
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Cristian Apetrei,
University of Pittsburgh, United States

REVIEWED BY

Michael L. Freeman,
Case Western Reserve University,
United States
Paul Goepfert,
University of Alabama at Birmingham,
United States

*CORRESPONDENCE

Mohammad-Ali Jenabian
jenabian.mohammad-ali@uqam.ca

SPECIALTY SECTION

This article was submitted to
Viral Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 06 June 2022

ACCEPTED 29 June 2022
PUBLISHED 29 July 2022

CITATION

Yero A, Shi T, Routy J-P, Tremblay C,
Durand M, Costiniuk CT and
Jenabian M-A (2022) FoxP3+ CD8
T-cells in acute HIV infection and
following early antiretroviral therapy
initiation.
Front. Immunol. 13:962912.
doi: 10.3389/fimmu.2022.962912

COPYRIGHT

© 2022 Yero, Shi, Routy, Tremblay,
Durand, Costiniuk and Jenabian. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 29 July 2022

DOI 10.3389/fimmu.2022.962912
FoxP3+ CD8 T-cells in acute HIV
infection and following early
antiretroviral therapy initiation
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Objectives: Besides CD4 regulatory T-cells (Tregs), immunosuppressor

FoxP3+ CD8 T-cells are emerging as an important subset of Tregs, which

contribute to immune dysfunction and disease progression in HIV infection.

However, FoxP3+ CD8 T-cell dynamics in acute HIV infection and following

early antiretroviral therapy (ART) initiation remain understudied.

Methods: Subsets of FoxP3+ CD8 T-cells were characterized both

prospectively and cross-sectionally in PBMCs from untreated acute

(n=26) and chronic (n=10) HIV-infected individuals, early ART-treated in

acute infection (n=10, median of ART initiation: 5.5 months post-infection),

ART-treated in chronic infection (n=10), elite controllers (n=18), and HIV-

uninfected controls (n=21).

Results: Acute and chronic infection were associated with increased total,

effector memory, and terminally differentiated FoxP3+ CD8 T-cells, while

early ART normalized only the frequencies of total FoxP3+ CD8 T-cells. We

observed an increase in FoxP3+ CD8 T-cell immune activation (HLADR+/

CD38+), senescence (CD57+/CD28-), and PD-1 expression during acute and

chronic infection, which were not normalized by early ART. FoxP3+ CD8 T-

ce l l s i n un t r e a t ed pa r t i c i p an t s e xp re s sed h i ghe r l e ve l s o f

immunosuppressive LAP(TGF-b1) and CD39 than uninfected controls,

whereas early ART did not affect their expression. The expression of gut-

homing markers CCR9 and Integrin-b7 by total FoxP3+ CD8 T-cells and

CD39+ and LAP(TGF-b1)+ FoxP3+ CD8 T-cells increased in untreated

individuals and remained higher than in uninfected controls despite early

ART. Elite controllers share most of the FoxP3+ CD8 T-cell characteristics in

uninfected individuals.

Conclusions: Although early ART normalized total FoxP3+ CD8 T-cells

frequencies, it did not affect the persistent elevation of the gut-homing
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potential of CD39+ and LAP(TGF-b1)+ FoxP3+ CD8 T-cell, which may

contribute to immune dysfunction.
KEYWORDS

CD8 regulatory T cells (CD8 Tregs), acute HIV infection, early antiretroviral therapy
(ART), FoxP3, TGF-b1, CD39
Introduction

Immunosuppressive CD8 T-cells are a heterogeneous group

of suppressor T-cells with various origins, phenotypic

characteristics, and suppressive mechanisms. Despite 50 years

since their discovery (1), our understanding of the regulation and

functions of these cells remains limited compared to their CD4

Treg counterparts, mainly due to the lack of specific

characterization markers. However, various studies have

revealed the undeniable role of immunosuppressive CD8 T-cells

in cancer, autoimmune diseases, transplantation, and infectious

diseases (2–6). Indeed, several CD8 T-cell populations with

immunosuppressive capacity have been described, including

those expressing FoxP3, the master transcription factor of Tregs,

or other populations with immunosuppressive features in the

absence of FoxP3 expression (7–9).

In physiological conditions, human CD4 T-cells usually express

FoxP3 at higher levels than CD8 T-cells, and the frequencies of

CD4+FoxP3+ T-cells are more elevated compared to FoxP3-

expressing CD8 T-cells (around a 50-fold difference) (3, 10, 11).

However, FoxP3 expression is crucial for the stability and functions

of FoxP3+ CD8 T-cells (12, 13). Lim et al. demonstrated the

presence and increased frequencies of FoxP3+ CD8 T-cells in the

blood of HIV-infected individuals compared to uninfected controls

(14, 15). They found a link between HIV disease progression and

immune activation with the proportions of CD8+FoxP3+ T-cells

while showing that FoxP3-expressing CD4 and CD8 T-cells in

HIV-infected people are phenotypically distinct (15). SIV/HIV

infections are associated with an increase in the frequencies of

FoxP3+ CD8 T-cells that positively correlate with plasma viral load

(VL), which negatively impact antiviral immune responses and

contribute to HIV disease progression by inhibition of effector T-

cell proliferation and cytokines secretion (15–18). Moreover,

FoxP3+ CD8 T-cells induced after vaccination were critical in

controlling SIV infection in Rhesus macaques (RM) by reducing

CD4 T-cell activation and viral replication (19, 20). In a single

report, higher FoxP3+ CD8 T-cell frequencies and absolute

numbers were also observed in the blood of elite controller (EC)

SIV-infected Indian RMs (18). However, the dynamics of FoxP3+

CD8 T-cells during acute HIV infection remain understudied.

Several subsets of FoxP3+ CD8 T-cells expressing highly

immunosuppressive markers such as cytotoxic T lymphocyte
02
antigen 4 (CTLA-4), programmed cell death protein-1 (PD-1),

CD39, and transforming growth factor-beta 1 (TGF-b1) have been
described (16, 17, 21–23). FoxP3+ CD8 T-cells express high levels of

CTLA-4, which is needed for viral suppression in SIV-infected RMs

(16, 17). Besides, CTLA-4 is required for FoxP3+ CD8 T-cells

expansion, activation, and maintenance since the interaction

CTLA-4/B7 promotes indoleamine 2,3-dioxygenase (IDO)

expression by dendritic cells, further favoring the generation of

CTLA-4+ FoxP3+ CD8 T-cells (22). PD-1 expression increases

during SIV/HIV infections in correlation with immune activation,

VL, and low CD4 T-cell count (24). PD-1/PD-1L contributes to the

immunosuppressive functions of FoxP3+ CD8 T-cells (21). The

ectonucleotidase CD39 hydrolyzes inflammatory ATP into ADP

and AMP, followed by the generation of immunosuppressive

adenosine in an orchestra with CD73 (25–27). The expression of

CD39 by FoxP3+ CD8 T-cells is crucial for viral suppression in SIV-

infected RMs (16). Fenoglio et al. found a positive correlation

between the levels of CD39-expressing CD8 T-cells and VL, CD4 T-

cell count and immune activation, suggesting their link with HIV

disease progression (28). Furthermore, increased FoxP3+ CD8 T-

cells in SIV infection correlated positively with TGF-b1 production
(23). TGF-b1 limits effector T-cell proliferation while promoting the

differentiation of both CD4 and FoxP3+ CD8 T-cells (12, 29, 30).

TGF-b1 is first generated as a pro-TGF-b1, which is then cleaved to
form a dimeric pro-peptide known as a latency-associated peptide

(LAP), which binds non-covalently with mature TGF-b1 to prevent
TGF-b1 binding to its receptor and subsequent activation (31).

TGF-b1 production stimulates collagen-1 deposition and

progressive lymphoid tissue fibrosis in SIV/HIV infections,

starting during the acute infection (32, 33). Notably, TGF-b1-
expressing CD8 T-cells are major contributors to fibrosis of

lymph nodes and gut mucosal tissues during HIV infection

regardless of the stage of the disease, antiretroviral therapy (ART)

or disease outcome (34, 35).

Early ART initiation upon HIV exposure is highly

recommended in clinical practice since it improves CD4 T-cell

recovery and reduces VL and immune activation (36, 37). One

study showed decreased FoxP3+ CD8 T-cell frequencies

following early short-term ART in SIV-controllers RMs (38).

Our team has recently reported that early ART initiation at four

days post-infection can normalize CD39+ FoxP3+ CD8 T-cell

frequencies in blood and mesenteric lymph nodes of progressor
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SIV-infected RMs (39). Moreover, we also recently reported an

increase in total CD4 Tregs frequencies, which was normalized

by early ART, while the frequencies of immunosuppressive CD4

Tregs-expressing CD39 and LAP(TGF-b1) with potential

migration to the gut remained higher despite ART (40).

However, to date, FoxP3+ CD8 T-cell dynamics during acute

HIV infection and the impact of early ART initiation

remain understudied.

Herein, we prospectively and cross-sectionally evaluated the

dynamic of FoxP3+ CD8 T-cells during HIV infection and

following early ART initiation in the acute phase. We found

that despite decreasing frequencies of total FoxP3+ CD8 T-cells,

early ART initiation failed to decrease the expansion of FoxP3+

CD8 T-cells with highly immunosuppressive functions and their

potential migration to the gut, which may contribute to immune

dysfunction and disease progression.
Material and methods

Study population

Frozen peripheral blood mononuclear cells (PBMCs) from

HIV-infected individuals and uninfected controls were obtained

from Montreal Primary and Slow Progressors HIV Infection

cohorts and McGill University Health Centre. A total of 105

individuals were included in our study and our study has been

carried out in both cross-sectional and longitudinal manners. In

the cross-sectional analysis, 26 study participants had acute HIV

infection, which was defined as being within 180 days after the

estimated date of HIV infection (median (IQR) 90 (43–126)

days). Individuals with chronic infection who had been infected

for more than a year were left untreated (n=10) or given ART

(n=11). HIV ECs (n=18) with CD4 count higher than 500 cells/

ml in the absence of any treatment and undetectable plasma VL

for at least 7 years, and 20 HIV-uninfected controls were also

included in the cross-sectional analysis (Table 1). In addition, we

followed longitudinally 20 acutely infected individuals overtime,

ten of whom had started ART during the acute infection

(median (IQR) 165 (97–212) days), and the other ten were left

untreated (Table 1). Of note, our cross-sectional analysis did not

include follow-up specimens from the longitudinal cohorts.
Ethical considerations

The Ethical Review Board of the Université du Québec à

Montréal (UQAM) gave their approval to this study (#2014-

452), which followed the Declaration of Helsinki. All study

participants signed a written informed consent form before

blood collection.
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Flow cytometry analysis

Multiparameter flow cytometry was performed on thawed

PBMCs. For immunological staining, the optimal concentrations

of fluorochrome-conjugated antibodies were used in 3

independent panels of 14 colors each, as shown in

Supplementary Table 1. The LIVE/DEAD Fixable Aqua Dead

Cell Stain Kit (Invitrogen, Oregon, USA) was used to eliminate

dead cells from the analysis. After extracellular staining, cells

were permeabilized with the Transcription Factor Buffer Set (BD

Bioscience, New Jersey, USA) and further stained intracellularly

for FoxP3 and CTLA-4. The data was collected using a three-

laser BD LSR Fortessa X-20 cytometer, and the results were

analyzed using FlowJo V10.8.1 (Oregon, USA).
Statistical analysis

GraphPad Prism V6.01 (California, USA) was used for

statistical analysis. The results are shown as medians with an

interquartile range (IQR) throughout the text. The distribution

of variables was initially determined by the Kolmogorov–

Smirnov test. The Kruskal–Wallis test was then used to

evaluate any statistically significant differences between the five

study groups. Nonparametric Mann-Whitney was used for

unpaired variables, while the Wilcoxon rank tests were used

for paired analysis. The correlation between variables was

determined using the Spearman correlation coefficient test.

Only statistical significances (p<0.05) are presented in the

figures (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001).
Results

Characteristics of the study populations

ECs and chronically infected participants on ART were older

than individuals in other study groups and had been infected for

a longer period of time (Table 1). In chronic infection, ART

restored CD4 T-cell count but was unable to normalize both CD8

T-cell levels and CD4/CD8 ratio compared to the uninfected

group. ECs had similar CD4 T-cell count to those of uninfected

individuals but had higher CD8 T-cell count and lower CD4/CD8

ratio. Chronically infected individuals on ART in the cross-

sectional study were significantly older (median age: 51 versus

36.5 years, Mann-Whitney p= 0.04), had a longer duration of

HIV infection (median: 12.7 versus 2.27 years, p< 0.0001), and

had been longer on ART (median: 14.58 versus 1.72 years, Mann-

Whitney p= 0.0002) than ART-treated chronically infected

individuals in the longitudinal group. Furthermore, ART was

initiated earlier in the longitudinal group (median years of ART
frontiersin.org
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initiation post-infection: 1.11 versus 0.46 years, Mann-Whitney

p= 0.05). We thus evaluated the effect of early ART initiation on

FoxP3+ CD8 T-cell in the longitudinal analysis. Early ART

initiation improved CD4 T-cell count (Wilcoxon p= 0.04) and

CD4/CD8 ratio (Wilcoxon p=0.002). Moreover, there was no

significant difference in clinical characteristics between two

(n=10) acute individuals in untreated and ART-treated

longitudinal specimens.
Frontiers in Immunology 04
HIV infection is associated with a rapid
expansion of total FoxP3+ CD8 T-cells,
which was normalized by early
ART initiation

Untreated HIV infection increased FoxP3+CD8+ T-cells

frequencies beginning in the acute phase compared to

uninfected individuals (p< 0.0001 in both cross-sectional and
TABLE 1 Clinical characteristics of study groups.

Cross-sectional participants Longitudinal participants

Untreated ART-Treated

Characteristics Non-
infected
(n=20)

Acute
(n=26)

Chronic
ART-
(n=10)

Chronic
ART+
(n=11)

EC (n=18) p-
values

Acute
(n=10)

Chronic
ART-
(n=10)

Acute
(n=10)

Chronic
ART+
(n=10)

Age, years
[median (IQR)]

39d

(30.75-47)
39.5f,g

(32.75-43)
32.5h,i

(26-39.75)
51f,h

(41–60)
49d,g,i

(32-55.5)
0.0006 39.5

(35.50-43.25)
39.5

(37.75-43)
36

(29.75-46.50)
36.5

(29-46.5)

Male sex, n (%) 15a

(75%)
26a,g

(100%)
10i

(100%)
11j

(100%)
10g,i,j

(55.6%)
0.0002 10

(100%)
10

(100%)
10

(100%)
10

(100%)

CD4+ T-cells count,
cells/µl
[median (IQR)]

632b

(463.5-
775)

460g

(380–610)
440b,i

(255–543)
603

(400–847)
730g,i

(638.5-900)
0.001 515

(419-767.5)
595

(287.5-
813.8)

450l

(272.5-561.3)
521l

(377.5-795)

CD8+ T-cells count,
cells/µl
[median (IQR)]

197a,b,c,d

(153-
428.5)

996a

(640–1630)
750b

(629-1133)
743c

(433.3-1192)
739d

(604-1040)
0.0002 830k

(615-1170)
953k

(705-1915)
1019

(580-1708)
655

(531-1081)

CD4/CD8 ratio
[median (IQR)]

2.82a,b,c,d

(1.41-
4.19)

0.46a,f,g

(0.21-1.14)
0.48b,h,i

(0.40-0.61)
0.87c,f,h

(0.60-1.81)
0.95d,g,i

(0.80-1.43)
<

0.0001
0.56k

(0.40-1.35)
0.50k

(0.32-0.85)
0.40l

(0.19-0.81)
0.69l

(0.40-1.24)

Nadir CD4+ T-cells
count, cells/µl
[median (IQR)]

NA 330
(257.8-500)

310
(245-423.5)

334
(297.8-533.5)

551.5
(301.5-624.8)

0.30 365
(297.5-525)

NA 258.5
(207.5-530)

NA

Viral load, log10
copies/mL
[median (IQR)]

NA 4.36f,g

(3.82-5.50)
4.56h,i

(3.74-3.98)
1.60f,h

(1.60-1.60)
1.65g,i

(1.60-1.69)
<

0.0001
4.07k

(3.54-4.37)
4.60k

(4.01-5.20)
4.40l

(3.92-5.77)
1.70l

(1.67-1.70)

Duration of
infection, years
[median (IQR)]

NA 0.25e,f,g

(0.12-0.35)
2.55e,h,i

(1.54-4.26)
12.40f,h

(4.99-19.33)
15.3g,i

(7.87-21)
<

0.0001
0.22k

(0.11-0.36)
2.19k

(2.12-2.39)
0.28l

(0.13-0.39)
2.27l

(2.00-2.65)

Time of ART
initiation years
post-infection
[median (IQR)]

NA NA NA 1.11
(0.49-2.02)

NA NA NA NA 0.46
(0.27-0.59)

Duration of ART,
years
[median (IQR)]

NA NA NA 14.58
(3.56-20.73)

NA NA NA NA 1.72
(1.43-199)
fro
Results are shown as median and interquartile range (IQR).
NA, not applicable; EC, Elite controllers.
p-values come from comparing the six groups using the Kruskal-Wallis test. Significant differences (p < 0.05) following Mann–Whitney U test or Fisher’s test are mentioned as follow:
a: Non-infected vs Acute,
b: Non-infected vs Chronic (ART-),
c: Non infected vs Chronic (ART+),
d: Non-infected vs EC
e: Acute vs Chronic (ART-),
f: Acute vs Chronic (ART+),
g: Acute vs EC,
h: Chronic (ART-) vs Chronic (ART+),
i: Chronic (ART-) vs EC,
j: Chronic (ART+) vs EC,
Significant differences (p < 0.05) following Wilcoxon signed-rank test are mentioned as follow:
k: Acute vs Chronic (ART-),
l: Acute vs Chronic (ART+)
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longitudinal analysis), which was normalized by early ART

initiation (Figures 1A, B). The frequency of total FoxP3+ CD8

T-cells was inversely correlated with CD4 T-cell count and CD4/

CD8 ratio and positively with plasma viral load and both CD4

and CD8 immune activation (Table 2). Total FoxP3+ CD8 T-

cells in ECs were significantly lower than untreated HIV-

infected individuals (p< 0.0001 for both acute and ART-

chronic) like uninfected controls (Figures 1A, B).

We observed a marked heterogeneity in FoxP3+ CD8 T-cell

subsets based on CD28 and CD45RA expression (27, 41) in

untreated HIV-infected individuals compared to ART-treated and

uninfected controls (Figure 1). The frequencies of naïve
Frontiers in Immunology 05
(CD45RA+CD28+) FoxP3+ CD8 T-cells remained unchanged in

all study groups in the cross-sectional analysis, and only a

significant increase was observed in acutely infected individuals in

the longitudinal study (p= 0.01) (Figure 1C). In addition, acute HIV

infection compared to uninfected controls, was linked to increased

frequencies of central memory (CM, CD45RA-CD28+) (p= 0.001),

effector memory (EM, CD45RA-CD28-) (p< 0.0001), and

terminally differentiated (TD, CD45RA+CD28-) FoxP3+ CD8 T-

cells (p= 0.01) (Figures 1D-F). Early ART initiation did not affect

naïve and TD FoxP3+ CD8 T-cells but decreased the frequencies of

both CM and EM FoxP3+ CD8 T-cells. Despite early ART, the

frequencies of EM FoxP3+ CD8 T-cells remained higher than in
A

B

D

E F

C

FIGURE 1

Effect of early ART initiation on total FoxP3+ CD8 T-cells frequencies and memory subsets. (A) Gating strategies used in flow cytometry to define
total FoxP3+ CD8 T-cells and FoxP3+ CD8 T-cells memory subsets within CD8 T-cells. (B) Percentages of total FoxP3+ CD8 T-cells. Frequencies of
(C) naïve (CD45RA+CD28+), (D) central memory (CM, CD45RA-CD28+) (E) effector memory (EM, CD45RA-CD28-), and (F) terminally differentiated
(TD, CD45RA+CD28-) FoxP3+ CD8 T-cells subsets. Statistical significance is indicated in the figures as follow: *, P < 0.05; **, P < 0.01; ***, P < 0.001;
****, P < 0.0001. Differences among five study groups was determined by nonparametric Mann-Whitney rank test for unpaired variables, while the
Wilcoxon rank tests were used for paired variables in the longitudinal study. Sample size in cross-sectional analysis: non-infected n=20, Acute n=26,
Chronic ART- n=10, Chronic ART+ n=11, EC n=18. Sample size in longitudinal analysis: non-infected n=20, ART- n=10, ART+ n=10.
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uninfected controls (p= 0.001) (Figure 1E). Frequencies of CM

FoxP3+ CD8 T-cells positively correlated with CD4 and CD8

immune activation (Table 2). Both CD4 and CD8 immune

activation positively correlated with frequencies of EM and TD

FoxP3+ CD8 T-cells, whereas only EM FoxP3+ CD8 T-cells were

positively associated with VL and inversely with CD4 T-cell count

and CD4/CD8 ratio (Table 2). ECs showed lower CM FoxP3+ CD8

T-cells frequencies compared to chronic (ART+) and acute (ART-),

lower EM FoxP3+ CD8 T-cells than chronic (ART-) and acute

(ART-), and lower TD FoxP3+ CD8 T-cells compared to chronic

(ART-) (Figures 1C, E, F). Overall, our results showed an increased
Frontiers in Immunology 06
differentiation of FoxP3+ CD8 T-cells in acute infection that, except

for EM CD8 FoxP3+ CD8 T-cells, was normalized by early ART.
Early ART initiation decreased but not
normalized immune activation and
senescence of FoxP3+ CD8 T-cells

HIV infection was associated with increased frequencies of

activated CD38+/HLA-DR+ FoxP3+ CD8 T-cell compared to

uninfected individuals (p< 0.0001 for all comparisons in both
TABLE 2 Correlation between clinical and immunological parameters and CD4 T-cell count, CD4/CD8 ratio, CD4 activation (CD4+HLA-
DR+CD38+), CD8 activation (CD8+HLA-DR+CD38+), plasma viral load (log10/ml), and duration of ART (years).

CD4 T-cell
count (cells/µl)

CD4/CD8
ratio

CD4 activation
(HLA-

DR+CD38+)

CD8 activation
(HLA-

DR+CD38+)

Plasma viral
load (log10/ml)

Duration of
treatment
(years)

r p r p r p r p r p r p

CD8+FoxP3+ -0.424 0.0001 -0.4236 0.0001 0.6332 < 0.0001 0.678 < 0.0001 0.6005 < 0.0001 -0.1089 0.68

CD8+FoxP3+CD45RA+CD28+

(Naïve)
0.07659 0.51 0.1419 0.22 0.1853 0.09 0.1797 0.1 -0.06796 0.59 -0.3841 0.14

CD8+FoxP3+CD45RA-CD28+

(CM)
-0.1267 0.27 -0.06221 0.59 0.2651 0.01 0.4002 0.0002 0.2394 0.06 -0.2987 0.25

CD8+FoxP3+CD45RA-CD28-

(EM)
-0.4184 0.0002 -0.5109 < 0.0001 0.4998 < 0.0001 0.5 < 0.0001 0.597 < 0.0001 0.03091 0.91

CD8+FoxP3+CD45RA+CD28-

(TD)
-0.09472 0.41 -0.1506 0.19 0.3426 0.001 0.171 0.11 0.233 0.06 -0.2471 0.35

CD8+FoxP3+CD38+HLA-DR+ -0.4041 0.0003 -0.514 < 0.0001 0.7546 < 0.0001 0.7502 < 0.0001 0.6481 < 0.0001 -0.4812 0.05

CD8+FoxP3+CD57+CD28-

(Senescent)
-0.3267 0.004 -0.5553 < 0.001 0.5502 < 0.0001 0.4332 < 0.0001 0.452 0.0002 -0.5 0.05

CD8+FoxP3+PD-1+ -0.4425 < 0.0001 -0.4824 < 0.0001 0.6112 < 0.0001 0.6657 < 0.0001 0.6954 < 0.0001 -0.06034 0.81

CD8+FoxP3+CTLA-4+ -0.1377 0.23 -0.2272 0.04 0.3825 0.003 0.5703 < 0.0001 0.08438 0.51 0.2471 0.35

CD8+FoxP3+CD39+ -0.1306 0.26 -0.11 0.34 0.4296 < 0.0001 0.5198 < 0.0001 0.0468 0.71 -0.5353 0.03

CD8+FoxP3+LAP(TGF-b1)+ -0.125 0.28 -0.2067 0.07 0.287 0.008 0.4102 0.0001 -0.1189 0.35 0.3353 0.2

CD8+FoxP3+CD39+LAP(TGF-
b1)+

-0.01223 0.91 0.03104 0.79 0.2494 0.02 0.3246 0.002 -0.1501 0.24 -0.25 0.34

CD8+FoxP3+CCR4+ -0.2196 0.05 -0.1122 0.33 0.2996 0.005 0.4384 < 0.0001 0.119 0.3569 0.02504 0.92

CD8+FoxP3+CCR5+ 0.000274 0.99 0.02539 0.82 0.2145 0.05 0.3031 0.005 0.2602 0.04 -0.1441 0.59

CD8+FoxP3+CCR6+ -0.3175 0.005 -0.2807 0.01 0.5175 < 0.0001 0.4891 < 0.0001 0.4594 0.0002 0.07959 0.76

CD8+FoxP3+CXCR3+ -0.3366 0.003 -0.4452 <0.0001 0.6352 < 0.0001 0.7059 < 0.0001 0.54 < 0.0001 -0.02647 0.92

CD8+FoxP3+CCR9+ -0.2133 0.06 -0.2591 0.02 0.5683 < 0.0001 0.6669 < 0.0001 0.3099 0.01 -0.7235 0.002

CD8+FoxP3+Integrin b7+ -0.3791 0.0007 -0.4641 < 0.0001 0.5138 < 0.0001 0.6631 < 0.0001 0.4482 0.0003 -0.2931 0.26

CD8+FoxP3+CCR9+CD39+ -0.1289 0.26 -0.1451 0.21 0.4407 < 0.0001 0.5628 < 0.0001 0.139 0.28 -0.5284 0.03

CD8+FoxP3+CCR9+LAP(TGF-
b1)+

-0.1275 0.27 -0.1418 0.22 0.4638 < 0.0001 0.5614 < 0.0001 0.1825 0.15 -0.571 0.02

CD8+FoxP3+Integrin b7+CD39+ -0.1667 0.15 -0.1665 0.15 0.3779 0.0004 0.5338 < 0.0001 0.2866 0.02 -0.546 0.03

CD8+FoxP3+Integrin b7+LAP
(TGF-b1)+

-0.1987 0.08 -0.2806 0.01 0.3916 0.0002 0.5249 < 0.0001 0.1612 0.21 0.3265 0.21

CD28-PD-1+ CD8 T-cells -0.1828 0.11 -0.2973 0.009 0.2920 0.007 0.4417 <0.0001 -0.0969 0.45 -0.09706 0.72

CD28-CD39+ CD8 T-cells -0.03237 0.78 -0.2038 0.07 0.2188 0.04 0.2443 0.02 -0.0443 0.73 -0.5107 0.04
frontiers
p-values come from the comparison of clinical and immunological parameters with CD4/CD8 ratio, CD4 activation (CD4+HLA-DR+CD38+), CD8 activation (CD8+HLA-DR+CD38+),
plasma viral load (log10/ml), and duration of ART (years) by using the Spearman correlation coefficient test.
Significant differences (p < 0.05) are highlighted in Bold.
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acute (ART-) and chronic (ART-); Figures 2A, C). Although

early ART initiation decreased FoxP3+ CD8 T-cell activation

(CD38+HLA-DR+), it could not normalize their levels

(Figure 2C). ECs had similar FoxP3+ CD8 T-cell activation

than uninfected controls and showed significantly lower

frequencies of activated FoxP3+ CD8 T-cell compared to acute

and chronic ART- individuals (Figure 2C). HIV infection was

associated with increased senescent (CD28-CD57+) FoxP3+ CD8

T-cells (p< 0.0001 in both cross-sectional and longitudinal

analysis), while early ART initiation failed to normalize their

frequencies (p=0.0001) (Figures 2B, D). Interestingly, ECs had

lower frequencies of senescent FoxP3+ CD8 T-cells compared to

ART- HIV-infected individuals, but these frequencies were

higher than uninfected controls (p= 0.001) (Figure 2D). The

frequency of activated and senescent FoxP3+ CD8 T-cells was

inversely correlated with CD4 T-cell count and CD4/CD8 ratio

and positively with plasma viral load and CD4 and CD8 immune

activation (Table 2). Altogether, our results indicate that early

ART initiation failed to normalize FoxP3+ CD8 T-cells immune

activation and senescence.
Impact of early ART initiation on
immunosuppressive subsets of FoxP3+

CD8 T-cells

As previously mentioned, FoxP3+ CD8 T-cells include

various subsets based on the expression of PD-1 (21), CTLA-4

(16, 17, 22), CD39 (16), and TGF-b1 (12, 23, 30), which are

needed for their survival and to exert immunosuppressive

functions (Figures 3A, B). HIV infection was linked to an

increase in the frequencies of PD-1+ FoxP3+ CD8 T-cells (p<

0.0001 for both acute and chronic ART-) and CTLA-4+ FoxP3+

CD8 T-cells (p< 0.0001, p= 0.003 for acute and chronic ART-,

re spec t ive ly) compared to uninfec ted indiv idua l s

(Figures 3C, D). Early ART initiation normalized CTLA-4+

FoxP3+ CD8 T-cells but not PD-1+ FoxP3+ CD8 T-cells

(Figures 3C, D). These two populations were inversely

correlated with CD4/CD8 ratio and positively with CD4 and

CD8 immune activation (Table 2). In addition, only PD-1+

FoxP3+ CD8 T-cells negatively correlated with CD4 T-cell count

and positively with VL (Table 2). ECs presented lower

frequencies of PD-1+ (p< 0.0001 for both acute and chronic

ART-) and CTLA-4+ (p= 0.009 for acute) FoxP3+ CD8 T-cells

compared with ART- HIV-infected individuals and similar to

uninfected controls (Figures 3C, D). HIV infection was also

associated with increased frequencies of CD39+ FoxP3+ CD8 T-

cells in both acute and chronic phases, and ART had no impact

on their frequencies, while ECs represent similar frequencies of

CD39+ FoxP3+ CD8 T-cells than uninfected controls

(Figure 3E). CD39+ FoxP3+ CD8 T-cells frequencies correlated

positively with CD4 and CD8 activation, whereas ART duration

negatively correlated with this population (Table 2).
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LAP(TGF-b1)+ and CD39+LAP(TGF-b1)+ FoxP3+ CD8 T-cell
frequencies were increased in HIV acute infection compared to

uninfected controls and positively correlated with CD4 and CD8 T-

cell immune activation (Figures 3F, G; Table 2). Early ART

initiation, but not later ART in cross-sectional analysis, inhibited

their expansion (Figures 3F, G). Overall, our data demonstrated that

early ART initiation reduced the frequencies of immunosuppressive

CTLA-4+ FoxP3+ CD8 T-cells but was unable to normalize the

frequencies of other immunosuppressive FoxP3+ CD8 T-

cell subsets.

Impact of HIV infection and early ART on
migration potential of FoxP3+

CD8 T-cells

We then evaluated the potential migration of FoxP3+ CD8 T-

cells by characterizing the expression of chemokine receptors

(Figure 4A). CCR4 binds to chemokine ligands CCL17 and

CCL22 and is mainly expressed by T-cells. The expression of

CCR4 has been linked to migration to the skin, heart, lung, and

lymph nodes (42–45). CCR4+ FoxP3+ CD8 T-cell frequencies were

higher in acute HIV infection compared to uninfected controls and

ECs (p= 0.006 and p= 0.02, respectively), which was normalized by

early ART initiation (Figure 4B). The frequencies of this population

positively correlated with CD4 and CD8 immune activation

(Table 2). CCR5 is a G-coupled receptor that binds to CCL3,

CLL4, and CCL5 linked to cell migration to the brain, inflamed

tissues and gut and is suggested to play an essential role in CD8 T-

cells differentiation and activation (46–49). Significant increases in

CCR5+ FoxP3+ CD8 T-cell frequencies were found only in the

chronic ART- group, while ART+ individuals represented similar

levels of CCR5+ FoxP3+ CD8 T-cells than uninfected controls and

ECs (Figure 4C). CXCR3 is an IFN-inducible chemokine receptor

that binds to chemokines CXCL4, CXCL9, CXCL10, and CXCL11,

which directs themigration towards inflamed sites (50–52).We also

assessed the expression of CCR6 (53, 54), CCR9 (55–57), and

Integrin-b7 (53, 57), which direct T-cells recruitment towards the

gut through the binding of CCL20, CCL25, and Mucosal vascular-

Addressin Cell-Adhesin Molecule 1, respectively. Frequencies of

CCR6+ and CXCR3+ FoxP3+ CD8 T-cells were increased in

untreated acute and chronic ART- HIV infection (Figures 4D, E).

Similarly, FoxP3+ CD8 T-cells expressing gut homing markers

CCR9 and Integrin-b7 were also rapidly increased in acute and

chronic ART- infection. However, in contrast to CCR6 and CXCR3,

early ART initiation was unable to normalize the levels of CCR9+

and Integrin-b7+ FoxP3+ CD8 T-cells (Figures 4F, G). ECs have a

similar expression of these chemokine receptors than uninfected

controls (Figures 4F, G). The frequencies of CCR6+, CXCR3+,

CCR9+, and Integrin-b7+ FoxP3+ CD8 T-cells were negatively

correlated with CD4 T-cell count and CD4/CD8 ratio, while

positively correlated with T-cell immune activation and plasma

VL (Table 2). Moreover, only CCR9+ FoxP3+ CD8 T-cells inversely

correlated with the duration of ART (Table 2).
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A B

D
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FIGURE 2

Effect of early ART initiation on FoxP3+ CD8 T-cell immune activation and senescence. (A) Gating strategies used in flow cytometry to define
activated FoxP3+ CD8 T-cells (CD8+FoxP3+HLA-DR+CD38+). (B) Gating strategies used in flow cytometry to define immunosenescent FoxP3+

CD8 T-cells (CD8+FoxP3+CD28-CD57+). Frequencies of CD8+FoxP3+HLA-DR+CD38+ (C), and CD8+FoxP3+CD28-CD57+ (D) within CD8 T-cells.
Statistical significance is indicated in the figures as follow: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. Differences among five study
groups was determined by nonparametric Mann-Whitney rank test for unpaired variables, while the Wilcoxon rank tests were used for paired
variables in the longitudinal study. Sample size in cross-sectional analysis: non-infected n=20, Acute n=26, Chronic ART- n=10, Chronic ART+
n=11, EC n=18. Sample size in longitudinal analysis: non-infected n=20, ART- n=10, ART+ n=10.
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We also assessed the potential migration of immunosuppressive

CD39+ and LAP(TGF-b1)+ FoxP3+ CD8 T-cells towards the gut by
their expression of CCR9 and Integrin-b7. Here again, we observed
that untreated HIV infection was associated with increases in

CD39+ and LAP(TGF-b1)+ FoxP3+ CD8 T-cells expressing CCR9

and Integrin-b7 compared to ECs and uninfected controls

(Figure 5). Importantly, early ART initiation failed to normalize

the gut migration potential of these subsets expect for Integrin-

b7+LAP(TGF-b1)+ FoxP3+ CD8 T-cells. The frequencies of CD39+

and LAP(TGF-b1)+ FoxP3+ CD8 T-cells expressing CCR9 and

Integrin-b7 were all positively correlated with T-cell immune
Frontiers in Immunology 09
activation, and, excepting Integrin b7+LAP(TGF-b1)+, they

negatively correlated with longer duration of ART (Table 2).

Furthermore, we found a positive correlation between VL and

Integrin b7+CD39+ FoxP3+ CD8 T-cells frequencies, whereas

Integrin b7+LAP(TGF-b1)+ FoxP3+ CD8 T-cells were negatively

correlated with CD4/CD8 ratio (Table 2). Altogether, our results

showed that during HIV infection and despite early ART initiation,

immunosuppressive CD39+ and LAP(TGF-b1)+ FoxP3+ CD8 T-

cells maintained their capacity to migrate to the gut, which, in turn,

could contribute to gut mucosal immune dysfunction and

tissue fibrosis.
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FIGURE 3

Effect of early ART initiation on FoxP3+ CD8 T-cells subsets with known immunosuppressive functions. Gating strategies used in flow cytometry
to define FoxP3+ CD8 T-cells expressing PD-1/CTLA-4 (A) and CD39/LAP(TGF-b1) (B). Frequencies of CD8+FoxP3+PD-1+ (C),
CD8+FoxP3+CTLA-4+ (D), CD8+FoxP3+CD39+ (E), CD8+FoxP3+LAP(TGF-b1)+ (F), and CD8+FoxP3+CD39+LAP(TGF-b1)+ (G) within CD8 T-cells.
Statistical significance is indicated in the figures as follow: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. Differences among five study
groups was determined by nonparametric Mann-Whitney rank test for unpaired variables, while the Wilcoxon rank tests were used for paired
variables in the longitudinal study. Sample size in cross-sectional analysis: non-infected n=20, Acute n=26, Chronic ART- n=10, Chronic ART+
n=11, EC n=18. Sample size in longitudinal analysis: non-infected n=20, ART- n=10, ART+ n=10.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.962912
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yero et al. 10.3389/fimmu.2022.962912
Early ART was unable to normalize
CD28-PD-1+ and CD28-CD39+ CD8
T-cell subsets

In addition to classical FoxP3+ CD8 T-cells, other CD8 T-

cell subsets have also been described as immunosuppressive

regardless of their FoxP3 expression, including CD8+CD28-PD-

1+ and CD8+CD28-CD39+ CD8 T-cells (7, 8, 28, 58). Herein, we

observed a rapid expansion of both CD28-PD-1+ and CD28-

CD39+ CD8 T-cell subsets in untreated HIV infection compared

to ECs and uninfected controls (Figure 6). Importantly, their

frequencies were not affected by early ART initiation. Both
Frontiers in Immunology 10
populations correlated positively with CD4 and CD8 immune

activation, while only CD28-PD-1+ negatively correlated with

CD4/CD8 ratio, and only CD28-CD39+ negatively correlated

with the duration of ART (Table 2).
Discussion

The immune responses exerted by effector CD8 T-cells are

crucial for controlling SIV/HIV infections (59, 60). In contrast,

immunosuppressive functions of FoxP3+ CD8 T-cells are

primarily detrimental since higher frequencies of these cells
A
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FIGURE 4

Effect of early ART initiation on FoxP3+ CD8 T-cells potential migration. (A) Gating strategies used in flow cytometry to define CD8+FoxP3+ T-
cells -expressing CCR4, CCR5, CCR6, CXCR3, Integrin-b7 and CCR9. Frequencies of CD8+FoxP3+CCR4+ (B), CD8+FoxP3+CCR5+ (C),
CD8+FoxP3+CCR6+ (D), CD8+FoxP3+CXCR3+ (E), CD8+FoxP3+Integrin-b7+ (F), and CD8+FoxP3+CCR9+ (G) within CD8 T-cells. Statistical
significance is indicated in the figures as follow: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. Differences among five study groups
was determined by nonparametric Mann-Whitney rank test for unpaired variables, while the Wilcoxon rank tests were used for paired variables
in the longitudinal study. Sample size in cross-sectional analysis: non-infected n=20, Acute n=26, Chronic ART- n=10, Chronic ART+ n=11, EC
n=18. Sample size in longitudinal analysis: non-infected n=20, ART- n=10, ART+ n=10.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.962912
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yero et al. 10.3389/fimmu.2022.962912
have been associated with immune dysfunction, viral persistence

and HIV disease progression (15–17). We recently showed that

early ART initiation in HIV-infected individuals was unable to

reduce CD39+ and LAP(TGF-b1)+ CD4 Tregs and their

potential migration to the gut (40). Herein, in the same study

cohort, we showed that acute HIV infection increased the

frequencies of FoxP3+ CD8 T-cells, which were normalized by

early ART initiation. Importantly, although we observed an

overall increase in FoxP3 expression on CD8 T-cells in

untreated HIV infection that could affect the relative

proportions of FoxP3+ subsets reported in our study, we also

observed clear differences between the expression of various

markers on FoxP3+ CD8 T-cells versus total CD8 T-cells which

suggest the particular dynamics of FoxP3+ CD8 T-cells during

HIV infection (Supplementary Table 2). In contrast, early

treatment was unable to normalize FoxP3+ CD8 T-cell

activation and senescence, as well as the gut migratory

potential of CD39+ and LAP(TGF-b1)+ FoxP3+ CD8 T-cells.
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Similar to previous studies in both human and RMs, we

observed increased frequencies of total FoxP3+ CD8 T-cells in

untreated HIV-infected individuals (15–17, 23). Notably, the

reduction in FoxP3+ CD8 T-cells following early ART initiation

was reported in SIV-infected RMs (38, 39), while no studies in

humans, to the best of our knowledge, have evaluated its effect on

HIV-infected individuals. ECs showed lower FoxP3+ CD8 T-cell

frequencies than HIV-progressors and were comparable to

uninfected individuals, which contrasts with a unique report of

an increase in FoxP3+ CD8 T-cells in SIV controllers Indian RMs

compared to SIV progressor monkeys (18). These differences could

be associated with increased viral fitness and VL and faster disease

progression in the Indian RM model (61). In our study, the EC

group is significantly older and with a longer duration of the

infection, which can also impact our observations. In line with

previous reports, our results showed that total FoxP3+ CD8 T-cell

frequencies were linked to markers of disease progression such as

CD4 T-cell count, CD4/CD8 ratio, and VL (17).
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FIGURE 5

Effect of early ART initiation on the migratory potential towards the gut of FoxP3+ CD8 T-cells subsets with known immunosuppressive functions.
(A) Gating strategies used in flow cytometry to define CCR9+CD39+, CCR9+LAP(TGF-b1)+, Integrin-b7+CD39+, and Integrin-b7+LAP(TGF-b1)+

CD8+FoxP3+ T-cells. Frequencies of CD8+FoxP3+CCR9+CD39+ (B), CD8+FoxP3+CCR9+LAP(TGF-b1)+ (C), CD8+FoxP3+Integrin-b7+CD39+ (D), and
CD8+FoxP3+Integrin-b7+LAP(TGF-b1)+ (E) within CD8 T-cells. Statistical significance is indicated in the figures as follow: *, P < 0.05; **, P < 0.01;
***, P < 0.001; ****, P < 0.0001. Differences among five study groups was determined by nonparametric Mann-Whitney rank test for unpaired
variables, while the Wilcoxon rank tests were used for paired variables in the longitudinal study. Sample size in cross-sectional analysis: non-infected
n=20, Acute n=26, Chronic ART- n=10, Chronic ART+ n=11, EC n=18. Sample size in longitudinal analysis: non-infected n=20, ART- n=10, ART+
n=10.
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Untreated HIV infection was associated with an early

increase in FoxP3+ CD8 T-cell immune activation (HLA-DR+/

CD38+) and senescence (CD28-CD57+) that remained elevated

despite early ART initiation. The maintenance of activated

FoxP3+ CD8 T-cells following early ART is significantly

important since activated CD8 T-cells have higher

proliferation (60), and HLA-DR+ CD8 T-cells are highly

immunosuppressive comparable to CD4 Tregs (62). Even in

the absence of viremia under successful ART, immune activation

persists and promotes immunosenescence (63), which could

explain higher levels of immunosenescent FoxP3+ CD8 T-cells

regardless of early ART initiation. The increase in

immunosenescent FoxP3+ CD8 T-cells in ECs compared to

uninfected individuals, while having similar levels of immune

activation, could be related to the age of these individuals since a

positive correlation between age and CD28-CD57+ CD8 T-cells

was only observed in ECs (data not shown) (64).

A distinctive differentiation pattern of FoxP3+ CD8 T-cells was

observed in untreated HIV infection, characterized by an increase in

CM, EM, and TD FoxP3+ CD8 T-cells that, excepting for EM

FoxP3+ CD8 T-cells, were normalized by early ART, indicating an

increased differentiation of FoxP3+ CD8 T-cells in HIV infection.

The increase in total FoxP3+ CD8 T-cells and their differentiation
Frontiers in Immunology 12
could be related to the expansion of antigen-experienced FoxP3+

CD8 T-cells or conversion of antigen-primmed FoxP3-CD8 T-cells

into FoxP3+ CD8 T-cells by TGF-b1 (65). The persistence of higher
frequencies of EM FoxP3+ CD8 T-cells despite early ART is

particularly important. In fact, EM T-cells show an increased

ability to localize within tissues and migrate into non-lymphoid

tissues in response to infection or inflammation (66, 67), suggesting

a higher FoxP3+ CD8 T-cell migratory potential towards

inflammatory sites and the gut. In this regard, we observed

increased frequencies of FoxP3+ CD8 T-cells expressing migration

markers to inflammatory sites and the gut and the persistence of

CCR9/Integrin b7 FoxP3+ CD8 T-cells despite early ART.

Moreover, the increase in highly differentiated FoxP3+CD8 T-cells

is in line with the increase in CCR5+ FoxP3+ CD8 T-cells since

CCR5 expression is associated with an increase in CD8 functions

and differentiation (49, 68, 69). We also observed increased CCR4+

and CXCR3+ FoxP3+ CD8 T-cells in untreated HIV infection,

which was restored by early ART initiation. Importantly, CCR4

expression is associated with higher CD4 Tregs inhibitory capacity

and could have similar functions in FoxP3+ CD8 T-cells (70), while

anti-CCR4 treatment decreases CD8 T-cell immune responses (71).

On the other hand, CXCR3+ CD8 T-cells are well-known IL-10

producers immunosuppressor cells (72), and CXCR3 expression is a
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FIGURE 6

Effect of early ART initiation on CD8+CD28-PD-1+ and CD8+CD28-CD39+ T-cells. Gating strategies used in flow cytometry to define
CD8+CD28-PD-1+ and CD8+CD28-CD39+ (A). Frequencies of CD8+CD28-PD-1+ (B) and CD8+CD28-CD39+ (C) within CD8 T-cells. Statistical
significance is indicated in the figures as follow: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. Differences among five study groups
was determined by nonparametric Mann-Whitney rank test for unpaired variables, while the Wilcoxon rank tests were used for paired variables
in the longitudinal study. Sample size in cross-sectional analysis: non-infected n=20, Acute n=26, Chronic ART- n=10, Chronic ART+ n=11, EC
n=18. Sample size in longitudinal analysis: non-infected n=20, ART- n=10, ART+ n=10.
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reliable marker for EM CD8 T-cells immune responses (73). In

addition, CXCR3 expression regulates CD8 T-cells differentiation in

acute and chronic viral infections (74). FoxP3+ CD8 T-cells could

co-localize with CD4 T-cells expressing similar chemokine

receptors and further inhibit their proliferation and anti-HIV-

specific response. Importantly, CCR5+ and CCR6+ CD4 T-cells

are highly susceptible to HIV infection (75–77). Thus, FoxP3+ CD8

T-cell colocalization with CD4 T-cells mediated by CCR5 and

CCR6-dependent recruitment could contribute to poor viral control

and disease progression. Moreover, a model of colocalization

between HIV-specific CD8 and CD4 T-cells in the gut pointed to

integrin b7 rather than CCR6 as themediator of this migration (53).

An increase in various immunosuppressive subsets of FoxP3+

CD8 T-cells, including CTLA-4+, PD-1+, CD39+, LAP(TGF-b1)+,
and CD39+LAP(TGF-b1)+ was observed in untreated HIV

infection, whereas early ART initiation was unable to normalize

levels of PD-1+, and did not affect CD39+ and LAP(TGF-

b1)+FoxP3+ CD8 T-cells. Similarly, in the same study cohort, we

also observed that early ART initiation failed to normalize PD-1+

and CD39+ CD4 Tregs (40). However, we recently reported that

very early ART initiation at four days post-SIV infection of RMs

reduced the frequencies of CD39+ FoxP3+ CD8 T-cells (39).

Furthermore, longer ART treatment correlated negatively with

CD39+ FoxP3+ CD8 T-cell frequencies, which could indicate that

earlier ART initiation and longer treatment contribute to better

control of their expansion. Despite early ART initiation, the

persistence of PD-1+ and CD39+ FoxP3+ CD8 T-cells could

contribute to immune dysfunction and disease progression.

Indeed, PD-1/PD-1L contributes to FoxP3+ CD8 T-cells

immunosuppression by increasing FoxP3+ CD8 T-cells

proliferation/differentiation and inducing apoptosis in effector

cells (21, 62). Importantly, PD-1/PD-1L interaction induces

FoxP3 expression and promotes CD4 Tregs expansion (78–80).

Thus, it is logical to think that a similar process might occur in CD8

T-cells promoting FoxP3 stabilization and FoxP3+ CD8 T-cells

expansion. Furthermore, the increase in LAP(TGF-b1)+ FoxP3+

CD8 T-cells during untreated infection is supported by a report of a

positive correlation between TGF-b1 production and FoxP3+ CD8

T-cells frequencies in non-pathogenic SIV infection in African

green monkeys (23). Moreover, downstream genes of the TGF-b1
pathway are upregulated as early as one day after SIV infection in

RMs (81) andHIV-infected individuals (82). FoxP3+ CD8 T-cells in

ECs expressed similar CTLA-4, PD-1, CD39, and LAP(TGF-b1)
levels than uninfected individuals, which could be associated with

the maintenance of effector cell functions and viral control in

these individuals.

Similar to our recent report on CD4 Tregs (40), we observed

increased CCR9+ and integrin b7+ FoxP3+ CD8 T-cells, along

with CD39+ and LAP(TGF-b1)+ FoxP3+ CD8 T-cells during

untreated HIV infection that persisted regardless of early ART

initiation. These findings are particularly significant, suggesting

a potential migration of FoxP3+ CD8 T-cells with known

immunosuppressive potential towards the gut despite ART.
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Interestingly, CD4 Tregs can promote the proliferation of

FoxP3+ CD8 T-cells and vice versa. Indeed, each cell type’s IL-

10 and TGF-b1 may contribute to FoxP3 expression and

differentiation of the other subset (12, 29). Moreover, both

CD4+ and CD8+FoxP3+ T-cells have previously been shown to

work together in animal models, where the participation of both

Treg subsets is significantly higher in combined transfers than in

independent transfers (13, 83, 84). The migration of highly

immunosuppressive CD39+ and LAP(TGF-b1)+ FoxP3+ CD8

T-cells to the gut could inhibit specific antiviral responses while

promoting immune dysfunction and tissue fibrosis (16, 34).

Notably, functional interplays between CD39 and TGF-b1 are

also known. Indeed, TGF-b1 production, tissue remodeling, and

fibrosis are promoted by CD39 enzymatic activity and adenosine

production (85–87), whereas TGF-b1 signaling stimulates CD39

expression and activity (88–91). Moreover, an increase in TGF-

b1 production and activity by the adenosine pathway may also

stimulate FoxP3+ Tregs expansion (92, 93). Interestingly, TGF-

b1 upregulates CTLA-4 and PD-1 expression (94), and we

observed an increase in the expression of both markers. This

indicates that in addition to promoting fibrosis and inducing

CD39 and FoxP3 expression, TGF-b1 can also contribute to

immunosuppression by inducing immune checkpoints PD-1

and CTLA-4. Notably, total CCR9+ FoxP3+ CD8 T-cells and

CD39+/LAP(TGF-b1)+ FoxP3+ CD8 T-cells expressing CCR9

remained elevated despite early ART initiation, but their

frequencies were negatively correlated with the duration of

ART, suggesting that longer ART duration rather than earlier

interventions could decrease their frequencies.

Finally, we observed an increase in both CD28-PD-1+ and

CD28 -CD3 9 + CD8 T - c e l l s - t w o s u b s e t s w i t h

immunosuppressive functions regardless of FoxP3 expression -

which was not restored following early ART initiation. The

increase in CD28-PD-1+ (15, 95) and CD28-CD39+ (28) CD8

T-cells in untreated HIV-infected individuals correspond with

previous reports. CD28- CD8 T-cells are known to induce

tolerogenic dendritic cells and secretion of inhibitory cytokines

such as IL-10 and TGF-b1 (96). CD28-PD-1+ phenotype is

associated with immune exhaustion, poor anti-HIV specific

response, and disease progression (97, 98). Thus, increased

CD28-PD-1+ CD8 T-cells during untreated HIV infection and

their persistence regardless of ART indicates exhaustion and

potentially dysfunctionality of CD8 T-cells despite early ART.

Moreover, CD28-CD39+ CD8 T-cells could contribute to

immune dysfunction and disease progression through similar

mechanisms than FoxP3+CD39+ CD8 T-cells.

Our study had some limitations which deserve to be discussed,

including the relatively small sample size. Nevertheless, our findings

were consistent with previous findings using a similar sample size

and had a high biological plausibility (40, 99, 100). We recognize

that variables such as gender, age, duration of infection, and timing

of ART initiation may influence our findings. In this regard, the

expression of FoxP3 and other Treg markers can be influenced by
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sex hormones and gender (101, 102). Similarly, the frequencies and

functions of FoxP3+ CD8 T-cells and the expression of

immunosuppressive markers by these cells differ in older

individuals (103, 104). We mainly recruited male participants in

our analysis since they constitute the majority of the participants in

the Montreal primary HIV infection (acute) cohort. Additionally,

we did not provide functional assays to assess FoxP3+ CD8 T-cells’

inhibitory capacity since we had limited access to these specimens

and the fact that FACS-sorting of FoxP3+ CD8 T-cells requires the

permeabilization and fixation of the cells which are not usable for in

vitro functional assays. Ultimately, while we used well-established

markers of T-cell migration to the gut, all analyses were performed

in peripheral blood as an indirect indication of FoxP3+ CD8 T-cell

migration towards this compartment.

In summary, for the first time, we spotlight various subsets of

FoxP3+ CD8 T-cells that might be critical in HIV disease

progression. We showed that early ART initiation did not

normalize the frequency of immunosuppressive and pro-

fibrogenic FoxP3+ CD8 T-cells and their potential migration

to the gut. The latter can contribute to immune dysfunction, gut

fibrosis, and HIV disease progression, suggesting that other

therapies combined with early ART initiation are needed to

reduce FoxP3+ CD8 T-cells immunosuppressive subsets.
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