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Abstract

Studies on improving the adaptability of upper limb rehabilitation training do not often con-

sider the implications of muscle fatigue sufficiently. In this study, electromyogram features

were used as fatigue indicators in the context of human-robot interaction. They were utilised

for auto-adaptation of the task difficulty, which resulted in a prolonged training interaction.

The electromyogram data was collected from three gross-muscles of the upper limb in 30

healthy participants. The experiment followed a protocol for increasing the muscle strength

by progressive strength training, that was an implementation of a known method in sports

science for muscle training, in a new domain of robotic adaptation in muscle training. The

study also compared how the participants in three experimental conditions perceived the

change in task difficulty levels. One task benefitted from robotic adaptation (Intervention

group) where the robot adjusted the task difficulty. The other two tasks were control groups

1 and 2. There was no difficulty adjustment at all in Control 1 group and the difficulty was

adjusted manually in Control 2 group. The results indicated that the participants could per-

form a prolonged progressive strength training exercise with more repetitions with the help

of a fatigue-based robotic adaptation, compared to the training interactions, which were

based on manual/no adaptation. This study showed that it is possible to alter the level of the

challenge using fatigue indicators, and thus, increase the interaction time. The results of the

study are expected to be extended to stroke patients in the future by utilising the potential for

adapting the training difficulty according to the patient’s muscular state, and also to have a

large number repetitions in a robot-assisted training environment.

Introduction

Human-robot interaction (HRI) is the process of humans and robots working together to

accomplish a goal to make the interaction beneficial to humans. While designing an HRI

scheme, it is essential to understand the users of the system and evaluate the capabilities of

humans and robots. An acceptable HRI solution is expected to be adaptable by detecting and

responding to the changes in the environment and its users [1]. Hence, an adaptive robotic

interaction will require better sensing of the human performance parameters [2].
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Stroke patients during physical therapies may easily come to a state of fatigue due to their

reduced muscular and cognitive capabilities. Rehabilitation robotics can be used for training

stroke survivors to improve their muscular disabilities through regular exercises. Robots have

a potential to be used in strength training and rehabilitation [3, 4, 5, 6]. Robots are widely

adopted in strength training since they can increase the efficiency of the interaction by collect-

ing performance data, and thus, assess the progress of the training sessions. They have an

excellent potential to assist rehabilitation therapists in providing training for extended periods

and can help to deliver a large number of repetitions in training exercises. Robots enable mul-

tiple patients to be treated at the same time and possibly even remotely [3].

Increased exercise duration has been reported to have helped stroke recovery [7]. Increas-

ing the number of task repetitions is also known to help motor relearning significantly, and

thus, help the recovery of upper limb functions [8, 9, 10, 11]. Repetitions in training exercises

are thought to impact on their neuro-plasticity [12, 13, 14], but the repetitions often result in a

faster occurrence of muscle fatigue. Acute adaptations (like fatigue) often affect adversely dur-

ing rehabilitation training if not considered sufficiently. If a stoke patient feels a state of

muscle fatigue, the training session may have to be paused to allow recovery or abandoned

due to the restrictions put by ethics committee limiting the maximum time for a rehabilitation

session. The lost training session might also be demotivating to the patient [15]. Existing

physical therapies are designed without sufficiently considering the implications of fatigue to

the patient. So, researchers in the field of robot-assisted rehabilitation have been trying to

address the adaptability of rehabilitation training according to the physical state of the

patients. Given this, identifying if a better outcome can be achieved during a rehabilitation

training by adapting to individual muscular status, i.e. with respect to fatigue, is a novel area of

research.

Progressive strength training is an exercise that builds physical strength, especially in weak

or injured body parts, through a progressively difficult task according to a formula based on

the subject’s maximum strength at the starting point [16]. Progressive muscle training exer-

cises can help to have chronic adaptations (like maximal voluntary contraction) over time.

Chronic adaptations are the long-term physiological changes that take place in the human

body as a result of participating in a training program. The types of adaptations that lead to

improved performance are dependent on the specific type of training that is undertaken. The

techniques of progressive resistance exercise suggest to perform many repetitions until fatigue,

then allow sufficient rest between exercises for recovery, and then, to increase the resistance as

the ability to generate force increases [17, 18]. Robot-assisted strength training can be effective

if it is progressive and challenging based on the person’s abilities [19, 20].

Rehabilitation training for stroke patients is suggested to involve protocols for developing

muscle strength and relearning the lost motor skills. A rehabilitative training is considered to

be useful if it can help the patients to train more at the initial stages of recovery and to make

the task progressively challenging. Progressive resistance training can be the most effective

treatment to improve the muscle strength in patients, and studies suggest that there are long-

term benefits for this [21, 22, 23]. Resistance training/functional muscle strengthening is

found to be helpful for rehabilitation, and there is evidence to support “increased dose” of

exercises for stroke rehabilitation. Many studies [24, 25, 26, 7] have suggested that stroke reha-

bilitation can benefit from intensive muscle training, and a progressive strength training is

helpful for stroke recovery by improving the muscle strength. However, there is no universally

accepted protocol available for the upper limb rehabilitation of stroke patients, and the treat-

ment programs vary in the duration, intensity, and frequency of the rehabilitative therapy

[25]. While this research is interested in identifying interaction fatigue, there were no accepted

procedures from the stroke therapy literature that could be used towards inducing fatigue.
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Hence we relied on literature from sports science [27], where both progressive strength train-

ing and fatigue have been featured.

Previous work by Octavia et al. [28] has explored the muscle fatigue developed in the partic-

ipants during a robotic training interaction, and the proposed EMG based features indicated

muscle fatigue significantly in all the participants. However, the fatigue indicators were not

used for any robotic adaptation. In a different study, a strategy for adapting the physical behav-

iour of a robot according to the muscle fatigue in human-robot co-manipulation tasks was

suggested by Paternel et al. [29]. In the study, the robot initially imitated the human to perform

a collaborative task in a leader-follower manner, using feedback about human motor behav-

iour. The robot also simultaneously learned the skill in an on-line fashion. When a fatigue

threshold was reached, the robot used the learned skill to take over the task, which reduced the

human effort. However, the study was not designed for a context of rehabilitation. Besides the

“help-if” adaptive modality used here, other control strategies such as challenging, challeng-

ing-then supporting, supporting, under-supporting and under-challenging have also been

explored [30]. In our previous study, we have assessed muscle fatigue in healthy subjects dur-

ing an assist-as-needed interaction with the HapticMaster robot using Electromyogram

(EMG) features [31]. The EMG features, average power and median power frequency (MPF)

were used as fatigue indicators. The average power of the EMG signal is defined as the energy

contained in the EMG signal over a specified time interval [32]. Median frequency or MPF is

defined as the frequency, which separates the power spectrum of signals in two equal regions

with the same power [33, 34]. Past studies have explored both mean power frequency (MNF)

and median frequency to detect muscle fatigue [35, 36, 37, 38, 39, 40]. It is reported that MNF

is slightly higher than the median frequency because of the skewed shape of the EMG power

spectrum. In contrast, the variance of MNF is typically lower than that of median frequency

[34]. However, the estimation of median frequency is less affected by random noise, particu-

larly in the case of noise located in the high-frequency band of the EMG power spectrum [34].

In the initial study, during muscle fatigue, statistically significant trends in the average power

and median frequency were observed in the involved muscles. These provided the material for

the current study, where the fatigue indicator (median frequency) was used to change the

interaction difficultly during human-robot interaction automatically.

So, the idea here is to combine the above concepts for a potential application in stroke reha-

bilitation. The procedure for inducing muscle fatigue can be adopted from sports science liter-

ature for muscle training [27]. The task difficulty levels can be quantified based on the

maximum voluntary strength of participants and use a proportional increment of the difficulty

at regular intervals [41]. While the volume of repetitions is important for motor learning, the

progressive resistance used to challenge a subject is key for strengthening. Moreover, robotic

stroke rehabilitation studies such as [42] and [30] have suggested strategies of reducing task

difficulty, when high fatigue is detected. A balance between supporting and challenging (“chal-

lenging-then-supporting” sessions) has been suggested by Basteris et al. [43] to allow optimal

learning. Hence, a prolonged progressive exercise (with a high volume of repetitions), which

reduces difficulty during the onset of fatigue, and then, progressively increases the difficulty

when “not-fatigued”, is proposed here for muscle strength training in stroke patients. The idea

is to prevent the stroke patients from going to a high state of fatigue, that would otherwise

make them demotivated from continuing the training, or may cause further damage to their

muscles. By providing motivational elements (haptic feedback, visuals, etc.) in addition to the

adapting challenge levels, the protocols can be made to have better potential for applications in

rehabilitation training. Hence, the study was designed to explore the robot-assisted incremen-

tal strength training, which would adapt the task difficulty based on the run-time muscular

state of the participants through fatigue indicators. The EMG based fatigue indicators were
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used to enable the fatigue-adaptive training interaction allowing a prolonged exercise cycle.

The participants were expected to perform a prolonged progressive strength training exercise

with more repetitions with the help of a fatigue-based robotic adaptation compared to the

training interactions, which were based on manual/no adaptation.

Materials and methods

The overall context of the experiment is explained in Fig 1.

Experimental setup

The experimental setup included the HapticMaster robotic interface configured for a rowing

task. HapticMaster robot was configured to adapt its environment based on the fatigue

detected from the upper limb muscles of the participants. The EMG measured from the mus-

cles was used to detect the fatigue. An animated rowing environment embedded with audio

cues and haptic sensation of underwater viscosity were created using the HapticMaster robot,

to support an aesthetically pleasing interactive task for the participants. A user-interface and

the animated environment were developed using Visual C++ and with Open GL programming

in a Windows PC. The background on a wide-screen 43 inch LCD monitor would display the

Fig 1. Context of the study. HapticMaster robot was configured to adapt its environment based on the detected muscle fatigue. EMG measured from upper limb

muscles was used to detect the fatigue. The adaptive strength training algorithm forms a closed loop, as shown. Kinematic measurements, detected fatigue, reported

fatigue, and demographic measurements were also analysed off-line.

https://doi.org/10.1371/journal.pone.0233545.g001
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front-end of a rowing boat with flowing water as in Fig 2, which would potentially motivate

the participants for active involvement in the task. Suitable audio for water flow was played in

the background. The HapticMaster robot was programmed to deliver different viscosities

underwater and above water while rowing. The starting time, the break period and the stop-

ping time of the experiment were guided by audio cues.

A non-invasive EMG acquisition device (CE marked g.USBamp) from g.tec medical engi-

neering GmbH, was used to acquire the EMG signals from the upper limb muscles. The con-

figuration parameters for g.USBamp amplifier for data acquisition (sampling rate, channel

selection, frame length, and electrode configurations) was set using a Simulink model. Three

EMG electrode channels were configured in bipolar mode with a sampling frequency of

1200Hz. They were attached to three upper limb muscles, biceps brachii (BB), anterior deltoid

(DLTF), and middle deltoid (DLTM). An electrode cable with a clip-lead was attached to ster-

ile disposable non-invasive electrodes to measure EMG signals, as shown in Figs 3 and 4. A

bipolar electrode configuration was used for the EMG acquisition, and the electrode placement

errors were minimised by following SENIAM guidelines [44]. Participant’s demographic data

such as body weight, body mass index (BMI), visceral fat classification, skeletal muscle per-

centage, and body fat percentage were measured using OMRON digital weight scale. This data

was used for studying its correlation with the task performance measures during the off-line

analysis, as explained later.

Experimental protocol and methods

The experiment was designed for performing an upper limb exercise that simulates boat row-

ing using a robotic arm. The study compared how the change in task difficulty levels was

Fig 2. Experimental setup. The experimental setup included HapticMaster robot, visual guidance and animated background. The

front-end of the rowing boat was shown on the LCD display in front of the participant. The rowing environment was embedded

with audio cues and haptic sensation of underwater viscosity.

https://doi.org/10.1371/journal.pone.0233545.g002
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perceived by the participants when the robot adjusted the difficulty when the difficulty was

manually adjusted as well as when there was no difficulty adjustment at all. Three experimental

conditions were chosen, one benefiting from robotic adaptation (the intervention group) and

the other two presenting control groups 1 and 2. Thirty (30) healthy right-handed participants

(13 female and 17 male) of at least 18 years old (mean ± SD: 31.8 ± 10.6 years) and with no his-

tory of injury to the upper limb and back were involved in the experiment. They were students

or staff members of the University of Hertfordshire or volunteers from outside the university.

The participants were asked to hold the robotic end-effector using their right hand with an ani-

mated boat rowing environment on an LCD monitor in front. They were free to move the

robot in any path for rowing on the right side of the boat. The number of rowing iterations

and the time duration of the tasks were studied, when the task was not auto-adjusted according

to user’s state of fatigue (control groups) as well as when using an adaptive algorithm for alter-

ing the difficulty (the intervention group). Ethics approval was obtained from the Health, Sci-

ence, Engineering and Technology Ethics Committee, University of Hertfordshire (Protocol

number: aCOM/PGR/UH/03221(1)). Written informed consent was obtained from all indi-

vidual participants included in the study.

Protocol. The protocol for the current experiment was defined based on the study of

Chang et al. [27]. Participants performed a set of maximum voluntary contraction (MVC) tri-

als at first, then took a recovery break, followed with a low-intensity task, and then gradually

increased the difficulty level. The protocol included a preparation stage, followed by initial

measurements, a familiarisation session and finally a performance session (DOI: dx.doi.org/

10.17504/protocols.io.5hrg356) as described in Fig 5.

The total duration of the experiment, including the setup time for each participant, was

usually 40-55 minutes. Audio feedback was given regarding the start and end of the

Fig 3. EMG signal acquisition setup. The EMG acquisition device with g.USBamp amplifier, three bipolar electrodes and a ground

electrode.

https://doi.org/10.1371/journal.pone.0233545.g003
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experiment cycles as well as during break periods. The participants were allowed to stop the

session in case of any feeling of fatigue or discomfort during the experiment.

A questionnaire was given as part of the experiment to capture the subjective state of fatigue

for each participant. The participants were requested to fill in a part of the questionnaire at the

beginning and after the experiment. This collected various information such as the level of

muscle fatigue before and after the experiment, the level of task difficulty, and their feeling

about the effect of fatigue on their performance. The questionnaires also collected information

such as, if they felt that the robot assisted them while doing the task if they received sufficient

robotic assistance exactly when they needed, did the robotic assistance help them to perform

more iterations, and which muscles were more tired. The answers were collected using a cate-

gorical scale. For example, the state of fatigue was collected using the categories, “Not

Fatigued”, “Somewhat Fatigued”, “Fatigued”, “Very Fatigued”, and “Extremely Fatigued”. The

level of task difficulty was categorised as “Too Easy”, “Somewhat Easy”, “Difficult”, “Very Dif-

ficult”, and “Extremely Difficult”. The collected information was later used during off-line

analysis.

Fig 4. EMG electrode locations. EMG electrodes are connected to three upper limb muscle locations (Biceps Brachii

(BB), Anterior Deltoid (DLTF), and Middle Deltoid (DLTM)). The ground electrode was connected to a bony area

near the elbow.

https://doi.org/10.1371/journal.pone.0233545.g004
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Preparation. EMG sensor electrodes were connected to the skin on the upper limb loca-

tions. The skin area for the sensor application was prepared by cleaning with a wet wipe. Par-

ticipants were assisted to fix the EMG electrodes on the upper limb muscles. The ground

electrode was connected to a bony area near the elbow, as shown in Fig 4. The participants

were asked to sit straight on a non-rotating chair during the experiment. The hand involved in

the experiment was not externally supported. Participants were advised to wear a loose gar-

ment for the ease of fixing the electrodes on the upper limb.

Initial measurements. Since the rowing task is of a dynamic nature, each participant will

apply different levels of force according to their physical strength and the current state of

fatigue. This will make it difficult to compare the task performance measures (time-to-fatigue,

experiment duration, and the number of task repetitions) across the subjects. Also, the robot’s

maximum force is not comparable to the range of maximum force variations in an average

healthy individual. So, a personalised assessment was used to identify the maximum feasible

force. Since the fatigue was planned to be produced through the resistance offered by the

robot, it was decided to make the measurements of an isometric quantifiable nature by stan-

dardising the applied force/resistance across the different participants. Hence, the most feasi-

ble and highest robotic resistance for the rowing task was measured for each participant. The

initial robotic resistance for each participant was set to a comfortable highest level by manually

adjusting the damping coefficient of the robotic end-effector. Verbal feedback about the task

difficulty was collected from each subject. The value of the damping coefficient corresponding

Fig 5. Experiment protocol. Description of the different stages of the experiment protocol.

https://doi.org/10.1371/journal.pone.0233545.g005
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to the highest feasible force/resistance was noted. Three such maximum voluntary contrac-

tions (MVC) were conducted. There was a break period of at least 30 seconds between each

MVC trial [45, 46, 47]. The average value of the three readings was calculated [27]. This was

termed MVC-Equivalent (MVC-Eq) and was approximated as each subject’s MVC force,

which was used to set the initial task difficulty for each subject. After the three MVC trials,

there was a break period for 10 minutes or until a self-reported full recovery before starting the

rowing task [27]. The parameter MVC-Eq here does not actually represent force; instead it

represents the damping coefficient that corresponds to the maximum feasible robotic resis-

tance. So the MVC-Eq used in this study has a unit of damping coefficient (Ns/m) and not that

of force. Hence, the MVC-Eq here is related to the damping force (force opposing the move-

ment) as shown in Eq 1 [48]. The damping force is related to the velocity of movement as in

the equation, and thus also to the rowing frequency adopted by different participants.

Forcedamping ¼ DampingCoefficient � Velocity ð1Þ

The EMG measurements were taken from the three upper limb muscles of the participants.

Demographic data of each participant was measured before the experiment. The gender, age,

and height of the participants were also measured. Different parameters like subject group

name, MVC-Equivalent, number of rowing iterations, kinematic measurements such as the

end-effector position, velocity and force were logged into a file at a rate of 10 samples per sec-

ond approximately. The different states of muscle fatigue were also logged during the experi-

ment (reported fatigue, detected fatigue and relaxed state).

Familiarisation and performance sessions. After the initial measurements were com-

pleted, all the participants familiarised themselves with the robot and the environment in a

practice run, which was then followed by the performance session. There were three experi-

mental conditions and hence, three groups of participants in this study. They were randomly

assigned to a group, and each group was assigned 10 participants each as described in Table 1.

The intervention group was designed to involve the participants in a fatigue-adaptive robotic

environment, where the subjects would receive varying resistance from the robot automatically

based on their muscular state (fatigue) detected using EMG features. Control Group 1 was

meant for studying the performance of the subjects in a similar environment as in the inter-

vention group, but instead of receiving a robotic adaptation they were given break periods at

regular intervals, and then an increased resistance after the break. They did not receive any

adaptation from the robot during the interaction. Control Group 2 was designed for exploring

the task performance during the same adaptive robotic environment as in the intervention

group, but instead of receiving an automatic adaptation, the subjective state of muscular

fatigue was used for the robotic adaptation. During these three experimental conditions, par-

ticipants were asked to perform the exercise until they were unable to continue or until they

reported fatigue three times or until the maximum feasible robotic resistance was reached.

During the performance session, the three groups of participants involved in each experi-

ment branch received incremental robotic resistance at some intervals (1 minute). The experi-

ment started at a low difficulty level of 20% maximum feasible MVC equivalent (MVC-Eq)

Table 1. Participant table with gender, age and experiment groups. Each participant was assigned to different groups (Control 1, Control 2, and Intervention) randomly.

There were 17 male and 13 female participants of at least 18 years old.

Groups Age (mean ± std) in Years Number of Male Subjects Number of Female Subjects

Intervention 29.5 ± 8.17 5 5

Control 2 34.5 ± 14 6 4

Control 1 31.3 ± 9.36 6 4

https://doi.org/10.1371/journal.pone.0233545.t001
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resistance [49], then this was progressively incremented by 10% MVC-Eq in each trial, and

then normally continued until the robotic resistance reached 100% MVC-Eq [27]. The part,

where the current difficulty was incremented by 10% MVC was termed MVC+ part. However,

there were different strategies for the break period or reducing the difficulty level in the three

subject groups. The subjects were requested to report fatigue when they were in a state of pain

or unable to continue, which helped to assess their psychological perception of fatigue. Partici-

pants of all groups were allowed to report fatigue orally during the interaction, which was then

recorded as a subjective measure of fatigue. The experiment would continue until the partici-

pants reported fatigue three times or until the robotic resistance reached 100% of

MVC-Eq. The maximum duration of the rowing tasks was set to 20 minutes, after which the

experiment was manually stopped in order not to exceed the maximum experiment duration

of 45-60 minutes.

Control-1 group. In Control-1 group participants, the protocol suggested by Chang et al.

[27] of increasing difficulty for muscle training, with break periods in between each trial was

implemented. The participants did not receive any adaptation from the robot, and there were

no reducing of difficulty levels during the robotic interaction. While the status of the muscle

fatigue was recorded, there was no intervention based on the detection of fatigue; instead, the

participants could only report fatigue. The participants were asked to perform each trial for 1

minute [27] or until they felt tired before they could take a break of 30 seconds [50, 51, 52].

After each break, the next trial lasted for 1 minute. After the break period, the robotic resis-

tance was incremented by 10% MVC-Eq before the subsequent trial. During the break period,

the EMG acquisition was stopped, and the measurements were saved to a file.

Intervention group. In the Intervention group the participants interacted with an adap-

tive robotic environment, which was designed to adjust the difficulty level of the exercise auto-

matically based on EMG fatigue indicators from the upper limb muscles. In addition to

automatic fatigue detection, the participants were also allowed to report fatigue when needed.

However, the reported state of fatigue was only saved to a file and not used for any adaptation.

There were no break periods given; instead, there was a single continuous trial that incremen-

ted the difficulty level by 10% MVC-Eq every 1 minute. When the algorithm detected fatigue,

the difficulty level was automatically decreased to 50% of the current value. The action when

the value that caused fatigue was reduced to half and repeated was termed ‘reduce difficulty’

action. When relaxed, the robotic resistance was again incremented by 10% MVC-Eq after

1-minute trial, and then the trials were repeated until the resistance reached 100% MVC-Eq.

Control-2 group. There may be a delay in reporting fatigue compared to the fatigue that

can be detected using EMG. This was studied by recruiting Control-2 group participants,

where each participant reported the subjective fatigue, and the robotic adaptation was per-

formed based on this. Similar to the Intervention group, there were no break periods between

trials; instead, there was a single continuous trial that incremented the difficulty level by 10%

MVC-Eq after every 1-minute trial. The robotic resistance was adapted only based on subject-

reported fatigue and did not use the status of automatically detected fatigue. When the fatigue

was reported by the participant, the difficulty level was decreased to 50% of the current value.

After 1 minute, the robotic resistance started incrementing by 10% MVC-Eq, and then the tri-

als were repeated until the resistance reached 100% MVC-Eq.

EMG data processing. The main part of the algorithm was implemented in an on-line

modality. MATLAB 2016b was used to develop the EMG acquisition and on-line signal pro-

cessing algorithms in Simulink. The g.USBamp hardware was supported by a data acquisition

toolbox and used by downloading an adaptor API for the hardware. The hardware could be

used from Simulink using the toolbox to incorporate live data into the Simulink model. Fur-

ther analysis of the EMG, such as time-to-fatigue measurement and correlation study, were
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performed off-line. A de-multiplexer block was used to separate the individual EMG data from

each electrode (Fig 6). Then, for each EMG channel, Simulink buffers were used to split the

individual EMG data into blocks of fixed sizes. The average time taken to complete a single

iteration rowing task was around 6 seconds. Hence, a buffer size of 7200 samples was used in

the model (an average of 6 seconds per iteration x a sampling rate of 1200) to split the EMG

into blocks. This buffer size was then used as the window length for EMG processing and anal-

ysis. MATLAB Function blocks were used to develop custom functions that processed the

EMG data frames from the three muscles simultaneously and generated a fatigue status from

all the three muscles separately. These function blocks calculated the EMG features (median

frequency and average power) corresponding to one buffer length of the EMG from three

muscles, as shown in Fig 6. Within each function block, a notch filter was used at 50Hz to

remove the power line interference. For calculating the average power, the EMG was band-

pass filtered at 0.8-2.5Hz [28], and for median frequency, at 20-450Hz. The MATLAB 2016b

library function, “medfreq()” was used to estimate the median frequency of the power spec-

trum of EMG signal in terms of the sample rate. Average power was estimated using the

“bandpower()” function provided by the MATLAB library. During the experiment, the EMG

raw values and the estimated EMG features (average power and median power frequency)

were also logged into csv files.

The EMG features calculated from the initial EMG blocks for each muscle were also used to

calculate a baseline range to be used for fatigue detection. This baseline feature range corre-

sponded to a muscle state before any occurrence of fatigue during the exercise. The baseline

range was later used as a threshold to compare with the features from the following EMG mea-

surements as the exercise progressed. The first three frames (corresponding to the initial 15

seconds) were ignored to avoid random fluctuations at the beginning of the EMG data, which

might result in a wrong calculation of the baseline range. The features corresponding to the

next frames were saved into a feature array, and were used for the calculation of the baseline

range as described in Eq 2 [53, 54, 55]. The mean and standard deviation (STD) of the first five

elements of the feature array were calculated, which corresponded to the movements during

the initial 30 seconds approximately, ignoring the skipped initial frames. The duration of 30

seconds was approximated based on the inferences during the pilot trials, which would not

Fig 6. Simulink model for EMG data acquisition. The model has an on-line signal processing algorithm that

performs fatigue detection for each muscle simultaneously. The detected fatigue state was communicated to the

HapticMaster control algorithm.

https://doi.org/10.1371/journal.pone.0233545.g006
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have had an instance of fatigue at the initial stages of the exercise.

UpperLimit ¼ meanðxÞ þ 2 � STDðxÞ ð2Þ

LowerLimit ¼ meanðxÞ � 2 � STDðxÞ ð3Þ

where x was the input baseline array of features.

Past studies have utilised EMG amplitude and median power frequency as fatigue indica-

tors in various contexts [35, 36, 37, 38, 39]. As per our previous study, a statistically significant

increase in the average power and decrease in median frequency were identified as indicators

of muscle fatigue during an assist-as-needed robotic interaction [31]. Hence, a 2-times stan-

dard deviation check based on Eq 2 was used to decide if a new value of EMG feature was

within the range or outside the range. For each muscle, if the feature values were out of range

three times continuously, then a corresponding fatigue flag was set. When the features were

within the baseline range, the fatigue flag was cleared. For EMG median frequency, a signifi-

cant decrease in its value would cause fatigue detection, if the current value is below the lower

limit of baseline threshold three times consecutively. If the value increases back to the baseline

range three times consecutively, then the corresponding muscle was considered relaxed.

It was noticed during the pilot studies that the MVC+ step added some additional force

requirement on the muscles while performing the rowing task, which resulted in an increase

in the EMG amplitude and, hence, also in the average power. In shared control, where imped-

ance/admittance control methods are used for robot-assisted strength training, the exercise

intensity was found to increase as the desired damping increased [56]. The muscle activation

was linear and proportional to the resistive load. Also, when the damping coefficient goes

high, the speed of the task would also decrease. Hence, the result of using a 2-STD check for

fatigue detection using EMG average power can be an indication of both muscle fatigue and

the higher force requirement due to the MVC+ increments. However, this does not seem to be

the case for median frequency due to the different physiological reasons behind the shift in the

frequency spectrum during fatigue [38, 39, 35]. Since the average power was always showing

an increase due to the MVC+ increments, only the median frequency was used in the fatigue

detection algorithm. This makes the method similar to the JASA method [57, 58]. However,

the average power was also logged during the experiment for the off-line analysis.

Simulink model for fatigue detection. As shown in the Simulink model (Fig 6), process-

ing of the EMG measurements from the three muscles and detecting the corresponding mus-

cular fatigue were done in parallel. If any of the three muscles indicated fatigue, a

corresponding fatigue flag was set to 1. The final state of the upper limb fatigue was indicated

by a separate fatigue flag, and this was done based on a logical ‘OR’ operation on the three indi-

vidual fatigue flags corresponding to each EMG electrode. The final state of fatigue was then

communicated to the HapticMaster control software through a shared csv file. The fatigue sta-

tus was checked by the robotic algorithm by reading this file approximately every 6 seconds

corresponding to one buffer size of EMG data. Since the robotic adaptation was not too time-

critical, this way of communication was sufficient to feedback the state of muscles. If the

robotic assistance had helped to reduce the fatigue, the muscle activation was supposed to be

back to the normal range (within the baseline range). The fatigue flags were reset by the algo-

rithm when the feature values returned to their baseline range. The individual muscles were

considered relaxed when the corresponding fatigue flags were reset to zero. The upper limb

was considered relaxed only when all the individual muscles were identified as relaxed. The

relaxed state of the muscles was then updated in the shared csv file accordingly, which would

inform the robot that the upper limb muscles were relaxed.
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Adaptive robotic algorithm. The adaptive robotic algorithm was designed to support the

intervention group participants when fatigue was detected based on the changes in the EMG

features. The fatigue flag was checked by the robotic algorithm to adapt its behaviour accord-

ingly. As explained in the protocol (Fig 7), after detecting fatigue, the robotic resistance was

reduced to 50% of the present value that caused the fatigue. The ‘reduce difficulty’ action con-

tinued as long as the fatigue flag was set. Once the difficulty was reduced by 50%, the next

‘reduce difficulty’ action would only happen after the current trial of 1-minute duration was

completed or after the muscles are relaxed once. Hence, if a fatigued state continued even after

receiving the ‘reduce difficulty’ action earlier, the difficulty would further reduce by 50% in the

next trial. This would go on until all the muscles were relaxed. Since there was a possibility that

one of the muscles get fatigued, and then never relaxed, the assistance algorithm had to make

sure that all the muscles were relaxed. This was done by the robot by providing additional

anti-gravity support temporarily when the difficulty level reached the lowest value. This sup-

port was withdrawn once the muscles were relaxed at the lowest level of difficulty, and the

MVC+ increments started again.

Off-line data analysis. An off-line data analysis was conducted on the different parame-

ters calculated/obtained from the experiment. The parameters such as the time taken to auto-

matically detect fatigue, the time of reported fatigue, the variation in the difficulty levels, the

total duration of the experiment, the number of task repetitions/iterations, and the repetitions

per minute were studied. For Control-1 group participants, the time-to-fatigue was calculated

off-line from the EMG features, since there was a break period between different trials (of

1-minute duration), and the EMG data acquisition was stopped after each trial. The continu-

ous progress of the EMG fatigue indicators could not be understood directly from the individ-

ual trials. Hence, the individual mat files containing the EMG data from each trial were

merged to form a single combined mat file for each subject. The combined data was then ana-

lysed to detect fatigue as the trials progressed. However, some unexpected signal spikes were

observed at the beginning of each trial after each break period when the device started captur-

ing the EMG data. This appeared as an unexpected increase of EMG amplitude and, hence,

resulted in a wrong fatigue detection by the algorithm. Hence, during the off-line EMG analy-

sis, while combining the different mat files corresponding to each EMG acquisition, the initial

spikes were avoided by ignoring the initial second of EMG data from each trial. Additionally,

after combining the files, the initial 12 seconds of combined EMG data corresponding to the

first two frames were also skipped during the off-line processing. However, during the on-line

EMG processing for the Intervention and Control 2 groups, there was one additional empty

frame of data at the beginning that was generated by the Simulink buffer block, and this

occurred when the model started running. Hence, this additional frame was also skipped dur-

ing the on-line processing, which made the total number of skipped initial frames 3. But in off-

line processing, this was not required since this additional empty frame did not exist, and

hence, only two frames were skipped.

During the analysis, the time-to-fatigue for the Intervention group and Control-2 group par-

ticipants were calculated based on the data read from the HapticMaster log file using an algo-

rithm developed in Python 3.7. The log file contained different information like the timestamps,

end-effector position, velocity, and force, detected and reported-state of fatigue, iterations, and

task difficulty level. The time-stamp corresponding to the state of fatigue was noted and used to

calculate the time-to-fatigue. However, for Control-1 group participants, the time-to-fatigue was

measured from the values of fatigue detection flags set by the off-line algorithm in MATLAB

and by noting the corresponding window numbers. The corresponding window numbers were

then multiplied by the window length to get the corresponding time-to-fatigue. Since the kine-

matic data corresponding to the break period between different MVC+ trials was also ignored,
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Fig 7. Algorithm for robotic adaptation. The flow chart of the adaptation algorithm for Intervention group participants.

https://doi.org/10.1371/journal.pone.0233545.g007
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the time duration of the exercise in Control-1 group was calculated after skipping these periods.

The number of task repetitions and the speed of repetitions (per minute) [42] were also ana-

lysed. A comparison was also made between the results considering the 2-STD threshold against

3-STD, 4-STD, and 5-STD thresholds in the algorithm for fatigue detection.

A correlation study was conducted between the participant demographic data (BMI, body

fat percentage and skeletal muscle percentage) and the task performance measures (time-to-

fatigue, experiment duration, and the number of task repetitions). This was performed to see if

there is any influence of the demographic data on muscle fatigue, even after standardising the

initial task difficulty based on the MVC-Equivalent for each participant. Spearman’s correla-

tion analysis was performed using IBM SPSS v22.

Results

Median frequency analysis

Similar to the results from the previous experiments [31], an increase in average power and a

decrease of median frequency were observed and confirmed during the analysis. In the current

study, a decrease in median frequency was never accompanied by a decrease in the amplitude

as verified during the off-line analysis. Hence, a decrease in muscle force was not the probable

cause for the above response of the EMG features; instead, it was the muscle fatigue which

caused this.

The variation of median frequency over time for a typical subject and the corresponding

detection of fatigue in the individual muscles (BB, DLTF, DLTM) are shown in Figs 8 and 9,

respectively. The method for fatigue detection was based on our previous work on fatigue

detection in a robotic environment [31]. Feature line plots that show the progress of EMG fea-

tures as the different muscles were fatigued and relaxed during the adaptive robotic interaction

Fig 8. Progress of EMG median frequency. Median frequency in a typical Intervention group participant (Subject 20), who received adaptive robotic assistance

based on the detected muscle fatigue using EMG features. The doted regions represent a significant decrease in median frequency, which resulted in the detection

of fatigue.

https://doi.org/10.1371/journal.pone.0233545.g008
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are shown in Fig 8. The median frequency in the Intervention group participant displayed

both increases and decreases based on the robotic adaptation. The doted regions indicated a

significant decrease of median frequency in the DLTM muscle, which caused in the detection

of fatigue. The initial values showed that the muscle fatigue was detected when the EMG fea-

ture went outside the 2-STD threshold range and relaxed when the feature was back in the nor-

mal range. For example, for a typical subject in Intervention group the baseline range (using

2-STD threshold) for BB muscle was calculated using the initial five values of median fre-

quency in Hz (73.87, 74.86, 74.92, 78.92, and 78.52), which resulted in a range of 80.87 Hz to

71.56 Hz. Muscle fatigue was later detected when the feature values went below this range

three times continuously (70.73 Hz, 69.40 Hz, 71.48 Hz) as the time progressed. The final

fatigue flag was set based on the individual fatigue flags for each muscle. The doted regions

indicated the detection of fatigue in the DLTM muscle, which decided the final state of fatigue

in this case, as shown in Fig 9. The other muscles, even though underwent many cycles of

fatigue and relaxation, were not the deciding factors in the final decision about fatigue.

Robotic resistance adaptation

The progress of the difficulty levels/damping coefficients during the rowing task for the three

groups of participants was plotted, as in Figs 10, 11 and 12. The Control-1 group performed

the experiment with difficulty taking much effort to complete, however, was not able to do

many iterations due to the progressively increasing difficulty after every 30 seconds break

period as shown in Fig 10. After the experiment, only two subjects in the Control-1 group

reported fatigue, four subjects reported “somewhat fatigued”, and the remaining four reported

“not fatigued” through the final questionnaire. The break period introduced to avoid fatigue

seemed to have helped many of them to recover before each trial. In Control-2 group

Fig 9. Status of fatigue flags. The fatigue flags in a typical Intervention group participant (Subject 20), who received adaptive robotic assistance based on the

detected muscle fatigue. The doted regions represent the detection of fatigue in the DLTM muscle, which decided the final state of fatigue.

https://doi.org/10.1371/journal.pone.0233545.g009
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Fig 10. Task difficulty in Control-1 group. The progress of task difficulty in Control-1 participants, who received 30

seconds break period after each trial of 1-minute duration before the MVC+ increment. This group did not receive any

robotic adaptation based on muscle fatigue.

https://doi.org/10.1371/journal.pone.0233545.g010

Fig 11. Task difficulty in Control-2 group. The progress of task difficulty in Control-2 group participants, who

received a manual robotic adaptation based on the subjective fatigue reported.

https://doi.org/10.1371/journal.pone.0233545.g011
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participants, a subjective reporting of fatigue during the experiment was used to manually

reduce the task difficulty by 50% of the current value as shown in Fig 11, which helped them to

prolong the exercise. When the subjects reported relaxed, the difficulty started increasing by

10% MVC, as shown in the figure. The questionnaire response after the experiment stated that

five subjects reported “fatigued” and the remaining five reported “somewhat fatigued”. None

of them reported “Not Fatigued”.

Intervention group participants could do many iterations of rowing task due to the auto-

adaptation of the task difficulty based on their muscular state. Several of them could continue

the experiment until the maximum duration of 20 minutes was reached. Many participants

did not report fatigue during the session, and the experiment had to be stopped since the time

limit was exceeded. However, as shown in the plot of difficulty levels in Fig 12, it was noticed

that muscle fatigue was detected by the algorithm many times during the task, and the diffi-

culty was automatically adjusted by the algorithm accordingly. The difficulty was reduced to

50% of the current value each time when the algorithm detected fatigue. When a relaxed state

of muscles was detected by the algorithm, the participants received progressively challenging

increments in the difficulty level by 10% MVC.

A non-parametric (Kruskal-Wallis) test on the damping coefficient across the three subject

groups showed that there was a significant difference across them. The results show that the

three groups explained 36.3% of the variability in the damping coefficient (robotic resistance).

Among the three groups, the pair-wise comparison between Control 1-Intervention groups

had the highest effect on the variability in the robotic resistance (41% of the variability). The

median values of robotic resistance between the groups indicated that the Intervention group

had the least median value compared to the other two groups, as shown in Table 2.

Fig 12. Task difficulty in Intervention group. The progress of task difficulty in Intervention group participants who

received an automatic robotic adaptation based on the detected fatigue using EMG features.

https://doi.org/10.1371/journal.pone.0233545.g012
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This showed that the automatic detection of fatigue based on EMG features by the algo-

rithm resulted in a switching of the task difficulty. This helped the participants to avoid or

delay a state of fatigue during the interaction and, hence, to have more repetitions and a pro-

longed robotic interaction.

The adaptive robotic algorithm produced the task difficulty as the output, and this was

decided based on the muscular state of the participants. Analysing the average task difficulty

offered by the adaptive algorithm for the different participant groups indicated that Control-1

group participants faced the greatest task difficulty. Since the Intervention group received

auto-adaptation of the task difficulty during the progressively challenging task, their average

task difficulty was significantly lesser than that of the control groups.

Task performance measures

Task performance was measured using the analysis of variance (ANOVA) method for the dif-

ferent features as in Table 3.

Table 2. Comparison of medians of damping coefficient across the three subject groups. Intervention group had the least value compared to Control 1 and Control 2

groups.

Comparison of Medians (of Damping Coefficient)

Control 1 N Valid 57477

Missing 0

Median 230.000000

Std. Deviation 121.2779196

Control 2 N Valid 51386

Missing 0

Median 144.800000

Std. Deviation 93.9520811

Intervention N Valid 89091

Missing 0

Median 62.500000

Std. Deviation 83.0499727

https://doi.org/10.1371/journal.pone.0233545.t002

Table 3. Analysis of variance (ANOVA)for the task performance measures.

ANOVA Table

Sum of Squares df Mean Square F Sig.

Number of Repetitions � Group Between Groups (Combined) 129105.000 2 64552.500 14.792 0.000

Within Groups 117829.000 27 4364.037

Total 246934.000 29

Duration(s) � Group Between Groups (Combined) 1489556.828 2 744778.414 19.093 0.000

Within Groups 1053229.088 27 39008.485

Total 2542785.915 29

Repetitions / min � Group Between Groups (Combined) 61.476 2 30.738 2.794 0.079

Within Groups 297.048 27 11.002

Total 358.523 29

Time to Reported Fatigue (s) � Group Between Groups (Combined) 985373.911 2 492686.956 15.778 0.000

Within Groups 374716.097 12 31226.341

Total 1360090.008 14

https://doi.org/10.1371/journal.pone.0233545.t003
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Task duration. Analysing SPSS box plots of the duration of the experiment in the three

subject groups as shown in Fig 13 indicated that the Intervention group participants who

received adaptation had the highest duration compared to Control-1 group who did not

receive any adaptation. In the Control-1 group, the 30 seconds of break period between differ-

ent trials were ignored while calculating the duration. The Control-2 group displayed a better

duration compared to Control-1 group but less than that of the Intervention group partici-

pants. The analysis of variance (ANOVA) of task duration across the three subject groups also

supported these results, as shown in Table 3. Using ANOVA, the Intervention group had a sta-

tistically significant (F(2, 27) = 19.093, p< 0.005) prolonged interaction due to the auto-adap-

tation of the task difficulty during the progressively challenging exercise.

Number of repetitions. The number of repetitions during the rowing task was compared

using the box plots, as shown in Fig 14. There was a statistically significant difference in the

number of repetitions in the three groups, where the Intervention group displayed the highest

values compared to Control 1 and Control 2 groups (F(2, 27) = 14.792, p< 0.005) as shown in

Table 3. The number of task repetitions per minute was also calculated and analysed as shown

in Fig 15, presenting close to significant differences (F(2, 27) = 2.794, p = 0.079).

Time to fatigue. The time taken to reach the first reported state of fatigue was also ana-

lysed using box plots as shown in Fig 16. The Intervention group was found to have taken

more time to reach a state of fatigue, as indicated by the higher values compared to Control 1

and Control 2 groups. This difference was also statistically significant (F(2, 12) = 15.778,

p< 0.005). However, as indicated by F(2, 12) in Table 3, not all subjects had a time-to-

reported-fatigue value and hence, could not be considered for the ANOVA analysis. Only 2

participants in Control 1 group, 8 participants in the Control 2 group, and 5 participants in

the Intervention group reported fatigue after the experiment. Control 1 participants seem to

have taken advantage of having the break periods.

During the off-line processing, fatigue flags were also generated using algorithms based on

3-STD, 4-STD and 5-STD thresholds for studying the time of occurrence of the first fatigue.

This was then compared against the time of the first reported-fatigue. It was noticed that using

a 5-STD threshold for the fatigue-detection algorithm resulted in closer values of time-to-

Fig 13. Box plots for task duration. Box plots showing the duration of the experiment in the three groups of

participants.

https://doi.org/10.1371/journal.pone.0233545.g013
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fatigue between the reported and the detected fatigue. As an example, the difference between

the time to first-reported-fatigue and the time to first-detected-fatigue considering different

thresholds in few subjects was as shown in Table 4. The difference between the two was smaller

in the case of the 5-STD threshold compared to the other thresholds in most of the cases. In

some cases, the calculated time-gap was negative as few participants reported fatigue before

the automatic fatigue detection. However, as seen in Table 4, the time-gap study could not be

conducted for few participants. Few subjects did not report any fatigue during the interaction;

however, the onset of fatigue could be detected automatically by the algorithm (Intervention

and Control 2 groups) and using off-line analysis of EMS (Control 1 group). Also, in few other

participants, the EMG median frequencies did not fall below any of the thresholds 3-STD,

Fig 15. Box plots for speed of repetitions. Box plots showing the rate of task repetitions (repetitions/minute) of the

rowing task in the three groups of participants.

https://doi.org/10.1371/journal.pone.0233545.g015

Fig 14. Box plots for number of repetitions. Box plots showing the number of repetitions of the rowing task in the

three groups of participants. The Intervention group could do more task repetitions due to the auto-adaptation of the

task difficulty during the progressively challenging exercise.

https://doi.org/10.1371/journal.pone.0233545.g014
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4-STD, and 5-STD. Hence, the time-gap values for these subjects could not be shown in the

table due to either the absence of any reported-fatigue or detected-fatigue.

Correlation results. The correlation statistics between the demographic data and task

performance measures for the Intervention group was as shown in Table 5 Corr Intervention.

As can be noticed, there was no significant correlation with time-to-fatigue and task repeti-

tions. A moderate correlation was noticed with the task duration. However, for Control 1

(Table 6) and Control 2 (Table 7) groups, only body fat percentage displayed some correlation.

Kinematic data analysis. The kinematic force and position measured by the robot were

used to calculate the amount of work done against the resistive forces. The work was calculated

Fig 16. Box plots for time-to-fatigue. Box plots showing the time taken to reach the first reported state of fatigue in

the three groups of participants.

https://doi.org/10.1371/journal.pone.0233545.g016

Table 4. Difference between the the “time to reported-fatigue” and “time to detected-fatigue” in seconds using different thresholds for the fatigue detection algo-

rithm. Time-gap was calculated only for those subjects who had instances of both reported and detected fatigue. For the other participants, the time-gap could not be cal-

culated due to the absence of a reported-fatigue because of the reasons mentioned above. Also, a few other subjects had a negative time-gap due to reporting fatigue prior

to automatically detecting fatigue.

Participant No Group 2-STD 3-STD 4-STD 5-STD

Subject 1 Intervention -248.228 -338.228 -338.228 147.772

Subject 3 Control 1 406.949 375.946 375.946 333.946

Subject 4 Control 2 -348 NA NA NA

Subject 5 Control 2 83.545 NA NA NA

Subject 9 Intervention 841.576 829.574 829.574 829.574

Subject 12 Intervention 737.331 707.329 707.329 659.329

Subject 18 Intervention 376.438 250.438 16.438 4.438

Subject 19 Intervention 268.725 NA NA NA

Subject 21 Intervention 1043.206 1037.206 1037.206 1013.204

Subject 22 Control 2 198.03 198.03 198.03 198.03

Subject 23 Control 2 -69.189 NA NA NA

Subject 24 Control 2 324.039 294.037 288.037 228.037

Subject 26 Control 2 277.493 115.493 109.493 79.493

Subject 30 Control 2 91.181 49.179 43.179 7.179

https://doi.org/10.1371/journal.pone.0233545.t004
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using the displacement and the corresponding change in force, as shown in Eq 4. For Control

1 group, the kinematic data during the break periods were removed.

Work ¼ ðFx2 � Fx1Þ � ðdx2 � dx1Þ þ ðFy2 � Fy1Þ � ðdy2 � dy1Þ þ ðFz2 � Fz1Þ � ðdz2 � dz1Þ ð4Þ

where F indicates the force applied and d shows the position of the robotic end effector. The

notations x, y, and z indicate the three coordinates.

The calculated work was not normally distributed, and also, the study involved more than

two groups. Hence, a non-parametric test (Kruskal-Wallis test) was conducted using SPSS to

compare the median values across the three subject groups. The resultant Kruskal-Wallis H

parameter (approximately chi-square distributed) was used to calculate the effect size estimate

using Eq 5. The effect-size indicates the percentage of the variability in the work-done which

could be explained by the three groups.

EffectSize ¼
H

N � 1
ð5Þ

where H indicates the Kruskal-Wallis H parameter and N indicates the total number of

samples.

The non-parametric (Kruskal-Wallis) test results were as shown in Table 8. Test statistic

considering all the three groups only gave an effect-size of 5.53%. However, this cannot tell us

which specific groups of the independent variable are significantly different from each other;

Table 5. Correlation statistics for Intervention group. Spearman’s correlation between participant demographic data and the experiment output measurements.

Correlations—Intervention Group

Time to Detected Fatigue(s) Time to Reported Fatigue(s) Task Rep. Duration (s)

Spearman’s rho Skeletal Muscle % Correlation Coefficient -0.455 -0.100 0.418 0.673

Sig. (2-tailed) 0.187 0.873 0.229 0.033

N 10 5 10 10

BMI Correlation Coefficient 0.280 -0.300 -0.170 -0.584

Sig. (2-tailed) 0.434 0.624 0.638 0.077

N 10 5 10 10

Body Fat % Correlation Coefficient 0.455 -0.300 -0.394 -0.709

Sig. (2-tailed) 0.187 0.624 0.260 0.022

N 10 5 10 10

https://doi.org/10.1371/journal.pone.0233545.t005

Table 6. Correlation statistics for Control 1 group. Spearman’s correlation between participant demographic data and the experiment output measurements.

Correlations—Control 1 Group

Time to Detected Fatigue(s) Time to Reported Fatigue(s) Task Rep. Duration (s)

Spearman’s rho Skeletal Muscle % Correlation Coefficient 0.700 1.000 0.345 0.50303

Sig. (2-tailed) 0.188 . 0.328 0.138

N 5 2 10 10

BMI Correlation Coefficient -0.100 1.000 0.079 -0.515

Sig. (2-tailed) 0.873 . 0.829 0.128

N 5 2 10 10

Body Fat % Correlation Coefficient -0.700 -1.000 -0.280 -.766

Sig. (2-tailed) 0.188 . 0.434 0.010

N 5 2 10 10

https://doi.org/10.1371/journal.pone.0233545.t006
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instead, this only tells us that at least two groups were different. To determine how the three

groups differ from each other, a specific comparison testing (Kruskal-Wallis test considering

two groups each) was also conducted between the groups. As shown in Table 10, the effect-size

for the cases “Control 1—Control 2”, “Control 2—Intervention”, and “Control 1—Interven-

tion” were 0.35%, 3.99% and 5.90% respectively. A medians analysis was also conducted to

know about the differences in a more easily interpreted way. Comparison of medians of the

amount of work by each group of participants was as shown in Table 9.

Table 7. Correlation statistics for Control 2 group. Spearman’s correlation between participant demographic data and the experiment output measurements.

Correlations—Control 2 Group

Time to Detected Fatigue(s) Time to Reported Fatigue(s) Task Rep. Duration (s)

Spearman’s rho Skeletal Muscle % Correlation Coefficient 0.600 -0.500 0.503 0.11515

Sig. (2-tailed) 0.067 0.207 0.138 0.751

N 10 8 10 10

BMI Correlation Coefficient -0.455 0.048 0.115 -0.248

Sig. (2-tailed) 0.187 0.911 0.751 0.489

N 10 8 10 10

Body Fat % Correlation Coefficient -.697 0.262 -0.285 -0.2485

Sig. (2-tailed) 0.025 0.531 0.425 0.489

N 10 8 10 10

https://doi.org/10.1371/journal.pone.0233545.t007

Table 8. Comparing the medians across the three participant groups for the work done against resistive forces using non-parametric (Kruskal-Wallis) test.

Kruskal-Wallis Test Test Statisticsa,b

Ranks Work

Group N Mean Rank Kruskal-Wallis H 9979.187

Work Control 1 39977 105521.04 df 2

Control 2 51385 99509.26 Asymp. Sig. 0.000

Intervention 89089 78008.22

Total 180451

Ranks Test Statisticsa,b

Group N Mean Rank Work

Work Control 1 39977 47461.59 Kruskal-Wallis H 323.795

Control 2 51385 44296.61 df 1

Total 91362 Asymp. Sig. 0.000

Ranks Test Statisticsa,b

Group N Mean Rank Work

Work Control 2 51385 80905.65 Kruskal-Wallis H 5607.545

Intervention 89089 64084.29 df 1

Total 140474 Asymp. Sig. 0.000

Ranks Test Statisticsa,b

Group N Mean Rank Work

Work Control 1 39977 78048.45 Kruskal-Wallis H 7620.456

Intervention 89089 58468.92 df 1

Total 129066 Asymp. Sig. 0.000

a. Kruskal Wallis Test
b. Grouping Variable: Group

https://doi.org/10.1371/journal.pone.0233545.t008
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Discussion

The results from Control-2 group showed that the manually reported fatigue in the majority of

cases happened a few minutes after the automatically detected fatigue. The algorithm used for

the Intervention group for automatic adaptation of the difficulty level was based only on the

detected fatigue. Hence, the first detected fatigue did not involve any effects of adaptation. The

adaptation would start working only after the first detection of fatigue. Then the difficulty level

was reduced and, thus, the participant was assisted in performing the tasks more easily. The

intention of having Control-2 group participants was to study if the automatic fatigue detec-

tion algorithm in the Intervention group detected the fatigue sooner or later than the reported

fatigue. The same algorithm was used in Control-2 group to adjust the difficulty level, but this

was based on the reported fatigue; instead of the detected fatigue. In the majority of the cases,

the detected fatigue occurred before the reported muscle fatigue during the interaction. This

was anticipated because EMG can give a direct measure of the muscle activation, and the mus-

cles may start showing the indication of fatigue onset through the EMG features directly.

Hence, the detection of muscle fatigue based on EMG features can be earlier than the actual

perception of fatigue. The subjective reporting of muscle fatigue will usually happen when the

subject feels pain or is unable to continue after trying his/her level best. Since the reported

fatigue happened minutes later than the detected fatigue, the time of occurrence of the

reported fatigue was found to have also been influenced by the adaptation process because the

reduced difficulty helped the participants to do more iterations.

Control-1 group participants performed the rowing task with difficulty due to the progres-

sively increasing robotic resistance after each 1-minute trial. Some Control-1 group

Table 10. Effect size estimate calculated using Eq 5.

Effect size estimate

Control 1, Control 2, Intervention 5.530

Control 1, Control 2 0.354

Control 2, Intervention 3.992

Control 1, Intervention 5.904

https://doi.org/10.1371/journal.pone.0233545.t010

Table 9. Medians of work done across the three groups of participants. Work is presented here in the units of N.cm.

Comparison of Medians (of Work)—Statistics

Control 1 N Valid 39977

Missing 72

Median -0.292193

Std. Deviation 14.3282450

Control 2 N Valid 51385

Missing 1

Median -0.734028

Std. Deviation 17.1379455

Intervention N Valid 89089

Missing 2

Median -3.652203

Std. Deviation 29.8874363

https://doi.org/10.1371/journal.pone.0233545.t009
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participants even though they performed a difficult task without any assistance from the robot,

did not report high fatigue. The subjects were observed to perform the task with a smaller

number of repetitions, lesser duration and slower speed of task execution, as shown in Figs 13

and 14. Also, the break period of 30 seconds after each 1-minute trial seemed to have resulted

in a recovery of the involved muscles. However, as shown by the progress of damping coeffi-

cients in Fig 10, Control-1 group subjects faced a progressively increasing difficulty level after

each 1-minute trial.

The Intervention group participants switched between a state of fatigue and relaxation

throughout the experiment (Fig 9). Hence, they could perform a large number of iterations

with higher speed of execution as shown in Figs 13, 14 and 15. However, most of the partici-

pants reported fatigue after the prolonged robotic interaction. But this was at the cost of an

increased number of task iterations and an increased duration of the exercise. Even though

multiple muscles were involved in the movements some of the muscles were in a prolonged

state of fatigue (for example, DLTM muscle in Fig 9), and hence, had a major influence on the

final decision on fatigue detection. This could be because the DLTM muscle had a higher

involvement in the particular movement in Subject 20, and this could vary across different

subjects based on their muscle composition.

In Control-2 group participants, the robotic adaptation happened based on the manually

reported fatigue during the task, and the corresponding changes in the task difficulty level

were explained by Fig 11. Since the reported fatigue always happened after the automatically

detected fatigue, the participants in the Control-2 group always received the task adaptation

later than that for the Intervention group participants. Hence, the Control-2 group subjects

were finding it more difficult to achieve more iterations and a prolonged interaction, as

explained in Figs 13 and 14.

The increased effort in performing the high difficulty task in Control-1 group participants

was compensated by reducing the task repetitions and a reduced duration of the experiment.

Even though the fatigue rate in the Control-1 group was not as high as expected, the duration

for which the participants could perform the progressive strength training task was consider-

ably small. A similar observation was made for the number of task repetitions. However, the

amount of work done by the participants seems to be comparable across the groups. The

results of non-parametric median comparison (Kruskal-Wallis test) as shown in Tables 8 and

10 showed that there was no much effect of the three groups on the work done against the

resistive forces. The effect-size for all the groups were too low, which indicated that only a very

low percentage of the variability in the resultant work was explained by the different groups.

Comparison of medians of the amount of work also showed that the values were not so differ-

ent across the groups. This showed that the total work done against the resistive forces across

the groups could be compared. Hence, the higher number of task repetitions and the duration

in the Intervention group were not due to the lesser amount of work done by these partici-

pants. The results also prove that the subjects in the control groups did not give up early

because of a superior amount of work done by these participants. As many studies have stated,

the number of task repetitions is one of the important criteria for better stroke rehabilitation

[12, 13, 59, 60, 61, 9, 25, 11]. Here, it was noticed that the task repetitions could be significantly

increased in the Intervention group participants by using a fatigue-adaptive training environ-

ment compared to both the manual-adaptive (Control-2 group) and the non-adaptive (Con-

trol-1 group) cases.

In general, the results from time-to-fatigue analysis showed that using a 5-STD threshold

for fatigue detection resulted in a better match between the time of reported and detected

fatigue, as shown in Table 4. However, the time between the reported fatigue and the first

detected fatigue (time gap) could not be calculated for all the subjects, since many participants
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did not manually report fatigue during the sessions. This could be because these participants

adapted their effort to the increased task difficulty by reducing the speed and number of task

repetitions. This is identified as a limitation and could have been avoided by forcing the sub-

jects to keep a constant pace with an acoustic feedback. However, few among these participants

did report fatigue at the end of the tasks through the final questionnaire, even though they did

not report this during the robotic interactions. This resulted in not being able to calculate the

time-to-reported-fatigue for these participants accordingly, and hence, the time gap could not

be calculated. Also, the algorithm needs to be improved to make sure pre-experiment fatigue

conditions are considered sufficiently. If a participant is already in a state of fatigue before

starting the experiment, the baseline threshold may not be a true representative of the range of

EMG feature corresponding to a no-fatigue situation. Therefore, the variation in their median

frequency during the task may not be statistically significant to detect muscle fatigue based on

the 2-STD-based threshold.

The results from the analysis could not find any particular correlation of the “time-to-

fatigue” with the demographic parameters such as age, body weight, Body Mass Index (BMI),

visceral fat classification, skeletal muscle percentage or body fat percentage. This seems to be

in alignment with the findings of Ma et al. [62], where no significant effects of BMI, muscle

mass or age was noticed on the joint muscle strength; instead, this was dependent on the differ-

ent compositions of muscle fibre types. Ma et al. also stated that fatigue rates were positively

correlated with maximum joint moment strength, and higher joint moment strength resulted

in faster fatigability in the muscles. The correlation study of the demographic data against

time-to-fatigue and experiment duration across the three groups did not show a significant

correlation. The intervention group was expected to show the least correlation between the

total exercise time and the muscle composition since there would be more frequent switches

between fatigued and relaxed states due to the robotic adaptation. On the other hand, the con-

trol groups 1 and 2 should show more correlation, since there was no automatic adaptation

involved. A person with more physical strength should ideally be able to do more iterations

and hence, achieve longer experiment duration. However, the correlation statistics (Tables 5, 6

and 7) for the three subject groups showed that the correlation was not significant in the

majority of the cases. For Intervention group, there was a moderate correlation between the

demographic data and the task duration. BMI and skeletal muscle percentage had some corre-

lation with task duration only in the Intervention group. For body fat percentage, both Inter-

vention and Control 1 groups showed a negative correlation with the task duration. However,

this was not significant in Control 2 group. Overall results indicated that there was no signifi-

cant influence of demographic data (mainly the skeletal muscle composition and BMI) on

time-to-fatigue measurements in the three groups. This could probably be due to the standar-

disation using MVC-Eq to set the initial task difficulty level.

For Control 1 group, during the break period between different trials, the EMG data acqui-

sition was stopped after each trial. Hence, the different data files (mat files) had to be merged

for studying the progress of the EMG features during the off-line processing. This could have

been avoided by pausing the data acquisition during the break; instead of stopping the whole

data acquisition. It was also noticed that at the end of the experiment, especially for Control-1

group, the iterations were very slow and, hence, the chosen window/buffer size corresponding

to 6 seconds does not seem to include the EMG corresponding to a full rowing task completely.

This resulted in the calculated EMG features at the end stage of the experiment, not represent-

ing the muscle activations corresponding to a complete rowing movement. The features might

have a different composition compared to that of a full cycle of rowing task. This was due to

the fixed buffer size of 6 seconds.
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It was noticed that many subjects in the Intervention group reported “relaxed” not too late

after receiving the robotic adaptation. It could be that the fatigue detected by the current algo-

rithm based on the 2-STD threshold might be an indicator of just the onset of fatigue and not

that of a high state of fatigue. Hence, the time taken to come to a state of relaxation was not too

long. There are various applications for the automatic fatigue detection algorithm like in

human-robot interaction, rehabilitation training, muscle building or strength training exer-

cises. Here, the detected muscle fatigue may be utilised in different ways, for example, for

delaying/avoiding fatigue or causing fatigue. As explained in Table 4, depending on the appli-

cation, the fatigue threshold may be adjusted such that the detected fatigue comes closer to the

reported fatigue. Increasing the fatigue threshold to higher values like 5-STD threshold could

be more accurate to be used in algorithms that adapt based on a high level of fatigue. However,

more explorations need to be done in this area. Some recent studies have also reported that

despite a reasonable rest period after a fatiguing protocol, while the performance recovered,

there was even further progression of fatigue when measured by EMG. Hence, it would also be

interesting to look at different time-frames following the fatigue protocol to underpin the time

required for sufficient recovery from fatigue during a robot-assisted interaction.

In the current study, the proposed method was tested with healthy participants, and hence,

the suitability of using this method for actual rehabilitation need to be explored further. Before

introducing this approach to the stroke group in future, we intend to adjust further and evalu-

ate our methods using a longitudinal study that targets and observes the various stages of

stroke recovery. The process of motor recovery after stroke can be broken down into seven

stages as per Brunnstrom’s approach [63, 64]. During Stage 1, a stroke survivor cannot initiate

any muscle movements on the affected side of their body. If this continues for a long time

without intervention or physical therapy, the unused muscles can become much weaker. Stage

1 condition also requires lifestyle modifications to protect the affected limbs from injury. In

Stage 2, redevelopment of some basic muscle synergies occurs. Muscles begin to make small,

spastic, and abnormal movements during this stage. These movements are mostly involuntary,

but they can be a promising sign during the recovery. Many stroke survivors also experience

spasticity at this stage, which presents resistance to passive movement, and results in jerky

movements. It is important to continue using and moving the muscles as much as possible at

this stage. Spasticity of muscles increases in Stage 3, feeling unusually stiff, tight, or pulled mus-

cles. This causes an abnormal increase in muscle stiffness. An increase in involuntary move-

ments occur due to the ability to initiate a muscle movement, but not able to control it yet.

Hence, the patients in Stage 3 are limited in their ability to exercise and may require help to do

this. So, it is important to minimise highly stressful activities at this stage. Passive range of

motion exercises shall be continued at this stage to improve the range of motion. The main

focus during Stage 4 is to strengthen and improve muscle control. Spastic muscle movements

start declining at this stage, and the patient begins making normal or controlled movements

on a limited basis. Active-assisted range of motion exercises are used at this stage since the

patients get some ability to move but still needs help to practise the exercises or complete the

movement. Afterwards, active range-of-motion exercises can also be started once the patient

gains some muscle control. They can then perform some exercises without assistance. In stage

5, spasticity continues to decline, and muscle synergy patterns become more coordinated,

allowing controlled and deliberate voluntary movements. These purposeful and goal-directed

movements can improve with repetition and practice. In Stage 6, muscle spasticity disappears

completely, the patient will be able to move individual joints, and the synergy patterns become

much more coordinated. Motor control will be almost fully restored, allowing the patient to

coordinate complex reaching movements. Finally, during Stage 7, the patient regains the full

motor function in the affected areas [63, 64]. The process of stroke rehabilitation as it goes
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through these different stages has to deal with acute adaptation (e.g. fatigue induced by the

exercise) as well as chronic adaptations (e.g. increased strength over time) to training. So,

while extending this protocol for stroke rehabilitation, the suggested training protocol should

be tuned to these different stages of the recovery process.

The patterns of acute as well as chronic adaptations to training could be an interesting

future work along this line. Resistance training adaptations can entail both acute and chronic

adaptation. The acute physiological response causes an immediate change (increase or

decrease) in the body systems in response to a stimulus. Acute responses to resistance training

occur primarily in the neurological, muscular, and endocrine systems [65]. Acute neurological

adaptations during resistance training can cause the muscles to grow more tired with each rep-

etition of a given movement pattern. As a result, the motor unit firing sequence becomes less

and less precise. One of the acute muscular adaptations is the depletion of metabolic substrates,

which causes a decrease in muscle power production. Also, an increase in the intramuscular

hydrogen causes a “burning” sensation in the muscles on multiple repetitions [66]. On the

other hand, chronic physiological adaptations cause changes to the body systems as a result of

long term stimulus, such as exercise. Chronic adaptations can occur if the exercise is repeated

on several occasions, and this depends on the type of exercise. This can make the muscle more

resistant to fatigue, stronger, more powerful, or better coordinated. Chronic adaptations

involve either remodelling of tissue or altered regulation of the central nervous system [65].

Chronic responses to resistance training are seen in the muscular, skeletal, cardiovascular,

neurological systems, and body composition. Chronic neurological adaptations result in a

more efficient sequence of recruitment of motor units, making the muscle less apt to tire from

neuromuscular factors. Another chronic adaptation to the neurological system is an increased

motor unit firing and decreased co-contraction of the antagonistic muscles. This allows for

greater movement efficiency. Chronic muscular adaptations to resistance training include the

increased cross-sectional size of the muscle fibres, which increases muscle strength and power.

Also, adaptations of the skeletal system occur over the long term, and changes in body compo-

sition are also seen as a chronic adaptation to resistance training [66].

The results from the current study showed that muscle engagement in the exercise could be

regulated by the adaptive action of a robot, and fatigue-adaptive robotic systems can poten-

tially help to prolong training interactions. However, as a pilot study, this manuscript has only

addressed acute adaptations during the interaction. Hence, more work is needed (i.e. a longi-

tudinal/training study) to prove that the method can be used in a rehabilitation program, by

considering chronic adaptations over a long duration of robot-assisted training.

Conclusions

Progressive strength training has been suggested in stroke rehabilitation protocols by many past

studies. In this study, an adaptive robotic interaction protocol for muscle training was suggested

to be used in rehabilitation training. The robotic assistance could be used for an adaptive interac-

tion by switching between different intensities based on the detected muscle fatigue. The results

indicated that a progressive increase of task difficulty and adaptation of the difficulty level based

on the onset of muscle fatigue resulted in a prolonged training interaction and increased task

repetitions. The features derived from the EMG measurements from the upper limb muscles

were found effective to be used as fatigue indicators for adaptive rehabilitation training.
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