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ABSTRACT We announce five shotgun metagenomics data sets from two Norwe-
gian premise plumbing systems. The samples were shotgun sequenced on two lanes
of an Illumina HiSeq 3000 instrument (THRUplex chemistry, 151 bp, paired-end
reads), providing an extensive resource for sequence analyses of tap water and bio-
film microbial communities.

Water disinfection efficiently reduces the total number of bacteria in drinking water
but may also select for disinfection-resistant communities (1). Several common

water disinfection methods (2–6) and water flow through metal pipes (7) have been
reported to increase the relative abundance of antibiotic-resistant bacteria (ARBs) and
genes (ARGs) in drinking water systems.

The rationale for this pilot study was to determine the amount of sequencing
required to detect and characterize ARGs in Norwegian premise plumbing systems and
to investigate the impact of silver-copper ionization (CSI) on the number and type of
antibiotic, biocide, and metal resistance genes detected. CSI is an in-house water
disinfection method that works by releasing positively charged silver and copper ions
directly into the water stream (8).

We announce three drinking water and two shower hose biofilm metagenomes.
Samples were taken from two neighboring buildings in Oslo, Norway, both receiving
water from the same drinking water treatment plant and through the same distribution
pipes. One building used a CSI system as an additional water disinfection step; the
other building did not.

Sampling and DNA isolation protocols are described in reference 9. Previous 16S
rRNA gene analyses of the study system revealed five distinct bacterial community
clusters (9). DNA from samples within each cluster were pooled in equal amounts prior
to library synthesis to produce the metagenome samples described here. Libraries were
created using Illumina THRUplex chemistry and were sequenced on two lanes of an
Illumina HiSeq 3000 instrument (151 bp, paired-end reads [April 2017]).

To evaluate the results in relation to other human-influenced aquatic habitats known to
contain resistance genes, we included the following four published metagenomic data sets
in the analyses (Fig. 1): Ref01, inlet of a wastewater treatment plant (WWTP) (ENA accession
number ERR1414237) (10); Ref02, river water upstream of a WWTP (SRR5306407); Ref03,
river water downstream of a WWTP (SRR5298537) (11); and Ref04, hospital shower hose
biofilm from a plumbing system with free chlorine (SRR2751194) (12). Reference data
sets were quality treated and analyzed the same way in which the data sets presented
here were.

Low-quality bases, reads, and sequencing adapters were trimmed with Trimmomatic
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v.036 (default settings, paired-end mode) (13). Exact duplicate reads (– derep: 14,
– derep_min: 2) and low-complexity sequences (–lc_method: entropy, –lc_threshold
cutoff: 70) were removed with Prinseq v.0.20.4 (14). The data sets were screened for
coliphage phiX (GenBank accession number NC_001422.1) and human sequences
(hg19) with BBMap v.37.53 (default settings) (15). Unpaired reads were discarded.

DIAMOND v.0.9.24.125 (blastx –max-target-seqs: 1, –id: 90, – query-cover: 90) (16)
was employed to search the cleaned read data sets against NCBI’s Antimicrobial
Resistance Reference Gene Database (downloaded 7 November 2018) and the Anti-
bacterial Biocide and Metal Resistance Genes Database v.2.0 (experimentally confirmed
resistance genes) (17). The resulting count data were normalized to “relative gene
abundance” following the method of reference 18, which accounts for the total number
of reads and average read length in each data set and the subject gene length.
Furthermore, cleaned data sets were assembled using MEGAHIT v.1.1.3 (–min-count: 2,
–min-contig-len: 200, – k-min: 21, – k-max: 127, – k-step: 6).

The relative abundances of ARGs detected in the five samples were 0.4% (S01) to
4.2% (S04) of that detected in the inlet of a wastewater treatment plant (Fig. 1).
Antibacterial biocide and metal resistance (BacMet) genes were considerably more
abundant, especially in the biofilm exposed to CSI (S05). Surprisingly, this abun-
dance was due to elevated mercury and not copper or silver resistance genes. A
range of full-length mercury resistance genes were detected in the assembled data

TABLE 1 ENA accession numbers and sample indices for the five shotgun metagenomesa

Sample
no. Sample description

Sample
accession no. Sample barcode Run accession no. No. of reads

Assembly
accession no.

No. of contigs
>1,000 bp

No. of contigs with
N50 >1,000 bp

S01 Cold inlet water ERS1887712 ATCACGTT ERR2105748
ERR2105753

46,342,789
44,342,421

ERZ1079234 295,161 3,764

S02 Warm shower water,
building without CSI

ERS1887713 CGATGTTT ERR2163668
ERR2105754

48,595,584
46,497,077

ERZ1079235 300,790 3,756

S03 Warm shower water,
building with CSI

ERS1887714 TTAGGCAT ERR2105750
ERR2105755

53,099,020
50,742,735

ERZ1079236 303,509 3,712

S04 Shower hose biofilm,
building without CSI

ERS1887715 TGACCACT ERR2163669
ERR2105756

57,390,138
53,219,451

ERZ1079237 93,609 14,763

S05 Shower hose biofilm,
building with CSI

ERS1887716 ACAGTGGT ERR2105752
ERR2105757

51,044,779
47,703,704

ERZ1079238 54,579 16,742

a GenBank BioProject number PRJEB22193 , and EBI metagenomics (MGnify) study accession number MGYS00001968.

FIG 1 Relative abundance of antibacterial biocide and metal resistance (BacMet) genes and antibacterial
resistance genes (ARGs) in the five metagenomes announced here (S01 to S05) and in four reference data
sets. CSI, copper-silver ionization; WWTP, wastewater treatment plant.
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sets. The reason for the high abundance of mercury resistance genes remains
unclear.

Data availability. All data sets are deposited in ENA (Table 1).
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