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One of the globally common cancers is colorectal cancer (CRC). At present, a surgical approach remains a good option for
CRC patients; however, 20% of surgically treated CRC patients experience metastasis. Currently, even the first-line used drug,
oxaliplatin, remains inadequate for treating metastatic CRC, and its side effect of neurotoxicity is a major problem when
treating CRC. The Gene Omnibus GSE42387 database contains gene expression profiles of parental and oxaliplatin-
resistant LoVo cell lines. Differentially expressed genes (DEGs) between parental and oxaliplatin-resistance LoVo cells,
protein-protein interactions (PPIs), and a pathway analysis were determined to identify overall biological changes by an
online DAVID bioinformatics analysis. The ability of DEGs to predict overall survival (OS) and disease-free survival (DFS)
was validated by the SPSS 22.0, using liver metastasis CRC patient samples of GSE41258. The bioinformatics web tools of
the GEPIA, the Human Protein Atlas, WebGestalt, and TIMER platforms were used. In total, 218 DEGs were identified,
among which 105 were downregulated and 113 were upregulated. After mapping the PPI networks and pathways, 60
DEGs were identified as hub genes (with high degrees). Six genes (TGFB1, CD36, THBS1, FABP1, PCK1, and IRS1) were
involved with malaria, PPAR signaling, and the adipocytokine signaling pathway. High expressions of CD36 and PCK1
were associated with the poor survival of CRC patients in the GSE41258 database. We predicted specific micro (mi)RNAs
that targeted the 3′ untranslated region (UTR) of PCK1 by using miRWalk. It was found that three miRNAs, viz., miR-7-
5p, miR-20a-3p, and miR-636, may be upstream targets of those genes. High expression levels of miR-7-5p, miR-20a-3p,
and miR-636 were associated with poor OS of CRC patients, and the small-molecule compound, mersalyl, is a promising
drug for treating oxaliplatin-resistant CRC. In conclusion, miR-7-5p miR-20a-3p, and miR-636 targeted the PCK1
biomarker in the PPAR signaling pathway, which is involved in oxaliplatin-resistant CRC. Meanwhile, mersalyl was identified as
a potential drug for overcoming oxaliplatin resistance in CRC. Our findings may provide novel directions and strategies for
CRC therapies.
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1. Introduction

Colorectal cancer (CRC) is the third most common epithe-
lial malignancy worldwide. According to the GLOBOCAN
data source in 2020 in the United States, approximately
147,950 individuals were diagnosed with CRC and 53,200
patients died of this disease [1]. Surgery is the primary
intervention measure for CRC patients at the primary stage
of diagnosis; however, it is futile in patients who have devel-
oped distant metastasis. After surgery, approximately 20%
of patients present metastatic (m)CRC micrometastasis [2,
3]. First-line treatments for mCRC patients include FOL-
FOX (5-FU, leucovorin, oxaliplatin, and irinotecan) and
CAPEOX (oxaliplatin and capecitabine), but the response
rate of mCRC patients for first-line chemotherapies is <
50% [4]. Mitogen-activated protein kinase 1 (MAPK1),
phosphatidylinositol 3-kinase (PI3K), and other biomarkers
are currently used for CRC treatment [5, 6]. Increasing
numbers of biomarkers are currently being used to diagnose
and choose treatments for patients with CRC [7]. Therefore,
finding useful biomarkers to identify patients who are sensi-
tive to chemotherapy is urgently needed in the clinic.

Oxaliplatin (OXA) is a platinum-derived antitumor drug
that acts to inhibit DNA replication and proliferation and
induces apoptosis [8]. Nowadays, OXA resistance is a major
problem, and poor survival rates are still common outcomes
in mCRC patients. Several previous studies showed that many
pathways and molecules are involved in OXA resistance in
mCRC including malaria, peroxisome proliferator-activated
receptor (PPAR) signaling, and the adipocytokine signaling
pathway. The PPAR signaling pathway is involved in colorec-
tal carcinoma cell death and the development of CRC. PPARγ
and PPARδ which are involved in regulated programmed cell
death are mediated by caspase-3 and survivin [9, 10].

Many biomarkers are involved in this pathway includ-
ing phosphoenolpyruvate carboxykinase 1 (PCK1), fatty
acid binding protein 1 (FABP1), and CD36. Mersalyl is
an organomercurial compound that induces vascular endo-
thelial growth factor (VEGF) gene expression and activates
collagenase under invasive conditions where plasmin for-
mation or activity is inhibited [11, 12]. Some herbal supple-
ments, such as resveratrol, quercetin, and thymoquinone,
possibly enhance sensitivity to OXA therapy. There is an
urgent requirement to improve therapeutic regimens for
CRC. Seeking reliable biomarkers is a way to foresee possi-
ble consequences related to OXA treatment and consider-
ations for therapeutic management.

The Gene Expression Omnibus (GEO) database is a very
important dataset for identifying novel biomarkers and novel
drug therapies for cancers and other diseases [13, 14]. In addi-
tion, protein-protein interactions (PPIs) and Kyoto Encyclo-
pedia Genes and Genomes (KEGG) analyses help identify
pathways involved in chemotherapeutic resistance in CRC
patients [15, 16]. GEPIA, the Human Protein Atlas (HPA)
database, The Cancer Genome Atlas (TCGA) database, and
TIMER were also used to determine gene expression levels
of differentially expressed genes (DEGs) [17].

PCK1 is a gluconeogenic enzyme involved in gluconeo-
genesis and lipogenesis processes in hepatocellular carci-

noma (HCC). The PCK1 gene was also found in many
cancerous organs, including the colon, skin, and lungs, and
is also involved in anabolic metabolism and cell proliferation
[18, 19]. In an earlier study, PCK1 mediated sterol regula-
tory element-binding protein 1(SREBP1) activation in
esophageal cancer (ESCC) and non-small-cell lung cancer
(NSCLC) [20]. The gluconeogenic gene, PCK1, is located
in the endoplasmic reticulum (ER), where PCK1 acts like a
protein kinase enzyme for the use of guanosine 5′-triphos-
phate (GTP), rather than adenosine triphosphate (ATP) as
a phosphate donor to phosphorylate INSIG1/2. This phos-
phorylation process reduces the binding of oxysterol to
INSIG1/2, thus activating SREBP-mediated lipogenesis for
tumor growth [21, 22].

Micro (mi)RNAs are small noncoding RNAs that regu-
late gene expressions by binding to the 3′ untranslated
region (UTR) of their target messenger (m)RNAs for trans-
lational repression and/or degradation and can also influ-
ence oncogene factors and mechanisms, resulting in
stimulation of OXA chemoresistance. Oncosuppressive
miRNAs can enhance the sensitivity of cancer cells to OXA
chemotherapy and activate apoptosis and cell cycle arrest
and induce cell viability and tumor progression [23]. miR-
NAs are very commonly used in chemotherapy-resistance
studies to develop sensitivity [24].

This study is aimed at identifying biomarkers of drug
response and investigating mechanisms of drug resistance
to the two chemotherapeutic drugs, OXA, and irinotecan
(the active metabolite of which is SN-38), in CRC using both
drug-resistant and drug-sensitive parenteral colon cancer
cell lines. Overall, the study was designed to identify a
microarray analysis to predict OXA-resistant genes and
underlying pathways in CRC.

2. Methods

2.1. Data Resources.We used the GEO database (available at
http://www.ncbi.nlm.nih.gov/geo/) to identify DEGs. The
gene expression profile of GSE42387 was downloaded from
GEO which was sequenced on the GPL16297 platform of
the Agilent-014850 Human Genome CGH Microarray
4x44K G4112F (Agilent Technologies, Santa Clara, CA,
USA). Three colon cancer cell lines of HCT116, HT29, and
LoVo present in the GSE42387 database were exposed to
an increasing concentration of OXA or SN-38 for 9 months
in vitro to generate subcell lines with acquired resistance.
Gene expressions of the parental and resistant cell lines
grown in drug-free media were compared to detect any dif-
ferences linked to chemotherapeutic resistance.

2.2. Data Preprocessing and DEGs. The GSE42387 dataset
contained three control LoVo (metastatic) CRC cell lines
and three OXA-resistant LoVo (metastatic) CRC cell lines.
For the differential expression analysis, we used the
GEO2R-friendly tool and recalculated the data [25]. The
GEO2R online tool applies R language for the GEO querry
and limma packages which were used to examine gene
expressions. The LoVo parental cell lines vs. OXA-resistant
cell lines were selected to identify DEGs between resistant
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and sensitive cell lines. The t-test method was applied to cal-
culate p values of these genes. Then, Benjamin and Hoch-
berg’s method was performed to calculate adjusted p values
(of the false discovery rate, FDR) of the DEGs with a log fold
change (FC) of >1 or <-1 and an FDR of <0.05 selected [26].

2.3. Hierarchical Clustering Analysis. Furthermore, after
obtaining expression values from the gene expression pro-
file, a bidirectional hierarchical clustering heat map was con-
structed with the CIMminer web tool [27].

2.4. Construction of a Protein-Protein Interaction (PPI)
Network. A PPI network was constructed using the online
web tool STRING (http://www.string-db.org/) [28]. This
web tool provides known protein and predicted protein
interactions which are derived from four sources including
genomic context, coexpression, high-throughput experi-
ments, and previous knowledge. A score of 0.4 (medium
confidence) was selected as the cutoff criterion. PPI pairs
were input into Cytoscape software (ver. 3.4.0, http://www
.cytoscape.org) and analyzed with the CytoNCA app in
Cytoscape. Hub genes (highly connected genes) were identi-
fied by calculating the degree value (number of lines con-
necting the genes) with a cutoff of two or more.

2.5. Pathway and Enrichment Analysis. The Database for
Annotations, Visualization, and Integrated Discovery (DAVID
bioinformatics, https://david.ncifcrf.gov/) was used to differen-
tiate gene expressions by their cellular components, molecular
functions, and biological processes using the resource from
Gene Ontology (GO, available at http://www.geneontology
.org/) [29]. An enrichment analysis was conducted using
DAVID and pathways referenced from the Kyoto Encyclope-
dia of Genes and Genomes (KEGG, http://www.genome.jp/
kegg/) database website with an FDR of <0.25 as a cutoff point

[30]. A Gene Set Enrichment Analysis (GSEA) was used for
confirmation of KEGG pathways as well [31].

2.6. Expression Analysis of DEGs in CRC. GEPIA databases
available were used to check expression levels of DEGs in
normal and CRC tissues. The threshold absolute log base 2
of the fold change (Log2FC) was set to 1 and was analyzed
using the q value set to 0.05 [32].

2.7. Protein Expression Analysis of DEGs in CRC. The inten-
sity of DEGs protein expressions in CRC tissues in the
human body was investigated using the Human Protein
Atlas (HPA) database (https://www.proteinatlas.org/). More
than 700 antibodies to human proteins available are
matched with 400,000 high-resolution pictures which are
available in the HPA database [33, 34]. The following criteria
were used to evaluate each intensity and fraction combina-
tion which was automatically converted into a protein
expression level score: negative—not detected; weak—not
detected; weak combined with either 25%~75% or
75%—low; moderate—low; moderate combined with either
25%~75% or 75%—medium; strong—medium, and strong
combined with either 25%~75% or 75%—high.

2.8. Validation of OXA-Resistant Genes. To examine candi-
date genes’ roles, we conducted a survival analysis. A
Kaplan-Meier (KM) survival analysis was constructed
using the GSE41258 cohort of the GEO database [35].
We selected 243 CRC patients for overall survival analysis
and 189 CRC patients for disease-free survival with muta-
tion and RNA sequence data divided into high expression
and low expression by median value with the use of log
rank p value. Moreover, we also examined cox regression
analysis. Furthermore, we also predicted survival as related
to miRNAs using the GSE29623 cohort and SPSS ver. 22.0
(SPSS, Chicago, IL, USA, http://www-01.ibm.com).
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Figure 1: Heat map showing upregulated and downregulated genes in oxaliplatin-resistant colon cancer tumors. A bidirectional hierarchical
clustering heat map was constructed using the CIMminer web tool. Expression values are log fold changes (>1.0 or <-1.0, with a false
detection rate of <0.05) between corresponding oxaliplatin-resistant LoVo cells and parental LoVo cells. Red represents upregulation,
black represents no change in expression level, and green represents downregulation.
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2.9. Prediction of miRNAs for DEGs.We also predicted miR-
NAs using the GSE29623 cohort study, 143 miRNA samples
in metastatic colon adenocarcinomas vs. the miRWalk web-
site’s 1216 miRNA PCK1 3′ UTR. We chose a target score
more than 0.70 for the PCK1 gene in miRWalk web tools.

Furthermore, a Venn diagram was used to predict common
miRNAs and their gene targets [36].

2.10. Clinical Examination of miRNAs. For clinical examina-
tion of differentially expressed miRNAs, a survival analysis
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Figure 2: Protein-protein interaction (PPI) network of differentially expressed genes (DEGs). (a) Upregulated genes and (b) downregulated
genes. PPI pairs were imported into Cytoscape software as described in Methods. Red nodes represent upregulated genes while green nodes
represent downregulated genes. The lines represent the interactive relationship between nodes. The highlighted DEGs represent a degree of ≥2.
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was performed using CRC patients. SPSS ver. 22.0 was used
to plot KM curves (SPSS, Chicago, IL, USA, http://www-01
.ibm.com), boxplots, and a receiver operating characteristic
(ROC) curve. Tissue expressions of miRNAs including
GSE29623 with a total of 65 cases and GSE126093 with
20 cases in the CRC Metabase were chosen. Expression
profiles were compared based on low or high values with
the Mann–Whitney test and p value (with p < 0:05 consid-
ered significant).

2.11. Small-Molecule Drug-Targeting Therapy for DEGs. The
web-based GEne SeT AnaLysis Toolkit (WebGestalt, http://
www.webgestalt.org), an integrated system for gene analysis,
was used to predict the drugs associated with DEGs [37].

2.12. Immune Infiltration Analysis of DEGs in CRC. For the
immune infiltration analysis, we used the TIMER database
(http://timer.cistrome.org/), a comprehensive database that
provides analysis of immune infiltrates in various types of
cancer [38, 39]. We utilized this database to uncover the

involvement of DEGs in immune infiltrates in CRC. Rela-
tionships of gene expressions and estimated infiltrate values
were presented using scatterplots, and the level of signifi-
cance of the correlation was p < 0:05.

3. Results

3.1. DEGs in GSE42387. More than 100 DEGs, hub genes,
and many pathway-related genes were identified as being
associated with CRC [40]. Data extracted from the
GPL16297 microarray platform using the GEO2R tool con-
sisted of 32,706 probe sets. In total, 218 DEGs were pre-
dicted to be related to OXA resistance after calculating
logFC and FDR values, and among these, 105 DEGs were
downregulated and 113 DEGs were upregulated (Supple-
mentary Tables 1 and 2).

The CIMminer online web tool was used to design a heat
map to predict the bidirectional hierarchical clustering of
downregulated and upregulated DEGs, and it is presented
in Figure 1.

Table 1: Upregulated genes with protein-protein interactions.

No. Gene symbol Degree

1 IGF2 7.0

2 THBS1 6.0

3 VIM 5.0

4 IRS1 4.0

5 IGFBP1 4.0

6 FSTL1 4.0

7 SPON1 4.0

8 FYN 4.0

9 PF4 4.0

10 THSD4 3.0

11 XAF1 3.0

12 ISG20 3.0

13 RTP4 3.0

14 IFIT2 3.0

15 MYLK 3.0

16 ALPL 3.0

17 TFF2 2.0

18 IGFBP2 2.0

19 HSPB3 2.0

20 PRSS23 2.0

21 FMN1 2.0

22 CD36 2.0

23 TNFRSF14 2.0

24 BTLA 2.0

25 SSPN 2.0

26 GNG11 2.0

27 BDKRB2 2.0

28 CASK 2.0

29 DIO3 2.0

30 ALPPL2 2.0

Table 2: Downregulated genes with protein-protein interactions.

No. Gene symbol Degree

1 ABCC2 5.0

2 AKR1B1 5.0

3 FABP1 4.0

4 AKR1C3 4.0

5 DHRS9 4.0

6 HGD 4.0

7 ABCB1 4.0

8 HLA-DQB1 3.0

9 FUT3 3.0

10 TGFB1 3.0

11 UNC13A 3.0

12 TFF3 3.0

13 AKR1C1 3.0

14 HBE1 3.0

15 NTS 3.0

16 VIL1 3.0

17 ANG 3.0

18 SERPINB2 2.0

19 KIFAP3 2.0

20 GJA1 2.0

21 ST3GAL1 2.0

22 HBG1 2.0

23 ST6GALNAC1 2.0

24 PCK1 2.0

25 SYT1 2.0

26 CADPS 2.0

27 AKR1B10 2.0

28 ACE2 2.0

29 MVP 2.0

30 SLCO2B1 2.0
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3.2. Protein-Protein Interaction (PPI) Network. The DEGs
were loaded into the STRING database (https://string-db
.org/) to obtain PPI pairs and then imported into Cytoscape
software to identify hub genes. As shown in Figure 2(a) and
Table 1, the upregulated DEG network contained 30 DEGs
which were identified as hub genes. The downregulated net-
work contained 30 DEGs which were identified as hub genes
(Figure 2(b), Table 2).

3.3. KEGG Pathway Analysis. The 60 hub genes were applied
to obtain KEGG pathways using the DAVID online tool. Six
KEGG pathways (malaria, peroxisome proliferator-activated
receptor (PPAR) signaling, adipocytokine signaling pathway,

metabolic pathways, folate biosynthesis, and insulin resis-
tance)were identified.Among them,malaria, PPAR signaling,
and the adipocytokine signaling pathway reached statistical
significance (FDR value of <1 and p < 0:05) and included
TGFB1, CD36, THBS1, FABP1, PCK1, and IRS1 (Table 3).
Expressionpatternsof candidates formalaria, PPARsignaling,
and adipocytokine signaling pathway were plotted as a heat
map using CIMminer (Figure 3). The three genes, CD36,
THBS1, and IRS1, were upregulated, and the other three genes,
TGFB1, FABP1, and PCK1, were downregulated. Further-
more, using GSEA, peroxisome pathways were preferable as
a significant biological process related to OXA-resistant CRC
(Figure 3(b), normalized enriched score ðNESÞ = −1:50123).

Table 3: Enriched KEGG pathways.

KEGG pathway Count p value Genes

hsa05144: malaria 3 0.022805391 TGFB1, CD36, THBS1

hsa03320: PPAR signaling pathway 3 0.04064955 FABP1, CD36, PCK1

hsa04920: adipocytokine signaling pathway 3 0.044008403 IRS1, CD36, PCK1

hsa01100: metabolic pathways 11 0.054188
ST6GALNAC1, AKR1B10, HGD, DHRS9, AKR1C3,
AKR1B1, ALPL, PCK1, ST3GAL1, ALPPL2, FUT3

hsa00790: folate biosynthesis 2 0.065166 ALPL, ALPPL2

hsa04931: insulin resistance 3 0.094179 IRS1, CD36, PCK1

PPAR: peroxisome proliferator-activated receptor.
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Figure 3: Significant KEGG pathways and genes involved. (a) Gene enrichment analysis showing that KEGG pathways were significantly
enriched in oxaliplatin-resistant LoVo xenograft tumors and genes involved in the pathways (the pathways are in the order of their
enrichment from left to right), p < 0:05). (b) Gene Set Enrichment Analysis (GSEA) showing the peroxisome Hallmark enrichment score.
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Figure 4: Continued.
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Figure 4: Gene expression profiles of differentially expressed genes (DEGs) of (a) FABP, CD36, and IRS1 and (b) PCK1, THBS1, and TGFB1.
These were evaluated in 27 TCGA tumor samples vs. normal tissues using the GEPIA web tool. The black bar indicates normal tissues, while
the red bar indicates expressions of DEGs in tumor tissues. Each GTEx normal data point (green) and its matched TCGA tumor (red) used
TPM (transcripts per million (log2 ðTPM + 1Þ). X axis: number of tumor and normal samples. ACC: adrenocortical carcinoma; BLCA:
bladder urothelial carcinoma; BRCA: breast invasive carcinoma; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma;
CHOL: cholangiocarcinoma; COAD: colon adenocarcinoma; DLBC: lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: esophageal
carcinoma; GBM: glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney
renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LAML: acute myeloid leukemia; LGG: brain lower-grade glioma;
LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; MESO: mesothelioma; OV:
ovarian serous cystadenocarcinoma; PAAD: pancreatic adenocarcinoma; PCPG: pheochromocytoma and paraganglioma; PRAD: prostate
adenocarcinoma; READ: rectum adenocarcinoma; SARC: sarcoma; SKCM: skin cutaneous melanoma; STAD: stomach adenocarcinoma;
TGCT: testicular germ cell tumors; THCA: thyroid carcinoma; THYM: thymoma; UCEC: uterine corpus endometrial carcinoma; UCS:
uterine carcinosarcoma.
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Figure 5: Gene expression profiles of (a) FABP, CD36, IRS1, PCK1, THBS1, and TGFB1 in colorectal cancer (CRC). Boxplot showing
transcriptional levels of differentially expressed genes (DEGs) in colon adenocarcinoma (COAD) (n = 275) vs. normal samples (n = 349)
and rectal adenocarcinoma (READ) (n = 92) vs. normal tissues (n = 318) using the GEPIA web tool based on TCGA database. Black
colors show transcriptional levels in normal tissues, while red colors show DEG transcriptional levels in COAD and READ tissues. One-
way ANOVA was used for the differential analysis with a statistically significant value of p < 0:05. (b) All stages of CRC are shown for
cancer progression of the five DEGs. A violin plot shows different stages of cancer with log2 (transcripts per million ðTPMÞ + 1) of genes
in stages I to IV. A t-test was used with the statistically significant p < 0:05. The Prð>FÞ < 0:05, followed by Student’s t-test.
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3.4. Expression Levels of FABP1, CD36, IRS1, PCKI, THBS1,
and TGFB1 in CRC.Moreover, we also examined expression
levels of FABP1, CD36, IRS1, PCKI, THBS1 and TGFB1 in
CRCwith a GEPIA web tool analysis. According to the GEPIA
analysis (Figures 4 and 5), FABP1 and CD36 had significant
and different expressions in CRC as shown in a boxplot of
normal vs. colorectal adenocarcinoma, results showed signifi-
cant differences of expression in CRC (Figures 4(a) and 5(a)),
while IRS1, PCK1, THBS1, and TGFB1 showed no significant
differences of expression in CRC.

Moreover, we also examined associated expression levels
of these six genes in clinicopathological patients. According
to Figure 5(b), we found that mRNA expression levels of
PCK1 significantly differed in different tumor stages of
CRC. However, expression levels of FABP1, CD36, IRS1,

THBS1, and TGFB1 did not significantly differ in various
tumor stages. The PCK1 result is consistent with a previous
study that showed that it was involved in carcinogenesis but
was not involved in the stages of CRC [41].

3.5. Protein Expression Levels of FABP1, CD36, IRS1, PCKI,
THBS1, and TGFB1 in CRC. Additionally, protein expres-
sion levels of these six biomarkers in 12 tissue samples of
CRC patients were also validated by the HPA database of
IHC images of immunoreactivity expression in cancer spec-
imens (Figure 6). This figure shows manual scoring of IHC
data of the staining intensity (negative, weak, moderate, or
strong), and the proportion of stained cells (>75%,
25%~75%, of <25%) was used to determine the protein
expression score. PCK1 and THBS1 protein expression
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Figure 6: Protein expressions of six genes. The protein expression analysis used the HPA database of colorectal cancer (CRC) tissue
samples. IHC images show the intensity and staining of differentially expressed genes (DEGs). Manual scoring of IHC data for staining
intensity (negative, weak, moderate, or strong) and proportion of stained cells (>75%, 25%~75%, or 25%) as determined by the protein
expression score.
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levels exhibited moderate staining in CRC tissues and CD36
showed negative intensity. Overall FABP1, TGFB1, and IRS1
showed weak intensities. However, PCK1 showed moderate
intensity with a >75% proportion, while THBS1 showed
moderate intensity with 25%~75% proportion. That is why
we considered PCK1 to be a more promising biomarker of
CRC development.

3.6. Genes Associated with CRC Patient Survival. Further-
more, we conducted a survival analysis for candidate targets
using a cohort of GSE41258 liver metastasis CRC patient
samples with the use of SPSS 22.0 to draw a Kaplan-Meir
Plot. As shown in Figures 7 and 8, high levels of CD36 and
PCK1 were associated with poor OS and DFS of CRC

patients, while THBS1, FABP1, TGFB1, and IRS1 were not.
We used the log rank test p value < 0.05 followed by multiple
testing the cox regression analysis. We found that PCK1 is a
consistent result from survival analysis and protein expres-
sion immunohistochemistry results.

3.7. Identification of Potential miRNA Targets for Candidate
Genes. To determine upstream regulators of those candi-
dates of GSE29623, miRWalk web tools were applied to pre-
dict miRNAs for those candidates. We found that 47
miRNAs targeted PCK1 (Figure 9(a) and supplementary
Table 3). Finally, we focused on 8 miRNAs for further
analysis (Supplementary Table 4).
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Figure 7: Kaplan-Meier survival curves presenting the prognostic relationship between high and low expressions of specific genes to overall
survival (OS) using the GSE41258 database patient samples. (a) FABP1 (b) CD36, (c) IRS1 (d) PCK1, (e) THBS1, and (f) TGFB1 expressions.
Survival curves were plotted using SPSS 22.0. Specific differentially expressed gene (DEGS) expression levels were selected by the median
value. Results are visually presented by Kaplan-Meier survival plots, and p values were calculated using log-rank statistics. Number of
Patient ðnÞ = 244, p = log-rank p value with p < 0.05 considered significant

11BioMed Research International



3.8. miRNAs Associated with Survival of CRC Patients.More-
over, we also validated the OS of targeted miRNA expression
levels from CRC tissue samples of the GSE29623 database
using SPSS ver. 22.0 to draw a KM plot. We further verified
correlations of the 8 miRNAs with clinical outcomes of
CRC. As shown in Figures 9(b)–9(d), high expressions of
miR-7-5p, miR-20a-3p, and miR-636 were associated with
poor OS while the other 5 miRNAs were not significantly cor-
related with the OS of CRC patients (Supplementary Table 4).

3.9. Clinical Validation of miR-7-5p, miR-20a-3p, and miR-
636 in CRC Patients. The GSE126093 GEO dataset com-
prising miRNA profiles from tissues of 20 CRC patients
was used. We found that the expression levels of miR-7-5p,

miR-20a-5p, and miR-636 were higher in CRC patients and
the Mann–Whitney test p values were <0.05 (Supplementary
Figures 1A-C). Furthermore, we utilized a sensitivity test
(ROC analysis) (Supplementary Figures 2A-C). From the
overall results, we picked three miRNAs due to their
significant associations with OS. Only a high level of PCK1
was negatively regulated by high levels of miR-7-5p miR-
20a-5p and miR-636 to activate the PPAR pathway.

3.10. Functional Interactions and Pathway Enrichment. We
used the GeneMANIA online web tool to explore functional
interactions of miRNA targets with each other and DEGs of
the reactome. The PPAR pathway was used to analyze the
functional roles of these molecules. The interaction network
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Figure 8: Kaplan-Meier survival curves presenting prognostic relationships between high and low expressions of specific genes to disease-
free survival (DFS) using the GSE41258 database patient samples. (a) FABP1 (b) CD36, (c) IRS1 (d) PCK1, (e) THBS1, and (f)
TGFB1expressions. Survival curves were plotted using SPSS 22.0. Specific differentially expressed gene (DEG) expression levels were
selected by the median value. Results are visually presented by Kaplan-Meier survival plots, and p values were calculated using log-rank
statistics. Patient numberðnÞ = 189;p = log‐rank pvalue, withp < 0:05considered significant.
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included 20 other related genes in addition to the two targets
(PCK1 and IRS1) that were entered, and there were 144 links
in total. Two interaction types were involved, and coexpres-
sion was the most frequent type of interaction (2.88%)
(Figure 10(a)). High expressions of miR-7-5p, miR-20a-5p,
and miR-636 targeting PCK1 suppressed OXA-resistant
CRC through activation of the PPAR pathway. Overall inter-
actions of miRNAs with target genes and their mechanisms
are summarized in Figure 10(b).

3.11. Association of the PCK1 Gene with Immune Cell
Infiltration. We also examined the relationship of the
PCK1 gene with immune cell infiltration and inflammatory
responses in CRC patients. We used the TIMER database
to predict whether PCK1 gene expression was linked to
immune infiltration in CRC patients (Figure 11, Supple-
mentary Figure 3). Results showed correlations of PCK1
with a cluster of differentiation 4-positive (CD4+) T cells
and macrophages, while neutrophils were negatively
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Figure 9: Kaplan-Meier survival curves presenting prognostic relationships between high and low expressions of specific micro (mi)RNAs
to overall survival (OS) using the GSE29623 database patient samples. (a) Venn plot method for prediction of miRNAs (b) miR-7-5p, (c)
miR-20a-3p, and (d) miR-636 expressions. Survival curves were plotted using SPSS 22.0. Specific miRNA expression levels were selected
by the median value. Results are visually presented by Kaplan-Meier survival plots, and p values were calculated using log-rank statistics.
Patient numberðnÞ = 65;p = log‐rank pvalue, withp < 0:05considered significant.
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correlated in colon adenocarcinoma (COAD) and rectal
adenocarcinoma (READ) patients.

3.12. Drug Predictions. The two genes identified by the
survival analysis were used for drug predictions via the web-
based GEne SeT AnaLysis Toolkit (WebGestalt, http://www
.webgestalt.org). The PCK1 gene significantly (P = 5:35e − 3)

targeted mersalyl small molecules; hence, it was identified
as a druggable gene that can be targeted for developing
new drugs (Table 4). We also show the chemical structure
of mersalyl in Figure 12(a) and the correlation between
PCK1 and VEGFA in Figure 12(b). The correlation value
was R = 0:22 and p = 2:3e − 05. The overall study flow is
shown in Figure 13.

(a)

miR-7-5p

PCK1

PPAR signaling
Mersalyl

hydrochloride

Oxaliplatin
resistance CRC

miR-20a-3p miR-636

(b)

Figure 10: Gene interaction network (a) and pathway enrichment summary of common micro (mi)RNA targets. In (a), input genes are
indicated by stripes with green circles representing downregulated genes and red representing upregulated genes in oxaliplatin-resistant
colorectal cancer (CRC), while in (b), a schematic summary shows possible interactions of miRNAs and their oxaliplatin-resistant
targets. The red background represents upregulation, and the green background indicates downregulation in oxaliplatin-resistant CRC,
revealing significant expression in the respective validation dataset. Thick dashed black lines represent significant interactions, and thin
black lines represent nonsignificant interactions. Oxaliplatin is represented by a blue background.
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Figure 11: Immune filtration of the phosphoenolpyruvate carboxykinase 1 (PCK1) gene. Spearman’s correlations between the differentially
expressed PCK1 gene and immune cell infiltration in (a) colon adenocarcinoma (COAD) and (b) rectal adenocarcinoma (READ) patients.
The TIMER web tool was used for the analysis of correlations between immune infiltration of the immune cell markers of B cells, CD4+ cells,
CD8+ cells, T cells, macrophages, neutrophils, and dendritic cells vs. the PCK1 gene. Statistical significance was accepted at p < 0:05 for
Spearman’s correlations.
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4. Discussion

Our study revealed that PCK1 is an important antitumor
mRNA and inhibitor of tumor progression. PCK1 was down-
regulated in OXA-resistant CRC and functionally suppressed
the drug-resistant phenotype. miR-20a-3p, miR-636, and
miR-7-5p overexpression resensitized the OXA response by
competitively binding the PCK1 mRNA 3′ UTR, leading to
PPAR signaling of OXA-resistant CRC. In this study, previ-
ously published mRNA expression datasets on OXA resis-
tance of CRC in the GEO database were used to identify
DEGs [42]. A computational analysis was performed by
defining DEGs that were correlated with miRNAs. KEGG
pathway enrichment analyses were identified and a PPI
network was created to screen for hub genes. Furthermore,
OS and DFS were evaluated to identify CRC patient survival
biomarkers [43].

We explored the potential mechanisms of PCK1 that
mediated the reversal of chemoresistance by focusing on
likely miRNAs. Herein, we identified that high expression
levels of miR-20a-3p, miR-636, and miR-7-5p were associ-
ated with poor OS of CRC patients. Recently, miRNAs have
been highly investigated for cancer treatment. But some pre-
vious studies identified negative relations between certain
miRNAs and PCK1. For example, high expression of miR-
33b negatively regulated PCK1 in human hepatic cells and
caused a reduction in glucose production, and our study also
showed consistent results in which high expression of miR-
7-5p, miR-636, and miR-20a-3p negatively regulated PCK1
in CRC patients. Another example is bta-miR-26a which

also reduced the abundance of PCK1 [44, 45]. Moreover,
the oncosuppressor miR-20a-3p was identified in mela-
noma, tongue squamous cell carcinoma, and hepatocellular
carcinoma, and the oncosuppressor miR-636 was also iden-
tified in lung cancer, nasopharyngeal carcinoma, cervical
cancer, endometrial cancer, ovarian cancer, and hepatocellu-
lar carcinoma [46–56]. It was reported that high miR-20a-3p
and miR-636 expression were correlated with poor OS of
CRC patients and this was consistent with our results. In a
previous study, miR-7-5p modulated OXA resistance in
HCC [57]. Downregulated miR-7-5p inhibited tumor
growth, migration, invasion, and proliferation and induced
apoptosis in CRC [58, 59].

OXA-resistant metastatic CRC is a major problem in the
clinical management of CRC and causes neurotoxic side
effects due to the OXA treatment of CRC patients. This is
due to the difficulties associated with early detection of the
disease and the development of acquired therapeutic resis-
tance leading to ineffective treatment in patients with metas-
tatic disease [60–63]. Therefore, the etiological factors and
mechanisms of acquired OXA resistance must be well stud-
ied to increase survival rates and prevent disease recurrence
[61]. Microarray technology is commonly used to identify
therapeutic targets for the diagnosis and prognosis of can-
cers [15, 64]. In a previous study, PCK1 was found to be a
key enzyme in the gluconeogenesis pathway, and a low level
of PCK1 was highlighted as a potential predictor for a poor
prognosis in HCC patients [65].

Notably, high expression levels of miR-20a-3p, miR-636,
and miR-7-5p and high expression of PCK1 were implicated

Table 4: Small molecules for targeted therapy.

Drug Gene symbol Gene name p value FDR

Mersalyl PCK1 Phosphoenolpyruvate carboxykinase 1 0.005 1:000e + 1

FDR: false discovery rate.
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Figure 12: (a) Mersalyl hydrochloride chemical structure. (b) Correlation between PCK1 and VEGFA. The correlation was R = 0:22, and the
p value was <0.05, which was significant.
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in OXA resistance and poor prognoses of patients with
mCRC because the epithelial-to-mesenchymal transition
(EMT) pathway is considered an alternative pathway in the
development of OXA resistance [66].

Furthermore, we also predicted that the small-molecule
compound, mersalyl, would target PCK1 which induces
the VEGF gene in invasive tumor cases. Our results are
also consistent with GeneMania results in PCK1 interac-
tions with the VEGF gene, and earlier research revealed
a connection between the VEGF inducer gene and the
angiogenesis process and PCK1. This line of reasoning
showed that mersalyl can also induce PCK1 in the PPAR
pathway [67].

The tumor microenvironment (TME) plays an impor-
tant role in cancer progression of metastatic cancer, and
tumor-associated macrophages (TAMs) are important
components of the TME. High TAM levels are associated
with invasion, migration, and interleukin- (IL-) 6 for
tumor progression of CRC metastasis [68]. Tumor infiltra-
tion is associated with six cell types: B cells, CD8+ cells,
CD4+ cells, macrophages, neutrophils, and dendritic cells
[69]. Our results showed that the PCK1 gene was consis-
tently associated with CD4+ cells and macrophages. This
means that the PCK1 gene can be a tumor prognostic
marker for mCRC.

Results of this study showed that PCK1 is associated
with overall survival and disease-free survival genes and
the prognosis of CRC patients. Some previous studies also
showed that miR-20a-3p, miR-636, and miR-7-5p targeted
PCK1 in the PPAR pathway and the small-molecule com-
pound, mersalyl, mediated OXA resistance in CRC; results
are consistent with those of a previous study.

Nevertheless, some limitations exist in our study. It
was difficult to collect sufficient OXA-treated CRC patient
samples and conduct in vitro and in vivo studies and to
find a suitable public database to evaluate the clinical sig-
nificance of miR-20a-3p, miR-636, and miR-7-5p targeting
PCK1 in terms of expression levels and CRC progression.
We believe that miR-20a-3p, miR-636, and miR-7-5p tar-
geting PCK1 in the PPAR pathway and mersalyl play

important roles by mediating OXA sensitivity in CRC
progression.

5. Conclusions

We concluded that miR-7-5p, miR-636, and miR-20a-3p
target PCK1 in the PPAR signaling pathway and the small-
molecule compound, mersalyl, might be involved in over-
coming OXA-resistant CRC. Our findings may provide
novel directions and strategies for CRC therapies.
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genes are therapeutic targets for oxaliplatin-resistant CRC
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signaling are novel therapeutic target pathways for treating
oxaliplatin-resistant CRC. (vi) The small-molecule com-
pound, mersalyl, is associated with PCK1 to overcome
oxaliplatin-resistant CRC
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