
molecules

Review

Cyclic Glucans Enhance Solubility of
Bioavailable Flavonoids
Seyeon Park

Department of Applied Chemistry, Dongduk Women’s University, Seoul 136-714, Korea;
sypark21@dongduk.ac.kr; Tel.: +82-2-940-4514; Fax: +82-2-940-4510

Academic Editor: Derek J. McPhee
Received: 26 October 2016; Accepted: 15 November 2016; Published: 16 November 2016

Abstract: Diverse flavonoids are abundant in dietary food constituents and possess useful biological
activities. However, some flavonoids have limited bioavailability due to their low solubility in water.
As an important approach to enhance aqueous solubility, inclusion of hydrophobic guest molecules in
hydrophilic hosts such as cyclic glucans has been used. This review summarizes applications
of β-cyclodextrin, synthetic β-cyclodextrin derivatives, and newly synthesized derivatives of
cyclosophoraoses as complexing agents to enhance the bioavailability of flavonoids such as baicalein,
kaempferol, and naphthoflavones.
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1. Introduction

Flavonoids are polyphenols that are abundant in dietary food constituents. They are abundant in
numerous groups of natural products such as fruits, vegetables, grains, and nuts. Flavonoids have
many roles associated with disease curing and intracellular signaling. These roles have been reviewed
previously [1,2]. Flavonoids possess a common phenylbenzopyrone structure (C6-C3-C6). They can
be categorized as flavanol, flavone, flavanone, and isoflavone according to the substituted group and
direction of the phenyl ring as shown in Figure 1. Kaempferol, quercetin, and isorhamnentin are
categorized as flavonols. Baicalein, apigenin, and luteolin are categorized as flavones. Catechin and
epigallocatechin are flavanols. Genistein is an isoflavone.

Flavonoids possess a variety of biological activities at non-toxic concentrations in organisms [2].
The role of dietary flavonoids and the underlying mechanisms in cancer prevention have been widely
suggested. Flavonoids may affect tumorigenesis [3] with anti-oxidant activities [4] by scavenging
free radical mutagens and carcinogens [5]. Flavonoids also contribute to UV protection. They can
modulate enzymatic activity and offer protection against viral, fungal, and bacterial infections [1].
In addition, a variety of flavonoids can directly interact with intracellular proteins and affect
intracellular signaling [2]. Some dietary flavonoids are known to be transformed to phytoestrogen by
gut microflora [1].

However, some flavonoid compounds have little biological activities in vivo when little or none
of the compound gets solubilized in the cytoplasmic environment [6]. Consequently, knowing how
much of a flavonoid nutrient is present in specific food or dietary supplement and knowing how much
of it is bioavailable are equally important.

Recently, several cyclic glucans have received attention because of their potential as carriers.
These compounds consist of glucose monomers arranged in a toroidal ring. They are formed during
bacterial digestion of cellulose.

Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides known as α, β, and γ-CD
(composed of 6-, 7-, and 8-α-(1,4) linked glycosyl units, respectively). These compounds have
a characteristic cone-shaped and internally truncated cavity. Compound β-CD is an α-1,4-linked
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macrocyclic oligosaccharide containing seven glucose units. It can encapsulate hydrophobic
compounds in its internal cavity [7]. However, torus-shaped hydrophobic cavity inside of β-CD with
a diameter of 6.0–6.5 Å and a height of 7.9 Å is relatively small for some target guest compounds such as
β-naphthoflavone. Therefore, 6,6′-thiobis(methylene)-β-cyclodextrin dimer has been synthesized and
used as a host [8].

Cyclosophoraoses (Cys) are cyclic β-(1,2)-glucans containing 10–40 glucose residues. They are
produced from the metabolic process of microorganism belonging to genus Agrobacterium within family
of Rhizobiaceae [9]. Cys has been known to form inclusion complexes with a variety of hydrophobic
guest molecules and enhance their water solubilities [10]. Cys derivatives could be synthesized by
substitution of various functional groups such as methyl, hydroxypropyl, carboxymethyl, and sulfate
groups. They have been used as hosts of inclusion complex [11]. In addition, Cys and Cys derivative
have chiral selectivity on enantiomers [12–15].

This paper reviewed the enhanced solubility of flavonoids in complex with cyclic glucans
including CD, Cys, and newly synthesized cyclic glucans (Figure 2).
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2. Cysteinyl β-Cyclodextrin-Baicalein Inclusion Complex

Many studies have shown that baicalein exerts anticancer and anti-inflammation activities [16].
Baicalein can induce apoptosis and cell cycle arrest, leading to inhibition of cell proliferation of human
prostate, hepatocellular, breast, and myeloma cancer cells [17,18]. Moreover, baicalein can suppress
the migration and invasion of human skin, hepatoma, and breast cancer cells [19–21]. Baicalein
also suppresses the release of prostaglandin E2 (PGE2) and arachidonic acid (AA) by inhibiting
MAPK-cytosolic phospholipase A2 (cPLA2) pathway, leading to anti-inflammatory effects [22].

Inclusion complexes formed between baicalein and different kinds of cyclodextrins have been
reported [23,24]. The solubility of baicalein in the presence of natural (α-, β-, and γ-) cyclodextrins and
its derivatives including hydroxypropyl-β-cyclodextrin (HP-β-CD), (2,6-di-O-methyl)-β-cyclodextrin
(DM-β-CD), and cysteinyl-β-cyclodextrin (cysteinyl-β-CD) is higher than that of free baicalein.
When the solubilizing efficiency is determined as the ratio between the solubility of the drug in the
presence of a certain host concentration and the baicalein alone in water, the solubilizing efficiencies
of HP-β-CD and DM-β-CD are about four and five times of β-CD in the presence of 10 mmol of
host molecules [23]. Recently, Jung et al. have reported that the aqueous solubility of β-CD could be
improved about 100-fold (cysteinyl β-CD: >180 g/100 mL, 25 ◦C vs. β-CD: 1.82 g/100 mL, 25 ◦C)
after attaching cysteine to β-CD [24]. Therefore, the solubilizing efficiency of cysteinyl β-CD is about
four times that of the original β-CD in the presence of 10 mM β-CDs [24]. The solubility of baicalein
using cysteinyl β-CD (~5 mM) was almost twice of that of DM-β-CD (~3 mM) at a saturated condition.
Regarding the mode of inclusion complexation, shifts of proton signals of baicalein in the presence of
DM-β-CD have indicated that B-ring, C-ring, and A-ring are included in the cavity of DM-β-CD [23].
The structures of cysteinyl β-CD and baicalein are shown in Figure 3. The complexation with cysteinyl
β-CD has resulted in more effective antioxidant activity of baicalein [23].
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3. Inclusion Complexes of α- and β-Naphthoflavone

α- and β-naphthoflavone (7,8-benzoflavone and 5,6-benzoflavone, respectively) are synthetic
flavonoids. Their difference is in the direction of the flavone naphthyl ring. They have negligible
aqueous solubility because of their extremely low hydroxylation. The bioavailability of these
naphthoflavones has been suggested as enzyme regulators [8,25]. Especially, α-naphthoflavone can
modulate xenobiotic metabolism as an inhibitor of aryl hydrocarbon receptor (AhR), a ligand-activated
transcription factor that promotes the expression of cytochrome P450 (CYP) isoforms CYP1A1 and
CYP1A2 [26–28]. In addition, α-naphthoflavone is inhibitors of CYP19 (aromatase), CYP1A1, CYP1A2,
and CYP1B1 (IC50s = 500, 60, 6, and 5 nM, respectively) [29–31].

It has been reported that β-naphthoflavone is a putative chemopreventive agent as a potent
agonist of the AhR. Therefore, it is an inducer of detoxification enzymes such as cytochromes P450
(CYPs) and uridine 5′-diphospho-glucuronosyltransferases (UGTs) [32,33]. Our previous study has
shown that β-naphthoflavones (5,6-benzoflavone series) has inhibitory activity on β-catenin/Tcf
signaling by directly blocking complex formation of β-catenin/Tcf with DNA. Activated β-catenin
signaling is related to the oncogenic transformation of certain cancer cells [34].

Hydroxypropyl cyclosophoraoses (HP-Cys), a Cys derivative synthesized by substitution of
the hydroxypropyl group, can enhance the aqueous solubility of α-naphthoflavone as a guest up to
257-fold after the addition of 8 mM HP Cys (Figure 4) [25]. NMR and molecular modeling results
have suggested that HP Cys can form complexes with α-naphthoflavone by accommodating the
three hydrophobic hydroxypropyl groups on top of sugar rings [25]. Structures of HP-Cys and
α-naphthoflavone are shown in Figure 4.

When β-naphthoflavone is used in an inclusion complex with newly synthetic 6,6′-thiobis
(methylene)-β-cyclodextrin dimer, the solubility of the β-naphthoflavone is enhanced [8]. Structures of
β-CD dimer β-naphthoflavone are shown in Figure 5. Formation of an inclusion complex of β-CD
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4. Flavonol and Glucans

Dimeric β-cyclodextrin linked by a thioether bridge can enhance the solubility of
β-naphthoflavone and flavonol such as myricetin, quercetin, and kaempferol [35]. The aqueous
solubility of myricetin, quercetin, and kaempferol is enhanced 33.6-, 12.4-, and 10.5-fold after complex
formation with 9 mM dimeric β-CD [35].
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Quercetin has been reported to have beneficial effects on human health. Quercetin has shown
an anti-asthmatic effect and anti-inflammatory effects in a murine model [36–39]. In vitro quercetin
also has an anti-allergy effect in mast cells and basophils by inhibiting histamine release [40,41].
Several in vitro and in vivo studies have indicated that quercetin has anticancer, antioxidant,
antiproliferative, and proapoptotic effects. It has a synergistic effect with some chemotherapeutic
agents [42–46].

Kaempferol is also abundant in fruits and vegetables such as tea, broccoli, apples, strawberries,
and beans [47]. A variety of in vitro studies have indicated that kaempferol can induce apoptosis in
cancer cells by modulating the MAPK pathway [47–49].

In vitro studies have suggested that kaempferol can inhibit the expression levels of both
interleukin-1β and tumor necrosis factor, inflammatory response inducing cytokines [50]. It has
been demonstrated that kaempferol can disrupt NF-κB, thereby preventing induction of its gene
targets [47,51]. Furthermore, quercetin and kaempferol can inhibit the direct binding of β-catenin/Tcf
with DNA, leading to suppression of wnt/β-catenin signaling implicated in human carcinogenesis [2].

Generally, the restricted bioavailabilities of kaempferol and quercetin are due to their poor
dissolutions in a number of solvents, including water. Kaempferol is poorly absorbed into the
bloodstream. It cannot force its way into cells to manipulate signaling pathways or inhibit certain
protein functions [47]. In studies on the bioavailability of quercetin as a dietary supplement, quercetin
from different dietary sources has been found to be more bioavailable when a sugar is attached to
quercetin [52]. Quercetin glycosides are better absorbed because of their improved solubilities [52].
Taken together, enhancing the solubility of flavonoids formed by inclusion complexation with cyclic
glucans is essential to enhance their bioavailabilities.

To screen effective host molecules of kaempferol, inclusion complexes with a variety of cyclic
glucans were prepared using a suspension method (cyclic glucans were distributed from the Microbial
Carbohydrate Resource Bank (MCRB) at Konkuk University, Seoul, Korea). Briefly, kaempferol was
dissolved in methanol and then added to an aqueous solution of an appropriate concentration
of glucans. The resulting mixture was equilibrated and lyophilized. The amount of dissolved
kaempferol was analyzed using UV-Vis spectrophotometry. The spectra were obtained in the range
240–400 nm as shown in Figure 6. Solubility enhancement of guest kaempferol was maximized by
sulfobutylether-β-CD. Therefore, this compound is considered as the most suitable host.
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5. Practical Application

Changing guest molecular properties after formation of inclusion complexes has led to many
applications of cyclic glucans in pharmaceuticals, cosmetics, and food industries [53]. As a practical
application of cyclic glucans in the cosmetic industry, the formation of an inclusion complex between
cyclodextrin and a variety of organic compounds can increase the stability and solubility of cosmetic
active ingredients and protect them from light- and oxidation-induced degradation [53,54]. Moreover,
complexation of a drug with cyclodextrin might reduce problems associated with topical formulation
such as poor aqueous solubility, incorporation of vehicle, photodegradation, and skin irritation [55].
Cyclodextrins have also been used in systems to reduce percutaneous absorption of common sunscreen
agents [56,57]. Considering these practical applications of pre-existing cyclodextrin, more efficient and
newly synthesized cyclic glucans could expand their applications in different industries.

6. Conclusions

In this paper, recent advances in supramolecular assembly of flavonoids with synthesized β-CD
or Cys derivatives are reviewed. Synthesized β-CD or Cys derivatives are able to promote the aqueous
solubility of flavonoids as novel host molecules. In addition, different kinds of Cys derivatives
have specificity for their guest molecules because of their variations in internal cavity size and
charges formed by different modifications. When these flavonoids are used in supramolecular
complexes, their biological activities are enhanced, thereby promoting bioavailability. Based on
this review, a variety of synthesized β-CD or Cys derivatives could broaden the range of applications
of cycloglucans as a solubilizing adjuvant for medicines and cosmetics.

Conflicts of Interest: The author declares no conflict of interest.
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