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Novel nitrogen-bridged diazocines (triazocines) were synthesized that carry a formyl or an acetyl group at the CH,NR-bridge and

bromo- or iodo-substituents at the distant phenyl ring. The photophysical properties were investigated in acetonitrile and water. As

compared to previous approaches the yields of the intramolecular azo cyclizations were increased (from ~40 to 60%) using an oxi-

dative approach starting from the corresponding aniline precursors. The Z— E photoconversion yields in acetonitrile are 80-85%

and the thermal half-lives of the metastable E configurations are 31-74 min. Particularly, the high photoconversion yields (=70%)

of the water-soluble diazocines are noteworthy, which makes them promising candidates for applications in photopharmacology.

The halogen substituents allow further functionalization via cross-coupling reactions.

Introduction

Diazocines (bridged azobenzenes) are frequently used photo-
switches with outstanding photophysical properties. Parent
diazocine (CH,—CHj,-bridged) exhibits well-separated n—m*
transitions, which allow excellent photoconversion between the
Z and E configurations ((Z—E)385 nm = 92%, (E—Z)525 nm >
99% in n-hexane) with light in the visible region [1]. Moreover,
the Z-boat configuration is the thermodynamically stable isomer
[2-9]. The latter property (i.e., the inverted stability compared to
azobenzenes) makes them promising candidates for applica-
tions in photopharmacology. In the majority of azobenzene-
based photopharmacophores, the bent Z configuration is biolog-
ically inactive [10-12]. Hence, (and in contrast to azobenzenes)
the thermodynamically stable and biologically inactive

Z-isomer can be administered and switched on with light at the

site of interest with spatiotemporal resolution. Moreover, the
photoconversion yield for the £—Z isomerization is quantita-
tive (within the detection limit of UV and NMR spectroscopy).
A high efficiency in switching the biological activity off is im-
portant to avoid side effects of residual concentrations of the
active form [13].

Water solubility and high Z— E switching efficiencies in water
are additional important criteria for applications in biological
environments [14]. Our previously published NAc-bridged
diazocine 10c (Scheme 1, Table 1) exhibits both properties [15].
This is in stark contrast to the CH,—CH; and S—CH,-bridged
diazocines and the majority of azobenzenes [9,16-20]. Spurred

by the promising properties of CH,—NR-bridged diazocines
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(triazocines), we now explored this class of photoswitches and

developed synthetic access to these photochromes (Figure 1).

Results and Discussion

Synthesis

The first three stages of the synthesis of CH,—NR-bridged
diazocines are analogous to the previously described synthesis
of CH)—NH-bridged diazocine [15]. The single Boc-protected
1,2-phenylenediamine (2, Scheme 1) is reacted with halogen-
substituted 2-nitrobenzyl bromides 3 [21] forming N-benzylani-
lines 4, which were protected with Fmoc chloride to accom-
plish an orthogonal protective group strategy. The removal of
the Boc groups from compounds 5 with TFA gave the mixed
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aniline and nitro precursors 6.
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Figure 1: Bridged diazocines synthesized and investigated in this
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Scheme 1: Synthesis of 3-bromo- and 3-iodo-acetylated CHoNR diazocines 10 (R = Ac) and formylated diazocines 11 (R = CHO).
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In previous approaches, the nitro groups were reduced to
hydroxylamines with zinc and oxidized to the corresponding
nitroso compounds with iron(IIl) to perform an intramolecular
Baeyer—Mills reaction [15,21]. We found that a complete reduc-
tion of the nitro group to aniline 7 and oxidation with mCPBA
is increasing the yield of the intramolecular cyclization from
39% to 62% (over two steps) for the unsubstituted diazocine 8¢
as compared to the pathway via the hydroxylamine. The
3-bromo 8a and 3-iodo 8b compounds were obtained in 56%
yield using the oxidative method of Trauner [22] with mCPBA.
The Fmoc groups were removed with NEt3 to yield the
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NH-diazocines 9. The acetylated diazocines 10a—c were synthe-
sized using a mixed anhydride of acetic acid and T3P
(propanephosphonic acid anhydride). The formylation of
NH-diazocines 9a—c¢ was accomplished with chloral [23] under

non-acidic conditions.

Investigation of the photophysical properties

The UV-vis spectra of diazocines 10a—c, and 11a—c were re-
corded in acetonitrile at 25 °C. All compounds exhibit an n—m*
transition at about 400 nm (Z— E conversion) and an n—7* tran-

sition at about 520 nm (E—Z conversion, Figure 2, Table 1).

NAc 10c in MeCN, 25 °C

Br-NAc 10a in MeCN, 25 °C

I-NAc 10b in MeCN, 25 °C
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Figure 2: UV-vis spectra of 3-bromo and 3-iodo, and unsubstituted CHoNAc-bridged (10a—c) and CHoNCHO-bridged (11a—c) diazocines. The spec-
tra of Z-isomers are given in black, the photostationary states at 400 nm are represented as dashed red lines and the extrapolated spectra of the pure

E-isomers are in blue.

Table 1: Photophysical properties of N-diazocines 10a—c and 11a—c in acetonitrile.

acetonitrile
Amax(2) Amax(E)  €max(z)  €Amax(E) rz-g? ty/2 (25 °C) En In(A)
nm L mol~! cm™! % min kJ mol-"
Br-NAc 10a 397 515 495 791 81 30.9 93.4 29.8
I-NAc 10b 397 517 480 778 82 28.6 87.0 27.3
NCHO 11c 397 509 502 760 85 74.0 88.4 26.9
Br-NCHO 11a 397 509 469 784 82 49.9 93.9 29.5
I-NCHO 11b 398 511 483 798 80 481 90.9 28.3
NAc 10c 397 513 495 759 88 29.5 87.6 27.5

aExtrapolated values (for details, see Supporting Information File 1, section 1V).
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Irradiation with 400 nm gives the metastable E-isomers of the
acetylated and formylated derivatives 10 and 11 with good
photoconversion yields (I') of 80-85% (Table 1) in acetonitrile.
A complete E—Z conversion (>99%) can be achieved with light
between 520 and 600 nm. The unsubstituted acetylated and
formylated diazocines 10c¢ and 11c¢ exhibit similar conversion
yields (88% and 85%) and halogenation as well does not have a
significant influence. However, thermal half-lives (1) of the
metastable E-isomers of the 3-bromo and 3-iodo N-acetyl
diazocines 10a and 10b (=30 min) are significantly smaller than
the half-lives of the corresponding bromo and iodo N-formyl
derivatives 11a and 11b (=50 min). In general, halogenation
decreases the half-lives compared to unsubstituted diazocines
10c and 11c. The activation barrier (E ) of the E—Z isomeriza-
tion (obtained by an Arrhenius plot) is higher in formylated
compounds 11 compared to acetylated compounds 10 and is
further increased by halogenation.

The unsubstituted N-formyl diazocine 11c¢ and brominated
NAc-diazocine 10a were also investigated in pure water since
they are water-soluble (11c: 250 uM, 10a: =150 pM). The
highest Z— E conversion yields are observed by irradiation with
400 nm in water and the back-isomerization E—Z can be

1000 Br-NAc 10a in H,0, 25 °C

800

cm

600

400

e/ L mol

200

Beilstein J. Org. Chem. 2021, 17, 1503—-1508.

accomplished by irradiation with light in the range of 525 and
600 nm (Figure 3, Table 2).

The photoconversion yields (Z—E) of N-formyl diazocine 11c
in water and bromo-NAc diazocine 10a are about 70%, which
do not differ significantly from unsubstituted NAc diazocine
10c (72%) [15]. It is interesting to note that the half-lives and
activation barriers (E—Z) are increasing (¢;,, ~ 2-2.5-fold) in

water as compared to the less polar acetonitrile.

Conclusion

Five nitrogen-bridged diazocines (triazocines) were synthe-
sized and characterized. Formyl (R = CHO) and acetyl groups
(R = Ac) were introduced at the CH,NR bridge and the distant
phenyl rings are Br and I substituted. In contrast to previous ap-
proaches, the azo cyclization (ring closure) was achieved via the
oxidation of the bis-anilines 7 with mCPBA (=60% yield).
Among the nitrogen-bridged diazocines compounds 10a and
11c are water soluble and retained their high switching effi-
ciency (=#70%) also in water. The half-lives of the metastable
E-isomers are larger for the N-formyl diazocines 11a—c com-
pared to the acetylated compounds 10a—c and generally, the
half-lives are larger in water than in acetonitrile. Halogen atoms
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700 800
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Figure 3: UV-vis spectra of 3-bromo-NAc-diazocine 10a and N-formyl-diazocine 11c in water. Spectra of Z-isomers (black curve), the photosta-
tionary states at 400 nm (dashed red line), and the extrapolated spectra of the pure E-isomers (blue).

Table 2: Photophysical properties of water-soluble N-diazocines 10a, 10c, and 11c¢ in H»0.

Ho0
Amax(z) Amax(E) €Amax(2) €Amax(E) Mz-g? t12 (25 °C) Ea In(A)
nm L mol-! cm-! % min kJ mol-1
Br-NAc 10a 394 502 534 975 70 69.6 99.9 31.6
NCHO 11c¢ 393 500 567 871 69 198 97.8 29.7
NAc 10c 393 502 564 850 72 72.8 90.4 27.7

aExtrapolated values (for details, see Supporting Information File 1, section IV).
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Br and I at the phenyl rings in 3-position as in 10a,b, and 11a,b

are a good starting point for further functionalization
[17,20,24]. We conclude that CH,NAc and CH,NCHO bridged
diazocines (triazocines) are promising candidates for applica-

tions in biological environments and particularly as photo-

switches in light-activatable drugs.

Supporting Information

Supporting Information File 1

Analytical equipment, experimental procedures, NMR and
UV-vis spectra.

[https://www .beilstein-journals.org/bjoc/content/
supplementary/1860-5397-17-107-S1.pdf]
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