient utility of transition
metals and their derivatives, Kidwai and his research group
[36] have reported for the first time bis[(L)prolinate-N,O]Zn

catalyzed an efficient synthesis of pyrazoles by the reaction
of 1,3 diketone and phenyl hydrazine or hydrazine or
hydrazides and 1,3 diketone and o-phenylenediamine in pure

water (Schemes 25 and 26). However phenyl hydrazine
can give pyrazole in the absence of catalyst in a less amount.
But less reactive hydrazines and hydrazides take an evident
R1 + NaN3 R2

(92)
X+H

(93) (94)

R1 = C6H5, COOC2H5, CH2OH; 

R2=C6H5CH2Cl, n-C4H9Br, p-(NO2)C6H4CH2Cl, CH

Scheme 2
advantage of the use of this catalyst. Generally 2,
4-dinitrophenylhydrazine with acetylacetone afforded enamine
types of compound (A) and ethylacetoacetate with hydrazines
afforded pyrazolones [122] (B). But by using this catalyst, reac-

tion led to the formation of pyrazole only (Fig. 17). It is
remarkable to point out that in the presence of Zn(OAc)2
and in the absence of L-proline, the reaction did not occur.

Even L-proline alone was not able to give any desirable
product.
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Kidwai and Jain [123] have also extended their work and
described a convenient and a resourceful process for the syn-

thesis of xanthenediones with greater stereoselective manner.
The prominent features of this protocol are rapid synthesis,
simple experimental procedure, mild reaction conditions, man-
ageable work-up, environmental friendliness by avoiding the

use of volatile organic compounds as reaction media, reusabil-
ity of the catalyst, improved yields, and cleaner reaction pro-
file, which make it an efficient, economic and ecofriendly

process (Scheme 27).
Friedlander condensation produces heteroannulated pyridi-

nes by the condensation–cyclodehydration reaction of reactive

active methylene group and an aromatic 2-aminoaldehyde or
ketone in acid or base medium. In this context, Siddiqui
[124] has reported the preparation of novel benzopyrano

[2,3-b] pyridine derivatives 120(a–j) in aqueous media via
Friedlander condensation using 2-amino-3-formyl chromone
118(a–b) and cyclic active methylene compounds 119(a-e)

(Scheme 28). It was excellent reports on the preparation of
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benzopyranopyridine derivatives using bis[(L)prolinate-N,O]
Zn as Lewis acid catalyst.

In continuation of efforts in developing selective, efficient,
mild and ecofriendly synthetic methodologies for the prepara-

tion of biologically relevant heterocyclic derivatives, Siddiqui
and Farooq [125] have reported a simple and convenient
method for the synthesis of 4-chromanone derivatives (123)

by the reaction of 3-formylchromone (121) with different pri-
mary aromatic and heteroaromatic amines (122) using bis[(L)
O

O

RCHO+

(115)

(116)
water,
Zn(L-

R= C6H5, 4-ClC6H4, 4-CH3OC6H4, 2-CH3OC6H4, 4

C2H5, CH(CH3)2,  4-NO2C6H4, 4-HOC6H4, 2- thien

Scheme 2
prolinate-N,O]Zn complex as a water-tolerant Lewis acid cat-

alyst in water. The plausible mechanism for the synthesis of
(123) in the presence of bis[(L)prolinate-N,O]Zn has been
shown in Scheme 29. Zn is accomplished of binding with the
carbonyl oxygen raising the reactivity of parent carbonyl

group in 121 which led to formation of imine with proline
takes place in Fig. 18. This is followed by nucleophilic attack
of amines (122) to the imine to form hydrogen bonded adduct.

Finally, water as nucleophile attacks on electrophilic C-2 cen-
ter with the expulsion of bis[(L)prolinate-N,O]Zn gives the pre-
ferred 2-hydroxy chromanones (123).

To further explore bis[(L)prolinate-N,O]Zn as heteroge-
neous Lewis catalyst in microwave, the Pourshamsian and
his research group [126] have described the preparation of

1,4-dihydropyridines (127) by condensation of ethyl acetoac-
etate (125), ammonium acetate (126), and aldehydes (124)

under the influence of microwave irradiation in solvent free
conditions (Scheme 30). They reported that the reaction offers

several advantages, such as the absence of any volatile and
hazardous organic solvent, high yields and simple procedure
with an easy work-up. Moreover, the catalyst can be easily
O
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recycled and reused at least three times without appreciable
loss of its catalytic activity.

Siddiqui [127] has further investigated the utilities of bis[(L)
prolinate-N,O]Zn as heterogeneous Lewis catalyst for the
preparation of 3,4-dihydropyrimidin-2(1H)-one derivatives

(136a–j) by the condensation of 1,3 dicarbonyl (128), urea
(129) and aldehyde (130) in Scheme 31. Again they have shown
bis[(L)prolinate-N,O]Zn as an suitable catalyst for this
transformation.

Recently hybrid materials have seized attention from scien-
tific community mainly as heterogenic catalysts in organic
reactions on a large scale succeeding in some organic com-

pounds with high yields. One of the most important classes
of hybrid materials used for this purpose involves the complex
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of Zn and amino acids. Winck and his research group [128]
have introduced bis[(L)prolinate-N,O]Zn and Zn[Gly]2 hybrid
materials for the synthesis of several b-enaminones via solvent

free protocol under the influence of ultrasound (Scheme 32).
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Fig. 20 Plausible mechanism for the bis[(L)prolinate-N
b-enaminones are known for their flexible reactivity, as nucle-

ophiles and electrophiles. In mechanistic point of view there is
a nucleophilic attack of the nitrogen from the catalyst on the
ketone carbonyl which has methyl group (Fig. 19). This attack

produced the iminium ion which was attacked by the amine.
The obtained N,N acetal produced the corresponding imine
which finally rearranged itself resulting in the b-enaminone
while there is no nucleophilic attack on the ester carbonyl

group.
Recently Darbem [129] and his research group further

extent catalytic property of bis[(L)prolinate-N,O]Zn as a

heterogeneous catalyst in a thio-Michael reaction using the
ultrasound method (Scheme 33). The 80% yield is obtained
in 1 h for the thio-Michel adduct when 10 mol% of the bis

[(L)prolinato-N,O]Zn was employed at the same time the
OO

O
Zn

NH

NH

O

O

HS X

S X

,O]Zn catalyzed reaction for thio-Michael reaction.
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Ultrasound device used. It is worth noting that when using a
chiral hybrid catalyst, bis[(L)prolinato-N,O]Zn, a dextro thio-
Michael adduct was obtained. This result is important and

contrary to the results from porcine pancreatic lipase [130].
However, the use of the ultrasound device did not result in a
substantial increase in the yields for thio-Michael adducts.
The reaction using isophorone did not produce the
thio-Michael adduct, and to the best of their knowledge, they
attributed this effect to the presence of dimethyl groups
bonded to carbon 5, which made it impossible for a nucle-

ophilic attack to occur in the transition state following the
reaction between bis[(L)prolinate-N,O]Zn and isophorone.
This fact was confirmed by the result of 3-methyl-
cyclohexen-2-one, which also shows a hindered effect but in
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the C3 position. For this compound, yields were lower when
compared to the other Michael acceptor. Taking into account

all results, they presented a mechanism involving the thiophe-
nol and cyclohexen-2-one (Fig. 20).

Maleki and his research group [131] have reported a simple,

clean and environmentally friendly process for the synthesis of
2-amino-4H-benzo[g]chromene derivatives by reaction of vari-
ous aldehydes, malononitrile and 2-hydroxy-1,4-
naphthaquinone in the presence of 20 mol% of bis[(L)

prolinate-N,O]Zn under solvent-free conditions at 60 �C
(Scheme 34). A plausible mechanism of the reaction is shown
in Fig. 21 exhibits that bis[(L)prolinate-N,O]Zn complex facil-

itates cyanoolefin formation and synthesis of 2-amino-4H-
benzo[g]chromenes. The reaction occurs via initial formation
cyanoolefin [A] from condensation of aldehydes and malonon-

itrile, which reacts with 2-hydroxynaphthalene-1,4-dione to
give intermediate [B] which subsequently underwent cycliza-
tion to afford the desired products. There was no effect

observed on the reaction time and the yield of the correspond-
ing products when electron-donating groups and electron-
withdrawing groups on benzaldehydes are used. On further
examination it was found that aliphatic aldehydes such as

butanal instead of benzaldehydes in the reaction, showed no
desired products after 1 h. In addition to the aromatic aldehy-
des, the reaction also precedes smoothly using heterocyclic

aldehydes in high yield.
The author Chavan and his research group [132] have

reported the Pechmann condensation reaction of phenols

and b-ketoesters employing bis[(L)prolinate-N,O]Zn complex
as a simple, efficient, eco-friendly, organometallic catalyst
under solvent free condition. They carried out a series of sub-

stituted phenols with ethylacetoacetate to obtain correspond-
ing coumarin derivatives in a very good yield (72–98%)
(Scheme 35). The catalyst is reusable up to five cycles with
marginal loss of its catalytic activity.
Conclusions and future perspectives

This review demonstrates the synthesis, characteristics and

catalysis of bis[(L)prolinato-N,O]Zn. This study shows the
organic synthetic applications of bis[(L)prolinate-N,O]Zn in
water provide alternative, environmentally friendly methods

that can be easily prepared and stored as stable solids in
non-inert conditions and can be used to substitute a host of
traditional Lewis acid applied along with VOCs (Volatile

organic compounds) [133–137]. The increased application of
bis[(L)prolinate-N,O]Zn in organic reactions will definitely
develop in the future as our thinking of this complex and

new complexes are revealed and brought to market. Concern-
ing the catalysts, the tendency toward reusable solids will
accelerate in the near future. It is anticipated that the reaction
conditions under which bis[(L)prolinate-N,O]Zn performs will

be broadened and this will open further research opportunities.
Given societies demand for green chemistry solutions and the
creativity opportunities surrounding this unique amino acid-

complex, it is believed that the next decade will give one of
the most productive and hopeful sections in the long history
of metal-complexes. In future, there are chance that formation
of complex alike bis[(L)prolinate-N,O]Zn where zinc metal ion

can be substituted with other transition metal dications i.e.
Fe2+, Cu2+, Mn2+, Mg2+ or proline with other a-amino acid
in which amine is secondary which will create a series of green

and economic metal complexes.
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